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Preface

This volume contains the contributions presented at the 38th International Workshop on Unifi-
cation (UNIF 2024). UNIF 2024 was a satellite event of the Conference on Automated Deduc-
tion (CADE), a�liated with the 12th International Joint Conference on Automated Reasoning
(IJCAR 2024). It took place on July 2, 2024, in Nancy, France.

Unification is concerned with the problem of making two given terms equal, either syntac-
tically or modulo an equational theory. It is a fundamental process used in various areas of
computer science, including automated reasoning, term rewriting, logic programming, natural
language processing, program analysis, knowledge representation, types, etc.

UNIF is a well-established event with more than three decades of history. It takes place
annually and provides a forum for researchers in unification theory and related fields to meet
old and new colleagues, to present recent (even unfinished) work, and to discuss new ideas and
trends. It is also a good opportunity for students, young researchers, and scientists working in
related areas to get an overview of the current state of the art in unification theory. Information
about previous editions can be found on the homepage of the UNIF international workshop:
https://www.irif.fr/~treinen/unif.

The Program Committee of UNIF 2024 selected 9 contributions for presentation. Each
submission was evaluated by at least three program committee members. In addition, the
scientific program of the workshop included two invited talks given by Daniele Nantes-Sobrinho
on Frame Inference in Separation Logic via Associative-Commutative Matching, and by George
Metcalfe on Independence in Logic and Algebra.

We would like to thank all the members of the Program Committee for their detailed reviews
and interesting discussions during the reviewing process. We are also grateful to the Conference
Co-Chairs of IJCAR: Didier Galmiche, Stephan Merz and Christophe Ringeissen, the IJCAR
Workshop Chair: Sophie Tourret, and the UNIF Steering Committee for all their support in
the preparation of UNIF 2024. Finally, the work of the Program Committee was greatly helped
by the EasyChair system, designed by Andrei Voronkov.

July 2024 Santiago Escobar
Oliver Fernández Gil
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Frame Inference in Separation Logic via
Associative-Commutative Matching

Daniele Nantes-Sobrinho

Imperial College London
d.nantes-sobrinho@imperial.ac.uk

Abstract

Separation logic is a popular approach to concisely specifying the behaviour of programs
that manipulate memory (the heap). Conciseness comes from the fact that separation logic
allows the local analysis of programs, that is, it avoids the need to describe portions of
the heap not altered by a command - the frame. However, the problem of identifying
the frame is challenging, known as the frame inference problem, and several incomplete
approaches were proposed. In this talk, I will present a polynomial algorithm to solve the
frame inference problem based on transforming the problem to the well-known “distinct
occurrences of AC-matching” (DO-ACM) problem. That is, finding a frame reduces to
finding a matching in an undirected bipartite graph. Polynomiality is sensible to the
choice of the expression language: our choice of language is standard and expressive. We
illustrate our results with a simple memory model, but we believe that the results can be
extended to more complex models. We show that the same approach can be used to infer
the frame for incorrectness separation logic with just a small modification of the frame
inference algorithm.

This is a joint work with Andreas Lööw and Philippa Gardner, Imperial College London.



Independence in Logic and Algebra

George Metcalfe

Mathematical Institute, University of Bern, Switzerland
george.metcalfe@unibe.ch

Abstract

This talk will explore a notion of independence for formulas considered by De Jongh
and Chagrova for intuitionistic propositional logic in [1] that is closely related to a notion
of independence for elements of an algebraic structure studied by Marczewski and others in
the 1950s [2]. Terms t1, . . . , tn are said to be independent in a variety (equational class) V
if any substitution mapping each variable xi to ti V -unifies only the equations in x1, . . . , xn

that are already satisfied by V . In [1], it is shown that this property is decidable for Heyting
algebras, using Pitts’ proof of uniform interpolation for intuitionistic propositional logic
[4], and a description is given of independent pairs of formulas. Following [3], this talk
will consider the problems of deciding and describing independence for several other case
studies from logic and algebra, including groups, semigroups, lattices, modal algebras,
and MV-algebras, and explain how independence relates to the notions of coherence and
admissibility.

References

[1] Dick De Jongh and L. A. Chagrova. The decidability of dependency in intuitionistic propositional
logic. J. Symb. Log., 60(2):498–504, 1995.

[2] Edward Marczewski. A general scheme of the notions of independence in mathematics. Bull. Acad.
Polon. Sci., 6:731–736, 1958.

[3] George Metcalfe and Naomi Tokuda. Deciding dependence in logic and algebra. In Dick de Jongh

on Intuitionistic and Provability Logics, volume 28 of Outstanding Contributions to Logic. Springer,
2024.

[4] Andrew M. Pitts. On an interpretation of second order quantification in first order intuitionistic
propositional logic. J. Symb. Log., 57(1):33–52, 1992.



One is all you need: Second-order Unification without

First-order Variables
⇤

David M. Cerna1 and Julian Parsert23

1 Czech Academy of Sciences, Prague, Czechia
dcerna@cs.cas.cz

2 University of Oxford, United Kingdom
3 University of Innsbruck, Austria

julian.parsert@gmail.com

Abstract

We consider the fragment of Second-Order unification with the following properties:
(i) only one second-order variable allowed, (ii) first-order variables do not occur. We show
that Hilbert’s 10th problem is reducible to this fragment if the signature contains a binary
function symbol and two constants. This generalizes known undecidability results. 1

1 Introduction

In the 2014 addition of the unification workshop Levy [1] provided a comprehensive survey of
decidability and undecidability results for second-order unification. While second-order unifi-
cation without first-order variables was considered [2], 2 second-order variables were required
to show undecidability. Furthermore, investigations proving undecidability of second-order uni-
fication with 1 second-order variable required first-order variables [2]. We generalize these
result by showing one second-order variable is enough undecidability (no first-order variables).
Proofs of all significant lemmas and theorems may be found in the arxiv version of the pa-
per arxiv.org/abs/2404.10616.

2 Preliminaries

We consider a finite signature ⌃ = {f1, · · · , fn, c1, · · · , cm} where n,m � 1, for 1  i  n,
the arity of fi is denoted arity(fi) � 1, and for all 1  j  m, the arity of cj is denoted
arity(cj) = 0 (constants). Furthermore, let ⌃1 ✓ ⌃ be the set of base symbols defined as
⌃1 = {c | c 2 ⌃ ^ arity(c)  1}.

By V we denote a countably infinite set of variables. Furthermore, let Vi,Vf ⇢ V such that
Vi \ Vf = ;. We refer to members of Vi as individual variables, denoted by x,y,z, · · · and
members of Vf as function variables, denoted by F,G,H, · · · . Members of Vf have an arity � 1
which we denote by arity(F ) where F 2 Vf . By Vn

f
, where n � 1, we denote the set of all

function variables with arity n. We will use h to denote a symbol in V [⌃ when doing so would
not cause confusion.

We refer to members of the term algebra T (⌃,V), as terms. By Vi(t) and Vf (t) (Vn

f
(t)

for n � 1) we denote the set of individual variables and function variables (with arity = n)
occurring in t, respectively. We refer to a term t as n-second-order ground (n-SOG) if Vi(t) = ;,

⇤
Funded by Czech Science Foundation Grant No. 22-06414L and Cost Action CA20111 EuroProofNet and

the Austrian Science Fund (FWF) project AUTOSARD (36623).
1
Full Results and proofs in Arxiv paper arxiv.org/abs/2404.10616.

https://arxiv.org/abs/2404.10616
https://arxiv.org/abs/2404.10616
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Vf (t) 6= ; with Vf (t) ⇢ Vn

f
, first-order if Vf (t) = ;, and ground if t is first-order and Vi(t) = ;.

The sets of n-SOG, first-order, and ground terms are denoted T n

SO
, TFO, and TG, respectively.

When possible, without causing confusion, we will abbreviate a sequence of terms t1, · · · , tn by
tn where n � 0.

The set of positions of a term t, denoted by pos(t), is a set of strings of positive integers,
defined as pos(h(t1, . . . , tn)) = {✏} [

S
n

i=1{i.p | p 2 pos(ti)}, t1, . . . , tn are terms, and ✏ denotes
the empty string. For example, the term at position 1.1.2 of g(f(x, a)) is a. Given a term t and
p 2 pos(t), then t|p denotes the subterm of t at position p. Given a term t and p, q 2 pos(t),
we write p v q if q = p.q0 and p @ q if p v q and p 6= q. The set of subterms of a term t is
defined as sub(t) = {t|p | p 2 pos(t)}. The head of a term t is defined as head(h(t1, . . . , tn)) = h,
for n � 0. The number of occurrences of a term s in a term t is defined as occ(s, t) = |{p |
s = t|p ^ p 2 pos(t)}|. The number of occurrences of a symbol h in a term t is defined as
occ⌃(h, t) = |{p | h = head(t|p) ^ p 2 pos(t)}|.

