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Abstract

Testing the convexity of boolean formulae has applications in problems such as the con-
vertibility of access control policies. In this paper, we report on our ongoing work on
developing a polynomial algorithm for testing the convexity of the set of minterms of a
disjunctive normal form formula where every term has exactly two literals in it (2DNF).

1 Introduction and Preliminaries

Our goal in this paper is to develop an algorithm for testing the convexity of the set of minterms
of a boolean formula in disjunctive normal form where every term has exactly two literals in
it (2DNF). The motivation for this problem comes from the convertibility problem for rule-based
access control policies [4, 5].

Let X = {x1, . . . , xn} be a set of Boolean variables. Expressions, terms (products or
conjuncts), and minterms are defined as usual [3]. Given a set of Boolean variables X, we
denote the set of all possible minterms as MX . For a Boolean expression Ψ, let µ(Ψ) be the set
of its minterms. Note that each minterm of an expression can also be viewed as a (representation
of a) satisfying assignment for that expression.

We define a partial order ≤ on bit strings (of the same length) as follows: first define the order
on single bits as 0 ≤ 0, 0 ≤ 1 and 1 ≤ 1. This is extended to bit strings X and Y as

– X ≤ Y iff X[j] ≤ Y [j] for all j and

– X < Y iff X ≤ Y and X ̸= Y .

Definition 1.1. A set of minterms M is convex if and only if for every pair m1 ≤ m2 ∈ M :

{ m | m1 ≤ m ≤ m2} ⊆ M.

Definition 1.2. Let M be a set of minterms. Its upward closure M↑ is defined as

M↑ = { u | ∃m ∈ M : m ≤ u}.

Definition 1.3. A set of minterms M is upward closed if and only if M = M↑.
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Definition 1.4. For a term t, the product of its positive literals is denoted by Π(t) and the
product of its negative literals is denoted by N (t).

If there are no positive literals in a term t, then Π(t) = 1. Similarly, if there are no negative
literals in a term t, then N (t) = 1.

Definition 1.5. Given two product terms t1 and t2, their separator, denoted as sep(t1, t2),
is Π(t2)N (t1), i.e., the conjunction of the positive literals of t2 and the negative literals of t1.

For instance, if t1 = x1x2 and t2 = x3x4 then sep(t1, t2) = x2x3.

In an earlier paper [5], we showed that:

Lemma 1.1. The set of minterms of a boolean expression Φ in DNF is convex if and only if
every separator is an implicant of Φ.

Another characterization of convexity is as follows.

Lemma 1.2. The set of minterms of a boolean expression Φ in DNF is convex if and only if
there exist positive DNF expressions Ψ1 and Ψ2 such that

Φ ≡ Ψ1 ∧ ¬Ψ2

Note that a boolean expression in DNF is said to be in positive DNF form if and only if no
negated literals appear in it.

Our goal in this paper is to design an efficient algorithm for checking the convexity of an
expression in DNF. By Lemma 1.2 this problem can be formulated as a matching problem as
follows:�

�
�
�

Instance: A formula Φ in DNF.

Question: Are there positive DNF formulae A and B such that Φ ≡ A ∧ ¬B ?

We consider in this paper a restricted version of this problem where every product term in
the DNF formula has exactly two literals. There are three main cases:

(a) There exists an all-positive term and an all-negative term.

(b) Every term is mixed, i.e., every term has a negated literal and an unnegated literal. Thus
we have neither all-positive terms nor all-negative terms. We refer to such formulae as
“all-mixed 2DNF.”

(c) There is an all-positive term, but no all-negative term. (The dual case where there is an
all-negative term but no all-positive terms is similar.)

Case (a) is the most straightforward. The set of minterms µ(t) of an all-positive term t con-
tains the highest minterm. Similarly if t is all-negative, then µ(t) contains the lowest minterm.
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Hence, the set of minterms of such a formula is convex if and only if the formula is valid [4].
The validity of such formulae can be checked in linear time [1].

In Section 2, we discuss Case (b), i.e., where every product term is of the form xixj .
We derive a graph-theoretic characterization of the implication graph of the negation of such
formulae (which clearly will be in CNF). This leads to a linear algorithm for testing convexity.
We also briefly discuss a quadratic-time algorithm for Case (c) in Section 3, and conclude the
paper in Section 4.

2 Linear-Time Algorithm For All-Mixed Case

Let Φ be an all-mixed 2DNF formula and let ¬Φ be its complement in CNF. Let IG(¬Φ) be
the implication graph of ¬Φ [1]:

• For each variable xi, we add two nodes named xi and xi.

• For each clause u ∨ v of ¬Φ, we add edges u → v and v → u.

Note that every clause in ¬Φ is of the form xi ∨ xj . Hence we only keep the part of the
graph with nodes with positive literals since there are no edges between nodes with positive
literals and nodes with negative literals.

Lemma 2.1. Let Φ be an all-mixed 2DNF formula and let x1 and x2 be two distinct variables.
Then x1x2 is an implicant of Φ if and only if there is a path from x1 to x2 in IG(¬Φ).

Lemma 2.2. Let Φ be an all-mixed 2DNF formula. Then Φ is convex if and only if the fol-
lowing holds for all distinct variables x1, x2, x3, x4:

if x1x2 and x3x4 are terms in Φ then there are paths in IG(¬Φ) from x1 to x4 and
from x3 to x2.