A n-second-order ground (n-SOG) unification equation has the form u
?
=F v where u and

v are n-SOG terms and F 2 Vn

f
such that Vf (u) = {F} and Vf (v) = {F}. A n-second-order

ground unification problem (n-SOGU problem) is a pair (U , F ) where U is a set of n-SOG

unification equations and F 2 Vn

f
such that for all u

?
=G v 2 U , G = F . Recall from the

definition of n-SOG that Vi(u) = Vi(v) = ;.
A substitution is set of bindings of the form {F1 7! �yl1 .t1, · · ·Fk 7! �ylk .tk, x1 7!

s1, · · · , xw 7! sw} where k,w � 0, for all 1  i  k, ti is first-order and Vi(ti) ✓ {y1, · · · , yli},
arity(Fi) = li, and for all 1  i  w, si is ground. Given a substitution �, domf (�) = {F | F 7!
�xn.t 2 � ^ F 2 Vn

f
} and domi(�) = {x | x 7! t 2 ⌃ ^ x 2 Vi}. We refer to a substitution �

as second-order when domi(�) = ; and first-order when domf (�) = ;. We use postfix notation
for substitution applications, writing t� instead of �(t). Substitutions are denoted by lowercase
Greek letters. As usual, the application t� a↵ects only the free variable occurrences of t whose
free variable is found in domi(�) and domf (�). A substitution � is a unifier of an n-SOGU

problem (U , F ), if domf (�) = {F}, domi(�) = ;, and for all u
?
=F v 2 U , u� =↵� v�.

We will use the following theorem due to Matiyasevich, Robinson, Davis, and Putnam, in
later sections.

Theorem 2.1 (Hilberts 10th problem or Matiyasevich–Robinson–Davis–Putnam theorem [3]).
Given a polynomial p(x) with integer coe�cients, finding integer solutions to p(x) = 0 is
undecidable.

3 n-Multipliers and n-Counters

In this section, we define and discuss the n-multiplier and n-counter functions, which allow us to
encode number-theoretic problems in second-order unification. These functions are motivated
by the following simple observation about n-SOGU.

Lemma 3.1. Let (U , F ) be a unifiable n-SOGU problem, and � a unifier of (U , F ). Then for

all c 2 ⌃1 and u
?
=F v 2 U , occ⌃(c, u�) = occ⌃(c, v�).

Definition 3.1 (n-Mutiplier). Let t be a n-SOG term such that Vf (t) ✓ {F} and F 2 Vn

f
and

h1, · · · , hn � 0. Then we define mul(F, hn, t) recursively as follows:

• if t = b and arity(b) = 0, then mul(F, hn, t) = 0.

• if t = f(t1, · · · , tl), then mul(F, hn, t) =
P

l

j=1 mul(F, hn, tj)

2
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• if t = F (tn), then mul(F, hn, t) = 1 +
P

n

i=1 hi ·mul(F, hn, ti)

Furthermore, let (U , F ) be an n-SOGU problem then, mul l(F, hn,U) =
P

u
?
=F v2U

mul(F, hn, u)

and mulr(F, hn,U) =
P

u
?
=F v2U

mul(F, hn, v).

The n-multiplier captures the following property of a term: let t be a n-SOG term such that
Vf (t) ✓ {F}, f 2 ⌃, and � = {F 7! �xn.s} a substitution where occ⌃(f, s) � 0, Vi(s) ✓ {xn},
and for all 1  i  n, occ(xi, s) = hi. Then occ⌃(f, t�) � occ⌃(f, s) · mul(F, hn, t) where the
hn capture the duplication of the arguments to F . The following presents this idea using a
concrete example.

Example 3.1. Consider the term t = g(F (g(a, F (s(a)))), g(F (a), F (F (F (b))))). Then the n-
multiplier of t is mul(F, h, t) = mul(F, h, F (g(a, F (s(a))))) +mul(F, h, g(F (a), F (F (F (b))))) =
(1 + h) + (1 + (1 + h · (1 + h))) = 3 + 2 · h + h2. Thus, when h = 2 we get mul(F, h, t) = 11.
Observe occ⌃(g0, t{F 7! �x.g0(x, x)}) = 11.

Next, we introduce the n-counter function. Informally, given an n-SOG term t such that
Vf (t) ✓ {F}, a symbol c 2 ⌃1, and a substitution � with domf (�) = {F}, the n-counter
captures number of occurrences of c in t�.

Definition 3.2 (n-Counter). Let c 2 ⌃1, t be a n-SOG term such that Vf (t) = {F} and
F 2 Vn

f
, and h1, · · · , hn � 0. Then we define cnt(F, hn, c, t) recursively as follows:

• if t = b, arity(b) = 0, and b 6= c , then cnt(F, hn, c, t) = 0.

• if t = f(tl) and f 6= c, then cnt(F, hn, c, t) =
P

l

j=1 cnt(F, hn, c, tj).

• if t = c(t), then cnt(F, hn, c, c(t)) = 1 + cnt(F, hn, c, t)

• if t = F (tn), then cnt(F, hn, c, t) =
P

n

i=1 hi · cnt(F, hn, c, ti)

Furthermore, let (U , F ) be a n-SOGU problem them, cnt l(F, hn, c,U) =
P

u
?
=F v2U

cnt(F, hn, c, u)

and cntr(F, hn, c,U) =
P

u
?
=F v2U

cnt(F, hn, c, v).

The n-counter captures how many occurrences of a given constant or monadic function
symbol will occur in a term t� where Vf (t) = {F}, � = {F 7! �xn.s}, Vi(s) ✓ {xn}, and for
all 1  i  n, occ(xi, s) = hi A concrete instance is presented in Example 3.2.

Example 3.2. Consider the term t = g(g(a, a), g(F (g(a, F (g(a, a)))), g(F (a), F (F (F (b))))).
The counter of t is cnt(F, h, a, t) = cnt(F, h, a, g(a, a)) + cnt(F, h, a, F (g(a, F (g(a, a))))) +
cnt(F, h, a, g(F (a), F (F (F (b))))) = 2 + (h + 2 · h2) + h = 2 + 2 · h + 2 · h2. Thus, when
h = 2 we get cnt(F, h, a, t) = 14. Observe occ⌃(a, t{F 7! �x.g(x, x)}) = 14.

The n-multiplier and n-counter functions di↵er in the following key aspects: the n-multiplier
counts occurrences of a symbol occurring once in a given substitution with bound variable
occurrences corresponding to hn, and the n-counter counts occurrences of a given symbol after
applying the given substitution to a term.

Now we describe the relationship between the n-multiplier, n-counter, and the total occur-
rences of a given symbol.

Lemma 3.2. Let c 2 ⌃1, t be a n-SOG term such that Vf (t) = {F}, h1, · · · , hn � 0, and
� = {F 7! �xn.s} a substitution such that Vi(s) ✓ {xn} and for all 1  i  n occ(xi, s) = hi.
Then occ(c, t�) = occ(c, s) ·mul(F, hn, t) + cnt(F, hn, c, t).

3
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This lemma captures an essential property of the n-multiplier and n-counter. This is again
shown in the following example.

Example 3.3. Consider the term t = g(g(a, a), g(F (g(a, F (g(a, a)))), g(F (a), F (F (F (b)))))
and substitution {F 7! �x.g(a, g(x, x))}. The n-counter of t at 2 is cnt(F, 2, a, t) = 14 and the
n-multiplier of t at 2 is mul(F, 2, t) = 11. Observe occ⌃(a, t{F 7! �x.g(a, g(x, x))}) = 25 and
occ(a, s) ·mul(F, 2, t) + cnt(F, 2, a, t) = 25.

Up until now we considered arbitrary terms and substitutions. We now apply these results
to unification problems and their solutions. In particular, a corollary of Lemma 3.2 is that there
is a direct relation between the n-multiplier and n-counter of a unifiable unification problem
given a unifier of the problem. The following lemma describes this relation.

Lemma 3.3 (Unification Condition). Let (U , F ) be a unifiable n-SOGU problem such that
Vf (U) = {F}, h1, · · · , hn � 0, and � = {F 7! �xn.s} a unifier of (U , F ) such that Vi(s) = {xn}
and for all 1  i  n, occ(x, s) = hi. Then for all c 2 ⌃1,

occ(c, s) · (mul l(F, hn,U)�mulr(F, hn,U)) = cntr(F, hn, c,U)� cnt l(F, hn, c,U). (1)

The unification condition is at the heart of the undecidability proof presented in Section 4.
Essentially, Equation 1 relates the left and right side of a unification equation giving a necessary
condition for unification. The following example shows an instance of this property.

Example 3.4. Consider the 1-SOGU problem F (g(a, a))
?
=F g(F (a), F (a)) and the unifier � =

{F 7! �x.g(x, x)}. Observe occ(a, g(x, x))·((mul l(F, 2, F (g(a, a)))�mulr(F, 2, g(F (a), F (a)))) =
0 · (1� 2) = 0 and cntr(F, h, a, g(F (a), F (a)))� cnt l(F, h, a, F (g(a, a))) = 4� 4 = 0.

4 Undecidability n-SOGU

We now use the ideas from the previous section to encode Diophantine equations in unification
problems. As a result, we are able to transfer undecidability results Diophantine equations to
satisfying the following unification condition for n-SOGU: for a given c 2 ⌃1 and n-SOGU
problem (U , F ), does there exists hn � 0 such that cntr(F, hn, c,U) = cnt l(F, hn, c,U). This
unification condition is a necessary condition for unifiability.

For the remainder of this section, we consider a finite signature ⌃ such that {g, a, b} ✓ ⌃,
arity(g) = 2, and arity(a) = arity(b) = 0. By p(xn) we denote a polynomial with integer
coe�cients over the variables x1, · · · , xn ranging over the natural numbers and by mono(p(xn))
we denote the set of monomials of p(xn). Given a polynomial p(xn) and 1  i  n, if for all
m 2 mono(p(xn)), there exists a monomial m0 such that m = xi ·m0 then we say div(p(xn), xi).
Furthermore, deg(p(xn)) = max{k | k � 0 ^m = xk

i
· q(xn) ^ 1  i  n ^m 2 mono(p(xn))}.

Given a polynomial p(xn), a polynomial p0(xn) is a sub-polynomial of p(xn) if mono(p0(xn)) ✓
mono(p(xn)). Using the above definition we define distinct sub-polynomials based on divisibility
by one of the input unknowns.

Definition 4.1 (monomial groupings). Let p(xn) = q(xn) + c be a polynomial where c 2 Z,
0  j  n, and Sj = {m | m 2 mono(p(xn)) ^ 8i(1  i < j ) ¬div(m,xi))}. Then

• p(xn)0 = c,

• p(xn)j = 0 if there does not exists m 2 Sj such that div(m,xj),

4
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• otherwise, p(xn)j = p0(xn), where p0(xn) is the sub-polynomial of p(xn) such that
mono(p0(xn)) = {m | m 2 Sj ^ div(m,xj)}.

Furthermore, let p(xn)j = xj · p0(xn). Then p(xn)j #= p0(xn).

We now define a second-order term representation for arbitrary polynomials as follows:

Definition 4.2 (n-Converter). Let p(xn) be a polynomial and F 2 Vn

f
. Then we define the pos-

itive (negative) second-order term representation of p(xn), as cvt
+(F, p(xn))(cvt�(F, p(xn))),

where cvt
+ (cvt�) is defined recursively as follows:

• if p(xn) = p(xn)0 = 0, then cvt
+(F, p(xn)) = cvt

�(F, p(xn)) = b

• if p(xn) = p(xn)0 = c � 1, then

– cvt
+(F, p(xn)) = t where occ⌃(a, t) = |p(xn)0|+ 1 and t is ground.

– cvt
�(F, p(xn)) = t where occ⌃(a, t) = 1 and t is ground.

• if p(xn) = p(xn)0 < 0, then

– cvt
�(F, p(xn)) = t where occ⌃(a, t) = |p(xn)0|+ 1 and t is ground.

– cvt
+(F, p(xn)) = t where occ⌃(a, t) = 1 and t is ground.

• if p(xn) 6= p(xn)0and p(xn)0 = 0, then for all ? 2 {+,�},

cvt
?(F, p(xn)) = F (cvt?(F, p(xn)1 #), · · · , cvt?(F, p(xn)n #))

• if p(xn) 6= p(xn)0and p(xn)0 � 1, then

– cvt
+(F, p(xn)) = g(t, F (cvt+(F, p(xn)1 #), · · · , cvt+(F, p(xn)n #)) where occ⌃(a, t) =

p(xn)0 and t is ground.

– cvt
�(F, p(xn)) = F (cvt�(F, p(xn)1 #), · · · , cvt�(F, p(xn)n #))

• if p(xn) 6= p(xn)0, and p(xn)0 < 0, then

– cvt
�(F, p(xn)) = g(t, F (cvt�(F, p(xn)1 #), · · · , cvt�(F, p(xn)n #)) where occ⌃(a, t) =

p(xn)0 and t is ground.

– cvt
+(F, p(xn)) = F (cvt+(F, p(xn)1 #), · · · , cvt+(F, p(xn)n #))

Intuitively, the n-converter takes a polynomial in n unknowns separates it into n+1 variable
disjoint subpolynomials. Each of these subpolynomials is assigned to one of the arguments of
the second-order variable (except the subpolynomial representing an integer constant) and
the n-converter is called recursively on these subpolynomials. The process stops when all
the subpolynomials are integers. Example 4.1 illustrates the construction of a term from a
polynomial. Example 4.2 & 4.3 construct the n-multiplier and n-counter of the resulting term,
respectively.

Example 4.1. Consider the polynomial p(x, y) = 3 · x3 + xy � 2 · y2 � 2. The positive and
negative terms representing this polynomial are as follows:

cvt
+(F, 3 · x3 + xy � 2 · y2 � 2) =F (F (F (g(g(a, a), g(a, a)), b), g(a, a)), F (b, a))

cvt
�(F, 3 · x3 + xy � 2 · y2 � 2) =g(g(a, a), F (F (F (a, b), a), F (b, g(a, g(a, a))))

5
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Observe that the n-converter will always produce a flex-rigid unification equation as long
as the input polynomial is of the form p(xn) = p0(xn) + c where c 2 Z. When c = 0, we get a
flex-flex unification equation and there is always a solution.

Example 4.2. Consider the term from Example 4.1. The n-multiplier is as follows:
Thus, mul(F, x, y, cvt+(F, 3 ·x3+xy�2 ·y2�2)) = mul(F, x, y, cvt�(F, 3 ·x3+xy�2 ·y2�2)) =
1 + x2 + y.

Example 4.3. Consider the term from Example 4.1. The n-counter is as follows:

cnt(F, x, y, a, cvt+(F, 3 · x3 + xy � 2 · y2 � 2)) =4 · x3 + 2 · xy + y2

cnt(F, x, y, a, cvt�(F, 3 · x3 + xy � 2 · y2 � 2)) =x3 + xy + 3 · y2 + 2

cnt(F, x, y, a, cvt+(F, p(x, y)))� cnt(F, x, y, a, cvt�(F, p(x, y))) =3x3 + xy � 2 · y2 � 2

Using the operator defined in Definition 4.2, we can transform a polynomial with integer
coe�cients into a n-SOGU problem. The next definition describes the process:

Definition 4.3. Let p(xn) be a polynomial and F 2 Vn

f
. Then (U , F ) is the n-SOGU problem

induced by p(xn) where U = {cvt�(F, p(xn))
?
=F cvt

+(F, p(xn))}.
The result of this translation is that the n-counter captures the structure of the polynomial

and the n-multipliers cancel out.

Lemma 4.1. Let n � 1, p(xn) be a polynomial, and (U , F ) an n-SOGU problem induced by

p(xn) where U = {cvt�(F, p(xn))
?
=F cvt

+(F, p(xn))}. Then

p(xn) = cntr(F, xn, a,U)� cnt l(F, xn, a,U) and 0 = mul l(F, xn,U)�mulr(F, xn,U).

A simply corollary of Lemma 4.1 concerns commutativity of unification equations:

Corollary 4.1. Let n � 1, p(xn) be a polynomial, and ({s ?
= t}, F ) an n-SOGU problem

induced by p(xn). Then �p(xn) = cntr(F, xn, a, {t
?
= s})� cnt l(F, xn, a, {t

?
= s}).

Both p(xn) and �p(xn) have the same roots and the induced unification problem cannot
be further reduced without substituting into F , thus the induced unification problem uniquely
captures the polynomial p(xn). We now prove that the unification condition as introduced in
Lemma 3.3 is equivalent to finding the solutions to polynomial equations. The following shows
how a solution to a polynomial can be obtained from the unification condition and vice versa.

Lemma 4.2. Let p(xn) be a polynomial and (U , F ) the n-SOGU problem induced by p(xn)
using the c 2 ⌃1(Definition 4.2). Then there exists h1, · · · , hn � 0 such that cnt l(F, hn, c,U) =
cntr(F, hn, c,U) (unification condition) if and only if {xi 7! hi | 1  i  n^hi 2 N} is a solution
to p(xn) = 0.

Using Lemma 4.2, we now show that finding h1, · · · , hn � 0 such that the unification

condition holds is undecidable by reducing solving p(xn) = 0 for arbitrary polynomials over N
(Theorem 2.1) to finding h1, · · · , hn � 0 which satisfy the unification condition.

Lemma 4.3 (Equalizer Problem). For a given n-SOGU problem, finding h1, · · · , hn � 0 such
that the unification condition (Lemma 3.3) holds is undecidable.

Theorem 4.1. There exists n � 1 such that n-SOGU is undecidable.

We prove Theorem 4.1 by assuming n-SOGU is decidable and using this assumption to show
that the Equalizer Problem must be decidable, thus resulting in a contradiction.

In particular, we answer the question posed in Section 1 by proving that first-order variables
occurrence does not impact the decidability of second-order unification.
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1 Introduction

Unification is used to show confluence of a set of overlapping rewrite rules. We are interested
here in higher-order rules whose left-hand sides are patterns, as introduced by Miller in the
case of simple types [9], later considered for other typing disciplines [2], and finally adapted
to untyped lambda calculi in [3]. Following up, we study here unification of patterns indepen-
dently of a given typing discipline. To this end, we introduce the notion of typed structure by
axiomatizing sets of typable terms without any syntactic notion of type, as subsets of untyped
terms that satisfy some well crafted closure properties common to most type systems. We then
show that typed structures enjoy most general unifiers for patterns, computable by the usual
algorithm for unifying patterns. This axiomatization is somehow reminiscent of Girard’s ax-
iomatisation of typed structures on which strong normalization proofs of typed lambda calculi
are based. We finally briefly discuss the associative-commutative case.

Typed rewriting structures, their unifiability properties, and their application to checking
higher-order confluence are developed in [5], where the main result described here is proved.

2 Computations on higher-order terms

Given an untyped lambda calculus generated by a vocabulary made of three pairwise disjoint
sets, a signature F of function symbols, a set X of variables, and a set Z of meta-variables, we
are interested in _F , an untyped calculus whose reduction relation extends the V-rule of the
underlying lambda calculus by a set of user-defined rewrite rules built over that vocabulary.