Proof. Follows from Lemmas 1.1 and 2.1, since x1x4 and x2x3 are separators.

Since the implication graph may be cyclic, we will also need to consider the component
graph CIG(¬Φ) of the implication graph. This is obtained by coalescing all nodes in a strongly-
connected component (SCC) into one node. This component graph can be constructed in time
linear in the size of the original digraph [2].

Lemma 2.3. Let Φ be an all-mixed DNF formula. Then Φ is convex only if the following holds
for all distinct variables x1, x2, x3, x4:

If x1x2 ∨ x2x3 ∨ x3x4 is a subexpression of Φ then x2 and x3 belong to the same
strongly-connected component in CIG(¬Φ).
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Proof. There must be a path in IG(¬Φ) from x3 to x2 by Lemma 2.2.

Corollary 2.3.1. Let Φ be an all-mixed DNF formula. If Φ is convex, then CIG(¬Φ) cannot
contain a path of 3 edges.

We now have to consider two separate cases:

1. All paths in CIG(¬Φ) are of length 1.

2. There is a path of length 2 in CIG(¬Φ).

(There is also the case where CIG(¬Φ) has exactly one node, but that case is taken care of
by the definition of radial dags given below.)

We call a dag G radial if there is a unique node v such that there is an edge from every
source node to v, there is an edge to every sink node from v, and every node other than v is
either a source node or a sink node. In other words, the set of nodes V can be partitioned into
3 disjoint subsets (V1, {v}, V2) such that V1 is the set of source nodes, V2 is the set of sink
nodes, every node in V1 is connected to v and v is connected to every node in V2. (See Figure 1:
Nodes x1 and x2 are source nodes, x4 is the only sink node and x3 is the “middle node.”)

x1

x3

x2

x4

A bipartite dag is a dag where the set of nodes V can be partitioned into two disjoint subsets
V1 and V2, such that every edge is from a node in V1 to a node in V2. In other words, every
node in V1 is a source node, and every node in V2 is a sink node. A complete bipartite dag is a
dag where the set of nodes V can be partitioned into two disjoint subsets V1 and V2, such that
every node in V1 has an edge to every node in V2.

Lemma 2.4. Let Φ be an all-mixed DNF formula such that CIG(¬Φ) has no edges at all.
Then Φ is convex if and only if CIG(¬Φ) has only one node.

Lemma 2.5. Let Φ be an all-mixed DNF formula such that all paths in CIG(¬Φ) are of
length 1. Then Φ is convex if and only if CIG(¬Φ) a complete bipartite dag.

Lemma 2.6. Let Φ be an all-mixed DNF formula such that there is a path of length 2 in CIG(¬Φ).
Then Φ is convex if and only if CIG(¬Φ) is a radial dag.

Theorem 1. An all-mixed DNF formula Φ is convex if and only if CIG(¬Φ) is either a
complete bipartite dag or a radial dag.
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Proof. Follows from Corollary 2.3.1 and lemmas 2.5 and 2.6.

The above theorem provides a linear-time algorithm for the all-mixed case.

Example 2.1. Consider the DNF expression Φ = x1x2 ∨ x1x2. CIG(¬Φ) has exactly one
node {1, 2}. Thus this expression is convex.

Example 2.2. Consider the DNF expression Φ = x1x2 ∨ x1x2 ∨ x3x4 ∨ x3x4. CIG(¬Φ)
has two nodes but no edges. This formula is not convex because 1100 is not a minterm of Φ,
whereas 1110 and 1000 are.

Example 2.3. Consider the DNF expression Φ = x1x2 ∨ x1x4 ∨ x3x4. Then the CIG(¬Φ)
is:

x1

x3

x2

x4

Since the graph is not a complete bipartite dag, according to Lemma 2.5, Φ is not convex.
Note that x2x3, which is a separator, is not an implicant.

Example 2.4. Consider the DNF expression Φ = x1x2 ∨ x2x3 ∨ x2x3 ∨ x2x4 ∨ x3x5. Then
CIG(¬Φ) is as follows:

x1 {x2, x3}

x4

x5

Note that this dag is radial. The given expression is convex.
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3 Quadratic-Time Algorithm For Case with An All-Positive
Term

In this case it can be shown that the formula is convex if and only if it is upward-closed.

Lemma 3.1. A formula Φ in DNF is upward-closed if and only if it is convex and contains an
all-positive term.

Lemma 3.2. A formula Φ in DNF is upward-closed if and only if for every term t in Φ, Π(t)
is an implicant of Φ.

Proof. This follows from Lemma 1.1: if Φ contains an all-positive term, then from every mixed
term t we can get Π(t) as a separator.

A quadratic algorithm can be derived fairly easily since all we need to do is to check for
every mixed term uv whether u is an implicant of the formula.

4 Conclusion and Future Work

In this paper, we investigated the problem of testing the convexity of DNF formula where every
term has exactly two literals, splitting the problem into three main cases. We showed that
the problem is easiest when both an all-positive and an all-negative term exist, since in that
case convexity reduces to validity. We provided a linear-time algorithm to solve the second
case, where every term is mixed, based on a characterization of the implication graph of the
negation of the formula. We also showed that the third case, where the formula contains either
an all-positive term or an all-negative term (but not both), can be solved in polynomial time.
As part of future work we plan to derive another graph-theoretic characterization of the last
case.
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