2.1 Terms

_F is a mix of the pure lambda calculus and Klop’s combinatory reduction systems [7]. Terms
are those of the lambda calculus enriched with F -headed terms of the form 5 (D) with 5 2 F ,
D denoting a list of terms separated by commas, and meta-terms of the form / [{] with / 2 Z.
Only variables can be abstracted over. Elements of the vocabulary have arities, denoted by
vertical bars as in | 5 |. Variables have arity zero, meta-variables have an arbitrary arity. The
set of (open) terms, T_F, is defined by the following grammar rules:

D, { := G | (D {) | _G.{ | 5 (D) | / [{]
where G 2 X, 5 2 F , |D | = | 5 |, / 2 Z and |{ | = |/ |

We write 0 for 0( ), - for - [ ] and 5 (G H) for 5 ((G H)). We use the small letters 5 , 6, ⌘, . . .

for function symbols, G, H, I, . . . for variables, and reserve capital letters - ,. , / , . . . for meta-
variables. When convenient, a small letter like G may denote any variable in X[Z. By function
symbols we sometimes mean those in F , as well as application and abstraction.

We use the notation | | for various quantities besides symbols arities (length of lists, size of
expressions, the cardinality of sets), and [<..=] for the list of natural numbers from < to =.
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Positions in higher-order terms, as in first-order terms, are words over the natural numbers,
using ⇤ for the empty word, · for concatenation, P for the prefix order (above), �P for its
inverse (below), <P and >P for their strict parts, ?#@ for incomparable positions (parallel),
and ? �P & (? P &, resp.), & a set of parallel positions, for 9@ 2 & : ? �P @ (? P @, resp.).

Given a term ", we use: " (?) for its symbol at position ?; " |? for the subterm of "

at position ?, a notion which is sometimes convenient and will be given a precise meaning
later; P>B("), FP>B("), VP>B("), MP>B(") for the following respective sets of positions
of ": all positions, the positions of function symbols, of free variables, and of meta-variables;
V0A (") for its sets of free variables; MV0A ("), MV0A

; (!) and MV0A
=; (") for its sets of

arbitrary, linear and non-linear meta-variables; A term " is ground if V0A (") =ú, closed if
MV0A (")=ú, and linear if MV0A

=; (") = ú. We use T for the set of closed terms.

2.2 Substitutions

A substitution is a map from variables and meta-variables to terms which extends to a capture-

avoiding homomorphism on terms [7]. The result Cf of substituting the term C by the sub-
stitution f is called an instance of C. All substitutions considered here will have a finite
domain, hence can be denoted in extension as in {G1 7! "1, . . . G= 7! "=} or {G 7! "},
where G is a list of variables or meta-variables. The substitution f is ground (resp., closed)
when so are all "8’s. The domain of f is the set D><(f) = {G8 : f(G8) < G8}8 while
R0=(f) =

–
G2D><(f) V0A (f(G)) [ MV0A (f(G)) is its image. A substitution f can be re-

stricted to or deprived from (meta-)variables in some set + , written f|+ and f\+ respectively.
We denote by P>B(f) the sequence {P>B(f(G8))}8 of sets of positions of f.

2.3 Splitting and sticking

Given a term D and a list % = {?8}8==8=1 of parallel positions in D, we define the term obtained
by splitting D along % as D% = D[/1 (G1)] ?1 . . . [/= (G=)] ?= (D is cut below %) and its associated

substitution by D
% = {/8 7! _G8 .D |?8 }8==8=1 (D is cut above %), where, for all 8 2 [1, =], G8 is the

list of all variables of D |?8 bound in D above ?8 and /8 is a fresh meta-variable of arity |G8 |.
The definition of substitution for meta-variables ensures that D%D% =D. Instantiating D? by D

?

amounts therefore to stick D |? in the hole of the context D[ ] ?, an operation that may capture
free variables of D |?: splitting gives a meaning for the operation of sticking a term inside another
in terms of the familiar substitution operation. (Sticking is usually called replacement when
no variable is captured.) We denote by D[ ]% a context with holes at a set % = {?8} of parallel
positions in D, and by D[{]% the term obtained by sticking each {8 at position ?8 in D. The
brackets used in contexts may sometimes collide with those used for meta-variables, requiring
desambiguation by the user.

2.4 Reductions

Two di↵erent kinds of reductions coexist in _F , functional and higher-order reductions, both
operating on closed terms. However, rewriting open terms will sometimes be needed, in which
case rewriting is intended to rewrite all their closed instances at once.

2.5 Functional reductions

Functional reduction is the relation on terms generated by the rule VU : (_G.{ |)�!{{G 7! |}.
The usually omitted U-index stresses that renaming bound variables, called U-conversion, is

2
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built-in, that is, rewriting with VU is modulo U-conversion (only those variables bound below
the rewriting position need be renamed).

2.6 Higher-order reductions

Higher-order reductions result from rules whose left-hand sides are higher-order patterns in
Miller’s or Nipkow’s sense [8], although they need not be typed here.

Definition 1 (Untyped pattern). A pre-redex of arity = in a term ! is an unapplied meta-term

/ [G] whose arguments G are = pairwise distinct variables. A pre-pattern is a ground term all

of whose meta-variables occur in pre-redexes. An untyped pattern, or simply pattern, is a

pre-pattern which is neither a pre-redex nor an abstraction.

Note that erasing types from a Nipkow’s pattern yields a pattern in our sense, since his pre-
redexes being of base type, they cannot be applied. Observe that pre-redexes in pre-patterns
can only occur at parallel positions.

We can now define higher-order rules and rewriting:

Definition 2 (Rule). A (higher-order) rule is a triple 8 :!!', whose (possibly omitted) index
8 is a name, left-hand side ! is a pattern, and MV0A (') ✓ MV0A (!).

The use of capital letters for higher-order rules aims at pointing out that !, ' are higher-
order terms, that is, are built using the abstraction and application operators and meta-variables
of arity at least one. In contrast, first-order terms have no abstractions, no applications, and
no meta-variables of non-zero arity. We will use small letters for them, as in ; ! A.

The V-reduction rule is a particular case of higher order rule written (_G.- [G] D) ! - [D].

Definition 3 (Higher-order rewriting). Given an open term D, a position ? 2 P>B(D), and a

rule 8 : !! ', D rewrites with 8 at ?, written D

?�!
8
{, i↵ D |? = !W for some substitution W, and

{ = D[- [G]] ?{- 7! _G.'W} = D['W] ?, where G is the list of variables of D |? which are bound

above the position ? in D. We write D

?�!
R

{ for 98 2 R : D
?�!
8
{.

A _F -rewrite system is a pair (F ,R) made of a user’s signature F and a set R of higher-

order rewrite rules on F containing beta, defining the rewrite relation of _F as �!
R

.

_F -rewrite systems are being used in a variety of proof assistants, notably in Agda, Is-
abelle, Dedukti, and Coq. As a higher-order rewriting format, _F is a Combinatory Re-
duction System [10]. This is not surprising since all other known higher-order rewriting formats
can be encoded as Combinatory Reduction Systems [11].

3 Typed rewriting structures

The role of typing is to characterize subsets of the set of higher-order closed terms that satisfy
good properties for computing. Calling generically TT such subsets of closed terms, its elements
are called typed closed terms. Computations are meant to operate on typed closed terms, but
rewriting is based on open terms, that is terms with meta-variables.

We denote therefore by TT_F the set of typed open terms, assuming TT ✓ TT_F. In order
to dispense with explicit types, we say that a typed open substitution f is well-typed for a
typed open term D if Df is a typed open term, and write f 2 TT_F (D). More generally, f is
well-typed for \ if f is well-typed for all D such that G 7! D 2 \. Splitting allows then to define

3
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whether the replacement of a subterm at a particular position by a typed term yields a typed
term: we define D 2 TT (|[ ] ?) i↵ |[D] ? 2 TT_F, that is, i↵ {/ 7! _I.D} 2 TT_F (|[/ [I]] ?).
We omit mention of ”open/closed” when it matters not or can be inferred from the context.

The axioms that a typed structure TT_F such that X [Z ✓ TT_F ✓ T_F should satisfy (and
that T_F itself satisfies) are the following:

H0 TT_F is closed under U-conversion, and renaming of a free occurrence of a given variable
(without capture) or meta-variable;

H1 abstraction: D 2 TT_F i↵ _I.D 2 TT_F;

H2 composition: f 2TT_F (D), g 2TT_F (f) and D><(g) \ (V0A (D) [MV0A (D))=ú implies
g 2TT_F (Df);

H3 splitting: Df 2 TT_F implies D 2 TT_F and f 2 TT_F (D);

H4 patterns: if ! is a pattern, then ! 2 TT_F.

Interpreting membership to TT_F by Curry-style typability for some typing context, sets
of typed terms satisfy these assumptions for all usual type systems that have the unique type
property.

Typed structures enjoy a few more important closure properties, notably subterm, mono-
tonicity, stability, as well as unifiability:

Lemma 1 (Unifiability). Let D, { be two terms unifiable by a substitution f such that Df = {f is

well-typed, that is, Df 2 TT_F. Then, 8|[ ] such that (V0A (|[ ])[MV0A (|[ ]))\D><(f) =
ú, D 2 TT_F (|[ ]) i↵ { 2 TT_F (|[ ]).

4 Unification in typed rewriting structures

We now investigate a major property of typed rewriting structures, the existence of most general
unifiers for solvable critical pair equations, that is, equations * = + such that one of *,+ is a
left-hand side of rule, and the other a subterm of a left-hand side of rule. In other words, if
the equation * = + is unifiable in the untyped world, then it is unifiable in a typed structure.
Further, the most general unifier of the untyped structure happens to belong to any typed
structure, hence must be most general in any typed structure.

Definition 4. A unification (equational) problem is a conjunction of elementary equations. An

elementary equation is either the constant ? or is of the form D = { in which D is a pre-pattern

and { is a pre-pattern.

A set of transformation rules for higher-order unification of untyped patterns is described
in [4] for linear patterns and meta-variables having a bounded arity, and its extension to non-
linear ones is also sketched, following the standard path by adding a Merge rule. These unifi-
cation rules are recalled in Figure 1. They are essentially those for simply typed patterns [9],
see also [6]. As usual, the rules transform elementary equations into a conjunction thereof until
some solved form is eventually obtained. They use the following definition:

Definition 5. A free variable G 2 X is protected in a pre-pattern D if all its occurrences in D

belong to a pre-redex of D. We denote by UV0A (D) the set of unprotected variables of D.

4
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Dec-Fun 5 (D) = 5 ({) �! ”8= | 5 |
8=1 D8 = {8 if 5 2 F [Z[{@}

Dec-Abs _G.D = _H.{ �! D{G 7! I} = {{H 7! I} with I fresh

Merge - [G] = D ^ - [H] = { �! - [I] = D{G 7! I} ^ D{G 7! I} = {{H 7! I} if |D |  |{ |
Swap D = . [H] �! . [H] = D if D is not a pre-redex

Flip - [G] = . [H] �! . [H] = - [G] if |- | � |G | > |. | � |H |
Drop - [G] = D[. [H]]@ �! - [G] = D[/ [I]]@ ^ . [H] = / [I]

where I = H \ (G [ BV0A (D)) and / fresh s.t. |/ | = |. | � |H | + |I |,
if H * G [ BV0A (D), |- | = |G | if D(⇤) 2 F [ {@, _},UV0A (D) ✓ G

and |. | � |H | � |- | � |G | if @ = ⇤,

where UV0A (D) denotes the set of variables of D whose one occurrence
does not occur in an argument of a meta-variable.

Figure 1: Non-failure unification rules for equational problems

For an example, G is protected in 5 (6(- [G]), -), but not in 5 (6(- [G]), G) because of its
second occurrence. Protected variables can be eliminated from a term by appropriately instan-
tiating its meta-variables as done in the Drop rule.

The first rule of Figure 1 is the same as that for first-order unification. Dec-Abs is the
particular case for abstractions. Merge eliminates all occurences of a non-linear meta-variable
but one. Swap, Flip and Drop put the equations in a format appropriate for extracting the
most general unifier.

The rules of Figure 1 su�ce when a unification problem is known to be solvable, otherwise
failure rules are also needed to detect non-unifiability. These rules are recalled in Figure 2.
An important known observation exploited in rule Fail-Protect is that elementary unification
problems for which a free variable occurs unprotected on one side, and does not occur at all on
the other side, have no solution.

Theorem 1. Assume f is a well-typed unifier for some critical pair equation * = + . Then,

<6D(*=+) 2 TT_F (*,+). It is obtained by applying the rules of Figure 1 until no more possible.

Non-unifiability of an equational problem %0 is obtained when the whole set of rules fails, that

is, returns the constant ?.

Therefore, unifiability of typed patterns, and the expression of a most general unifier, does
not depend upon a particular Curry-style type system for the lambda calculus, provided that
the type system satisfies our axioms. This new result was already observed in particular cases.

Once soundeness of the rules is proved, the proof given in [5] is based on the preservation by
the unification rules of Figure 1 of an appropriate invariant expressing that some substitution
is a solution of the starting unification problem. In case no solution is known, the proof relies
on termination of the whole set of unification rules, which must therefore end up with an
application of global-Failure in case no solution exists to the starting unification problem.

Conflict 5 (D) = 6({) �! ? if 5 , 6 2 F [X[{@, _} and 5 < 6

Fail-Protect - [G] = D �! ? if 9I 2UV0A (D) \ G
Global-Failure % ^ ? �! ?

Figure 2: Failure unification rules
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Let us illustrate some rules, using meta-variables according to our convention.

5 (_I.- [I]) = 5 (_I.I) �!
⇡42��D=

_I.- [I] = _I.I �!
⇡42��1B

- [I] = I

5 (_I.-) = 5 (_I.I) �!
⇡42��D=

_I.- = _I.I �!
⇡42��1B

- = I �!
Fail-Protect

?
5 (_H. 5 (*)) = 5 (-) �!

⇡42��D=
_H. 5 (*) = - �!

Swap
- = _H. 5 (*) �!

"4C0��1B
- [H] = 5 (*)

5 (. ) = 5 (_H. 5 (*)) �!
⇡42��D=

. = _H. 5 (*) �!
"4C0��1B

. [H] = 5 (*) �!
Fail-Arity

?
) = _H.. [H] �!

"4C0��1B
) [H] = . [H] �!

Flip
. [H] = ) [H]

. [I] = _G.) [H, I] �!
"4C0��1B

. [I, G] = ) [H, I] �!
Drop

. [I, G] = / [I] ^ ) [H, I] = / [I]
(where / is a fresh variable of arity 1)

Since Associativity and Commutativity define a syntactic theory whose unification algorithm
can be expressed by rewrite rules [1], we conjecture that AC-unification of higher-order patterns
does not depend either upon a particular type system satisfying our axioms. Whether these
result also extend to type systems having a principal type instead of a unique type is also open.
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Abstract

This work discusses the relation of more general terms (�) in the permissive nominal
language. First, we show that the permissive nominal language exhibits the same problem
as the classical nominal language, namely, that the relation � is not well-founded. Second,
we propose a modification in one of the original definitions that leads to a well-founded �
relation. Third, we formulate an anti-unification algorithm that computes a unique least
general generalization of two arbitrary input terms. The proposed modification yields a
language that includes the original language from Dowek et al.. Since the original language
is of generalization type zero, computed generalizations might be outside of it.

1 Introduction

This work discusses the relation that states that one term is more general than another one (�),
and the problem of finding a generalization of two input terms (called anti-unification problem),
in the setting of permissive nominal terms [9]. Interesting generalizations are the least general
ones (lgg). They represent parts of the input terms that they have in common. Finding an
lgg has various real-world applications, e.g., in clone detection [5], analogy making [13], or
parallel recursion scheme detection [1]. To be able to find an lgg, the relation � needs to be
well-founded.

In the setting of nominal terms only atoms can be bounded. This yields some nice com-
putational properties [14, 20] that are missing in �-calculus where arbitrary variables may be
bound [12, 15]. While the anti-unification problem has already been studied in various settings
with binders [3, 6, 7, 8, 10, 17], including classical nominal terms [2, 4, 19], to the best of our
knowledge, it has not yet been studied in the setting of permissive nominal terms.

It’s a known fact that in the case of classical nominal terms � is not well-founded [2]. I.e.,
without restriction the anti-unification problem is of type zero (no lgg exists). One possible
approach to overcome this issue is to introduce atom-variables [19]. Unfortunately, without any
restrictions, that approach leads to intractable algorithms due to its intrinsic complexity.

First, we show that, like in the classical setting, � is not well-founded in the permissive case
either. Second, we suggest a modification of the definition of permission sets which leads to
a well-founded � relation. Permission sets define the atoms that are allowed to appear freely
when instantiating a variable. The modification yields a term language that is a superset of the
original one introduced by Dowek et al.. Third, we formulate an anti-unification algorithm.

2 Preliminaries

This work focuses on permissive nominal terms, introduced in [9]. We assume that the reader
is familiar with them. In the following, main concepts and notions are being introduced.

Permissive Nominal Terms. Fix a countable infinite set of atoms A = {a, b, c, . . .}. Atoms
are identified by their name, i.e., di↵erent names imply di↵erent elements from A. In the
permissive nominal setting, A is partitioned into two countably infinite sets A< and A>. For
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instance, A< might be identified with even numbers while A> corresponds to the odd ones.
A signature ⌃ = {f, g, . . .} is a set of symbols of certain arity, such that ⌃ \ A = ;. If
the arity of a symbol is clear from the context, we won’t mention it. A permutation ⇡ is
a bijection on A that is identity almost everywhere. Permutations are represented by finite
sequences of swappings.1 Swappings are written as (a b) where a, b 2 A. Id denotes the identity
permutation. The composition of two permutations ⇡ and ⇡0, denoted by ⇡ � ⇡0, is equivalent
to the concatenation of their representations as sequences of swappings.

The set P of all permission sets is defined as

P = {A [B | A ✓ A<, B ⇢ A>, and B finite}.

In contrast to [9], our permission sets are not necessarily infinite. This decision is discussed in
section 3. S, T denote arbitrary permission sets. SinceB is restricted to be finite in the definition
of P, the subtraction of a (finite number of) permission set(s) from A yields a countably infinite
set. Therefore, permission sets are coinfinite w.r.t. A, i.e., from S 2 P follows that A \ S is
an infinite set. Informally, this means that there are always “fresh” atoms available. It’s an
important property that guarantees that bound atoms can always be renamed.

For each permission set S, fix a countable infinite set of variables XS = {XS , Y S , ZS , . . .} of
sort S, disjoint from A and ⌃. Moreover, XS and XT are disjoint for any permission set T 6= S.

Example 1. X{a,b} is of finite sort {a, b}, while XA<[{b} is of infinite sort A<
[ {b}. X; is

of sort ;. Sorts (i.e., permission sets) define the atoms that are allowed to appear freely in
instantiations (see Example 2).

Permissive nominal terms are built by the grammar:

t, ti ::= a | �a.t | ⇡ ·XS
| f(t1, . . . , tn) ⇡ ::= Id | (a b) � ⇡

where a, b are atoms, f is a symbol of arbitrary but fixed arity n, �a.t denotes the abstraction

of atom a in the permissive nominal term t, ⇡ ·XS is a suspension of the permutation ⇡ on the
variable XS , and f(t1, . . . , tn) is a function application. In the following, the word term refers
to permissive nominal terms, if not specified otherwise.

Permutation application to a term is defined recursively and gets suspended in front of
variables, as usual. We overload the notation, writing, e.g., ⇡ · t where ⇡ is a permutation
and t a term. A permutation ⇡ may be applied to a permission set S by ⇡ · S = {⇡(a) |

a 2 S}. The set of free atoms of some terms t1, . . . , tn, denoted by fa(t1, . . . , tn), is defined as
fa(t1, t2, . . . , tn) = fa(t1)[fa(t2, . . . , tn), fa(a) = {a}, fa(�a.t) = fa(t)\{a}, fa(⇡ ·XS) = ⇡·S,
and fa(f(t1, . . . , tn)) = fa(t1, . . . , tn).

Two terms are ↵-equivalent if they are equal up to renaming of bound atoms (Figure 1).
The predicate =↵ is used to denote ↵-equivalence.

a =↵ a

8a 2 S : ⇡(a) =↵ ⇡0(a)

⇡ ·XS =↵ ⇡0 ·XS

s1 =↵ t1 · · · sn =↵ tn
f(s1, . . . sn) =↵ f(t1, . . . , tn)

s =↵ t

�a.s =↵ �a.t

s =↵ (a b) · t

�a.s =↵ �b.t a /2 fa(t)

Figure 1: ↵-equivalence rules as defined in [9].

1Representations are not unique. In any case, an arbitrary representation can be chosen.
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More General Relation �. A substitution � is a function that maps variables to terms such
that for any arbitrary variable XS holds that fa(�(XS)) ✓ S. Substitutions are identity almost
everywhere. The identity substitution is denoted by id and arbitrary substitutions are denoted
by �, ⇢. The composition of two substitutions and the action of a substitution on a term are
defined as usual. We use the postfix notation like t�, where t is a term and � a substitution.
The application of a substitution to a term is called instantiation and yields another term.

Given two terms t and s. We say that t is more general than s, denoted as t � s, if there
exists a substitution � such that t� =↵ s. The relation t � s denotes that t is strictly more

general than s, i.e., t � s but not s � t. The notions of less general and strictly less general are
defined analogously. Moreover, t ' s means that t and s are equi-general, i.e., t � s and s � t.
A term r is a generalization of t and s if r � t and r � s. It is a least general generalization

(lgg) of t and s if there is no generalization r0 of t and s such that r � r0.

Example 2. {X;
7! �a.f(a)} is a substitution, while {X;

7! f(a)} is not. Therefore, X;
�

�a.f(a), while X;
6� f(a). The instantiation g(Y S){Y S

7! f(a)} = g(f(a)) is valid if a 2 S.

3 Generalization Type

To discuss the generalization type of permissive nominal terms and our motivation of deviating
from the original approach, we recall the original definition of permission sets [9]. Dowek et al.
permission sets are defined as

PD = {(A<
\A) [B | A ⇢ A<, B ⇢ A>, and A,B are finite}.

Dowek et al. permission sets are infinite and coinfinite w.r.t. A. On the other hand, our
definition yields permission sets that are only coinfinite w.r.t. A, but not necessarily infinite.
Note that P also includes permission sets of the form (A<

\ A) [ B, where A ⇢ A<, B ⇢ A>

and A,B are finite. Therefore, PD ⇢ P, i.e., our setting is more general.

Theorem 1. When using Dowek et al. permission sets, the relation � is not well-founded.

Proof. Since A< and A> are disjoint, any permission set from PD corresponds to a set of
the form S \ A where S consists of all atoms from A< and finitely many atoms from A>, and
A ⇢ A< is finite. By definition, any substitution � must satisfy fa(�(XS\A)) ✓ S \A for any A.
It follows that XS\;

� XS\{a1} � XS\{a1,a2} � . . . . Since A is finite, � is not well-founded.

Corollary 1. Given two atoms a and b there is no lgg of a and b in the setting of PD.

This problem arises for any two arbitrary terms t and s that have a finite number of free
atoms, i.e., where fa(t, s) is a finite set. For instance, the terms f(a) and g(b) do not have an
lgg in the setting of Dowek et al.. Revising the proof of Theorem 1, it is easy to observe that
the problem arises from the infinite nature of the Dowek et al. permission sets.

Also note that the same problem arises in the classical nominal setting. Baumgartner et
al. [2] showed that, when considering an infinite supply of atoms, there are infinite chains of the
form h;, Xi � h{a1#X}, Xi � h{a1#X, a2#X}, Xi � . . . . To overcome that issue, the supply
of atoms may be restricted to a finite set A so that the statement h{a#X | a 2 A}, Xi becomes
valid. For more details about the classical nominal setting we refer the reader to [2, 11, 18].

Our suggestion to allow finite sets in P was motivated by the goal of overcoming that issue.

Example 3. Considering finite permission sets, we get a variable X{a,b} as the lgg of two atoms
a and b. I.e., only the atoms a and b are allowed to appear freely in instantiations of X{a,b}.
Note that X{a,b} is also an lgg of the two terms f(a) and g(b).

3
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In our setting, there is still an infinite supply of atoms (e.g., to rename bound atoms), and,
any valid term in the setting of Dowek et al. is also valid in our setting. Moreover, we can
find an lgg of any two input terms without any restriction. Theorem 2 establishes that the
generalization type becomes unitary in this setting.

Theorem 2. Given two arbitrary terms there exists a unique lgg up to '.

The proof of Theorem 2 follows from section 4 and 5 where we construct an anti-unification
algorithm that yields a unique output term of two arbitrary input terms and prove its properties.

4 Anti-Unification Algorithm NAUP

Given two terms t and s, an anti-unification equation is a tripleXS : t , s whereXS is a variable
of sort fa(t, s) that neither appears in t nor in s. XS is called the generalization variable.

The anti-unification algorithm for permissive nominal terms, called NAUP , is formulated in
terms of transformation rules that work on triples of the form E; Q; �, where E and Q are
sets of anti-unification equations, and � is a substitution. Such triples are called the states of
the algorithm. The transformation rules are given in Figure 2. A variable is called fresh if it
didn’t already appear in any of the former states of the transformation process. We use ·[ to
denote the disjoint union.

Atm: Atom

{XS : a , a} ·[E; Q; � =) E; Q; �{XS
7! a}.

Dec: Decomposition

{XS : f(t1, . . . , tn) , f(s1, . . . , sn)} ·[E; Q; �
=) {Y S1

1 : t1 , s1, . . . , Y Sn
n : tn , sn} [ E; Q; �{XS

7! f(Y S1
1 , . . . , Y Sn

n )},

where f is a symbol of arity n � 0, and Y Si
i is a fresh variable of sort Si = fa(ti, si), for

all 1  i  n.

Abs: Abstraction

{XS : �a.t , �b.s} ·[E; Q; � =) {Y T : (c a) · t , (c b) · s}[E; Q; �{XS
7! �c.Y T

},

where c 2 A \ S and Y T is a fresh variable of sort T = fa((c a) · t, (c b) · s).2

Sol: Solving

{XS : t , s} ·[E; Q; � =) E; Q [ {XS : t , s}; �,

if none of the previous rules is applicable.

Mer: Merging

E; {XS : t1 , s1, Y T : t2 , s2} ·[Q; � =) E; {XS : t1 , s1} [Q; �⇢,

where ⇢ is a substitution defined by {Y T
7! ⇡ ·XS

} and ⇡ is a permutation such that
⇡ · t1 =↵ t2 and ⇡ · s1 =↵ s2.3

Figure 2: Transformation rules of the anti-unification algorithm.

2Since A\S isn’t empty and fa(�a.t,�b.s) ✓ S, we can take c 2 A\S to rename the bound atoms (Figure 1).
3Since the sort of generalization variables is minimal w.r.t. the represented terms, ⇢ always exists if ⇡ exists.
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Computing The Lgg. Given two terms t and s, NAUP works in the following manner:

1. Create the initial state {Xfa(t,s) : t , s}; ;; id .

2. Apply the rules of Figure 2 exhaustively, that is {Xfa(t,s) : t , s}; ;; id =)⇤
;; Q; �.

3. Apply the computed substitution � to the generalization variable of the initial state
Xfa(t,s), that is Xfa(t,s)�, to obtain the generalization of the input terms t and s.

We write NAUP(t, s) to denote the result of that process, i.e., it denotes the generalization.
Since, from the computed substitution only one mapping is needed to obtain the general-

ization, we will omit all the other mappings in the following derivation examples.

Example 4. Consider the input terms f(a, b, a) and f(b, a, c). The initial state is {X{a,b,c} :
f(a, b, a) , f(b, a, c)}; ;; id . Now we apply the rules of Figure 2 exhaustively.

{X{a,b,c} : f(a, b, a) , f(b, a, c)}; ;; id =)Dec

{Y {a,b}
1 : a , b, Y {a,b}

2 : b , a, Y {a,c}
3 : a , c}; ;; {X{a,b,c}

7! f(Y {a,b}
1 , Y {a,b}

2 , Y {a,c}
3 )} =)3

Sol

;; {Y {a,b}
1 : a , b, Y {a,b}

2 : b , a, Y {a,c}
3 : a , c}; {X{a,b,c}

7! f(Y {a,b}
1 , Y {a,b}

2 , Y {a,c}
3 )} =)Mer

;; {Y {a,b}
1 : a , b, Y {a,c}

3 : a , c}; {X{a,b,c}
7! f(Y {a,b}

1 , (a b) · Y {a,b}
1 , Y {a,c}

3 )}

The computed generalization is f(Y {a,b}
1 , (a b) · Y {a,b}

1 , Y {a,c}
3 ). Applying the substitution

{Y {a,b}
1 7! a, Y {a,c}

3 7! a} gives f(a, b, a), and applying {Y {a,b}
1 7! b, Y {a,c}

3 7! c} gives f(b, a, c).

Example 5. Consider the input terms f(�b.b, a) and f(�a.XS , XS) where S ✓ A< and a 2 S.
The initial state is {Y S : f(�b.b, a) , f(�a.XS , XS)}; ;; id .

{Y S : f(�b.b, a) , f(�a.XS , XS)}; ;; id =)Dec

{ZS\{a}
1 : �b.b , �a.XS , ZS

2 : a , XS
}; ;; {Y S

7! f(ZS\{a}
1 , ZS

2 )} =)Abs

{Z(S\{a})[{c}
3 : c , (a c) ·XS , ZS

2 : a , XS
}; ;; {Y S

7! f(�c.Z(S\{a})[{c}
3 , ZS

2 )} =)2
Sol

;; {Z(S\{a})[{c}
3 : c , (a c) ·XS , ZS

2 : a , XS
}; {Y S

7! f(�c.Z(S\{a})[{c}
3 , ZS

2 )} =)Mer

;; {ZS
2 : a , XS

}; {Y S
7! f(�c.(a c) · ZS

2 , Z
S
2 )}

The computed result is f(�c.(a c) · ZS
2 , Z

S
2 ). It is equi-general to f(�a.XS , XS), and, instanti-

ating it by {ZS
2 7! a} results in f(�c.c, a) which is ↵-equivalent to f(�b.b, a).

Note that in the merge step of Example 5, we could have chosen to keep Z(S\{a})[{c}
3 instead

of ZS
2 . There might be various possible rule applications to a certain state but the choice doesn’t

matter. The derivations are confluent and lead to equi-general results.

5 Properties of NAUP

Lemma 1 (Termination). NAUP generates O(n) states for any input of size n and terminates.

Proof. The size ktk of a term t is defined as kak = 1, kf(t1, . . . , tn)k = 1+
Pn

i=1 ktik, k�a.sk =
1 + ksk, and k⇡ · XS

k = 1. The size of a set of anti-unification equations E is defined as
kEk =

P
XS :t,s2E ktk+ ksk. Finally, the size of a state E; Q; � is defined by 2kEk+ kQk.

Using that definition, we get that the initial state created by NAUP(t, s) is of size
2(ktk + ksk), i.e., linear by the size of the input terms t and s. Since every rule applica-
tion strictly decreases the size of the state, NAUP generates at most O(n) states until no more
rule is applicable, for any input of size n.

5
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Lemma 2 (Soundness). Given terms t, s. Any term NAUP(t, s) is a generalization of t and s.

Proof. Given two input terms t and s, NAUP(t, s) creates an initial state E; Q; � where E =
{Xfa(t,s) : t , s}, Q = ;, and � = id . It trivially holds that Xfa(t,s)� is a generalization
of t and s. By induction on the derivation process we will show that this is actually an
invariant that is maintained by rule applications. More precisely, we show that, after any rule
application E0; Q0; �0 =) E00; Q00; �00, the term Xfa(t,s)�00 is a generalization of t and s, given
that Xfa(t,s)�0 is a generalization of t and s. In order to prove that, two substitutions, that can
be obtained from an arbitrary set of anti-unification equations F , are needed:

⇢Fl := {XS
7! t | XS : t , s 2 F} ⇢Fr := {XS

7! s | XS : t , s 2 F}

For the initial state, it is trivial that Xfa(t,s)�⇢E[Q
l =↵ t and Xfa(t,s)�⇢E[Q

r =↵ s. By case

distinction on the rules of Figure 2 it can also easily be verified that Xfa(t,s)�00⇢E
00[Q00

l =↵ t and

Xfa(t,s)�00⇢E
00[Q00

r =↵ s holds, given that Xfa(t,s)�0⇢E
0[Q0

l =↵ t and Xfa(t,s)�0⇢E
0[Q0

r =↵ s.

Lemma 3 (Completeness). For any generalization r of some terms t, s holds r � NAUP(t, s).

Proof. By structural induction on r we identify common parts of t and s. 4 possible cases are
given by the term grammar. In the two cases where we encounter either an atom or a function
application in r, it is easy to conclude that one of the rules Atm or Dec is applicable. Therefore,
the same symbol will also appear in the substitution of the transformed state of NAUP .

The third case treats abstractions in r. I.e., sub-terms like �a.t0 and �b.s0 in t, s. It corre-
sponds to the case where Abs applies. Abs performs ↵-renaming and generalizes the abstraction.

The last case considers the appearance of a suspension ⇡ ·XS in r. It represents sub-terms
t0, s0 of t and s, respectively. NAUP keeps the sort of generalization variables minimal, always.
For t0, s0 it is fa(t0, s0). Therefore ⇡ ·XS is more general than the generalization variable used
by NAUP to represent t0 and s0. The rule Mer ensures that variables are shared, whenever
possible. It follows that NAUP(t, s) is an lgg of t and s.

6 Conclusion

The language of permissive nominal terms introduced by Dowek et al. exhibits the same
problem, w.r.t. the generalization type, as classical nominal terms. In order to address that
issue, we suggest a modification of the definition of permission sets. This leads to a term
language that is a superset of the one introduced by Dowek et al.

Our work might be seen as a starting point for a broader revision of the (permissive) nominal
setting. The modified definition probably leads to implications w.r.t. unification, computational
complexity, and so on. It might be practical to restrict the permission sets so that they have
a simple and finite representation. An interesting restriction could be to only consider finite
permission sets and the original ones from Dowek et al., i.e., sets of the form {a1, . . . , an} where
ai 2 A and the ones in PD. Those are exactly the ones needed to get a well-founded � relation.
Note that NAUP computes generalizations within that restricted setting if the input terms
satisfy the restriction, e.g., if the input is from PD.

Due to the well-founded � relation, our setting might be closer to higher-order pattern [16]
(HOP) than other nominal settings [14]. Note that HOP have a well-founded � relation too [3].

Questions like, implications of our setting w.r.t. the results from [9], computational com-
plexity of NAUP , connections to other languages (e.g., HOP), etc. remain open. They are
possible directions of future work that continues to investigate on the proposed setting, with
and without imposing restrictions on the permission sets.
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1 Introduction

We design rule-based satisfiability procedures modulo unions of axiomatized theories, target-
ing equational axioms such as Associativity or Commutativity. In the proposed approach, any
function symbol can be uninterpreted, associative only, commutative only, but also associative
and commutative. To tackle these unions of theories, we introduce a combined congruence clo-
sure procedure that can be viewed as a particular Nelson-Oppen combination method [8] using
particular congruence closure procedures for the individual theories. The combined congruence
procedure is based on the ping-ponging of entailed equalities between (shared) constants. Actu-
ally, the congruence closure procedures used for the individual theories allow us to deduce these
equalities. In this context, we consider terminating congruence closure procedures, but also
non-terminating ones. Hence, we have terminating congruence closure procedures for Commu-
tativity and Associativity-Commutativity, while the one for Associativity is non-terminating.
We show how all the congruence closure procedures, including the combined one, can be pre-
sented in a uniform and abstract way along the lines of [3, 5, 7].

Related Work. Congruence closure modulo Associativity-Commutativity has been success-
fully investigated in [3, 4]. It has been revisited more recently, showing how the method can
be extended to take into account additional orientable axioms, for instance to handle the the-
ory of Abelian Groups [5]. The case of flat permutation axioms, such as Commutativity, has
been considered in [7]. The theory of Groups and all of its subtheories including Associativity
is considered in [6], where the related congruence closure procedure is not necessarily termi-
nating, contrarily to the one known for Associativity-Commutativity. In these papers, some
particular unions of theories are studied, for instance to handle several symbols following the
same equational axioms.

In our paper, we clearly focus on the combination of congruence closure procedures to cope
with arbitrary unions of (signature-disjoint) theories. This combination of congruence closure
procedures can be seen as a particular case of combination of deduction-complete satisfiability
procedures, already investigated in [12]. In addition to Associativity-Commutativity, we be-
lieve that it is interesting to consider Associativity alone and Commutativity alone. On one
hand, Associativity provides a significant case study of a non-terminating congruence closure
procedure. On the other hand, Commutativity leads to a simple extension of the congruence
closure procedure known for the theory of equality as done in [7].

Paper Outline. In this paper, after explaining the notations used, we describe our combi-
nation method based on two kinds of processes: the orchestrator whose role is to prepare and
handle a combination of theories; a theory process whose role is to complete the set of rewrite
rules for a specific theory. Then we discuss the completeness of the method.
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2 Preliminaries

We assume the reader familiar with the notions of terms and term rewriting [1].
We consider n theories E1, . . . , En such that each theory Ei is given by a set of equalities

over the signature ⌃i. The theories E1, . . . , En are assumed to be pairwise signature-disjoint,
meaning that ⌃i \ ⌃j = ; for any i, j 2 [1, n], i 6= j. The union of theories E1 [ · · · [ En is
denoted by E and the union of signatures ⌃1 [ · · · [ ⌃n is denoted by ⌃. We assume a set of
ground equalities � and a set of ground disequalities �, where both � and � are expressed over
the signature ⌃.

The process described in this paper relies on a flattening of terms. For theory Ei including
an operator, say +, such that (x + y) + z ⇡ x + (y + z) occurs in Ei, this flattening will be
performed using + as a variadic operator, eg. a+ (b+ c) is flattened into +(a, b, c).

The initial set of ground equalities � will be purified via flattening thanks to the introduction
of new constants (K denotes the set of used new constants taken from an infinite countable
set U disjoint from ⌃), generating pure flat rewrite rules for each theory Ei (denoted by the
set Ri); and further deductions between those rules may generate flat equalities in this theory
(denoted by the set Ei).

The rewrite rules in Ri can have two shapes: D-rules denoted by f(c1, . . . , cn) ! c, where
f 2 ⌃i and c1, . . . , cn, c 2 K; E-rules denoted by f(c1, . . . , cm) ! f(d1, . . . , dn), where f 2 ⌃i

is a variadic operator and c1, . . . , cm, d1, . . . , dn 2 K. For any rewrite rule t ! s, t has to
be greater than s (t � s); the definition of an ordering may be di�cult for deduction systems
modulo equational theories; but in our case the ordering is very simple as we only have to
consider D-rules and E-rules: for D-rules, it su�ces to assume 8f 2 ⌃, 8c 2 K, f � c; for
E-rules, we have to compare lists of constants: if of the same length, this can be done with
a lexicographic or a multiset extension of an arbitrary ordering comparing two constants of
K (the choice is done for each theory), and if of di↵erent length, the longest is the biggest.
For example, for an associative theory the lexicographic extension will be used, and for an
associative-commutative theory the multiset extension will be used.

The equalities in Ei also have two shapes: D-equalities denoted by f(c1, . . . , cn) ⇡ c, where
f 2 ⌃i and c1, . . . , cn, c 2 K; E-equalities denoted by f(c1, . . . , cm) ⇡ f(d1, . . . , dn), where
f 2 ⌃i is a variadic operator and c1, . . . , cm, d1, . . . , dn 2 K. An equality c1 ⇡ c2 between
two constants of K is called a C-equality. E-rules and E-equalities will be generated only for
variadic operators by the Superposition inference rule, because of the use of extended rewrite
rules (see Section 3.2).

3 Combined Satisfiability Procedure

We describe in this section a procedure that aims at (semi-)deciding the satisfiability of any set
of ground equalities � together with any set of ground disequalities �, modulo a combination
of signature-disjoint equational theories Ei. This procedure, called CombCC, is based on congru-
ence closure and involves two kinds of processes: an orchestrator decomposing the problem to
separate the di↵erent theories, and theory processes that complete rewrite rules, one process
for each theory.

3.1 The Orchestrator

The role of the orchestrator is to purify and flatten the problem to be solved, to send each
theory process the rewrite rules it has to handle, and to detect if any contradiction wrt. � is
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generated by one of the theory processes. For this purpose, several sets are handled in addition
to � and �: the set of new constants K, and for each equational theory Ei a set of rewrite rules
Ri and a set of equalities Ei. In the following inference rules, we will only indicate the involved
sets.

The input problem is given by two sets: a set of ground equalities � built over ⌃ plus a set
of ground disequalities � built over ⌃.

The first task of the orchestrator is to transform the disequalities for hiding the theories
involved. This is done with the following inference rule that replaces an arbitrary disequality by
a disequality between two new constants together with the equalities associating each of these
constants to the corresponding term:

Splitting:
K,� [ {t1 6⇡ t2},�

K [ {c1, c2},� [ {c1 6⇡ c2},� [ {t1 ⇡ c1, t2 ⇡ c2}

if t1, t2 62 K, c1, c2 2 U \K

Once all disequalities have been decomposed, the second task of the orchestrator is to purify
the equalities of �, by generating rewrite rules that are purely in one theory. In this purpose,
it applies the following inference rules:

Flattening:
K,�[t], Ri

K [ {c},�[c], Ri [ {t ! c}

if t ! c is a D-rule, c 2 U \K, t occurs in some equality in � that is not a D-equality,
and t is ⌃i-rooted.

Orientation:
K [ {c},� [ {t ⇡ c}, Ri

K [ {c},�, Ri [ {t ! c}
if t ⇡ c is a D-equality and t is ⌃i-
rooted.

When all equations have been transformed (� = ;), the orchestrator runs one process per
equational theory Ei, providing it two sets of information: the set of new constants K and the
set of D-rules Ri defined over ⌃i and K.

Its final task is to manage equalities between new constants, when generated by a theory
process in some set Ei; there are two possibilities: if the equality contradicts a disequality of �
then the system can stop, otherwise a constant has to be replaced by the other in all sets.

Contradiction:
K [ {c, d},� [ {c 6⇡ d}, RE [ (Ri, Ei [ {c ⇡ d})

?

Compression:
K [ {c, d},�, RE [ (Ri, Ei [ {c ⇡ d})

K [ {d},�hc 7! di, REhc 7! di [ (Rihc 7! di, Eihc 7! di)

if c � d; the notation hc 7! di denotes the homomorphic extension of the mapping
� defined as �(c) = d and �(x) = x for x 6= c, and Shc 7! di denotes the set of
equalities/rules obtained by applying the mapping hc 7! di to each term in set S.

The strategy of the orchestrator can therefore be described by: Split
⇤ · (Flat⇤ · Ori)⇤ ·

(Cont [Comp)⇤.

3.2 A Theory Process

A process run for an equational theory Ei will use inference rules to complete its term rewriting
system Ri. Some inference rules are used for transforming the rewrite rules (Composition), for
deducing new equalities added to a set Ei (Collapse, Superposition), and for handling those
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new equalities (Simplification, Orientation, Deletion). The set of new constants K is never
modified, so not indicated, but it is useful in the process for checking if a constant is a new one
or belongs to the theory.

Considering the theory Ei, if two terms t1 and t2 are Ei-equal in this theory, we write t1 $⇤
Ei

t2. By (Ri, Ei) we denote the rewriting system defined by {u0 ! v | u ! v 2 Ri and u0 $⇤
Ei

u}.
For some theories, the inference system has to consider extended rewrite rules as we do not
explicitly use the axioms of a theory: an extension is built wrt. a context defined from the
theory axioms; a context is a term in which a non variable position (denoted by ·) is reserved
for placing the term to extend; let us denote ContEi the set of contexts for the theory Ei; given
a D-rule or a E-rule u ! v, its extended version by a context Cont[·] 2 ContEi is written
Cont[u] ! Cont[v]. The construction of contexts for generating extensions has been explained
in [10, 9, 13].

In this paper, as we want to handle only shallow rewrite rules, we will consider only theories
for which extended rewrite rules have a shallow form. For example, if an operator f is asso-
ciative, from the axiom of this theory f(f(x, y), z) ⇡ f(x, f(y, z)), we can build three shallow
contexts: f(·, x), f(x, ·) and f(x1, ·, x2). So, a rewrite rule f(a, b) ! c has three extensions:
f(a, b, x) ! f(c, x), f(x, a, b) ! f(x, c) and f(x1, a, b, x2) ! f(x1, c, x2).

By (Re
i , Ei) we denote the rewriting system extending (Ri, Ei) with all possible extended

rewrite rules from Ri.

The inference rules used by a theory process are the following.

Simplification:
Ri, Ei[t]

Ri, Ei[s]

where t occurs in some equality of Ei,
and t !(Re

i ,Ei) s.

Orientation:
Ri, Ei [ {t ⇡ s}
Ri [ {t ! s}, Ei

if t � s and t ! s is a D-rule or a
E-rule.

Deletion:
Ri, Ei [ {t ⇡ s}

Ri, Ei

if t $⇤
Ei

s.

Composition:
Ri [ {t ! s, u ! v}, Ei

Ri [ {t ! s0, u ! v}, Ei

if s !({u!v}e,Ei) s
0.

Collapse:
Ri [ {t ! s, u ! v}, Ei

Ri [ {u ! v}, Ei [ {t0 ⇡ s}
if t !({u!v}e,Ei) t

0,
and if t $⇤

Ei
u then s � v.

Superposition:
Ri [ {t1 ! s1, t2 ! s2}, Ei

Ri [ {t1 ! s1, t2 ! s2}, Ei [ {Cont1[s1]� ⇡ Cont2[s2]�}
if the substitution � is the ground substitution in a minimal complete set of Ei-
unifiers of Cont1[t1] and Cont2[t2], where Cont1[·], Cont2[·] 2 ContEi are selected
to guarantee a useful ground new equality; the resulting equality will be written in
flat form.

A strategy for combining all those inference rules is: (Com
⇤·(Col[Sup)·Sim⇤·(Del[Ori))⇤

So this process starts with a set of rewrite rules Ri and, if terminating, it ends with R1
i where

there is no possible inference rule involving rewrite rules of R1
i ; intermediate equalities are

stored in Ei. If an equality between two constants of K is generated, it will be handled by the
orchestrator.

For applying inference rules, this theory process has to use a Ei-matching algorithm for
applying rewriting steps with respect to (Re

i , Ei). It also needs a simple Ei-unification algorithm,
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simple because it will have to solve unification problems of the shape Cont1[t1] =? Cont2[t2],
where t1 and t2 are ground; if there is a solution, it will be the unique most general unifier since
the variables occurring in Conti[·] will be instantiated by subterms of the ground term t3�i.

4 Completeness Results

The combined satisfiability procedure described in the previous section is defined for “some
theories Ei”. But for guaranteeing its completeness, we consider only three kinds of theories (in
addition to the empty theory of course).

• Commutative theories are represented by the set of axioms
{f(x1, . . . , xk) ⇡ f(x�(1), . . . , x�(k)) | � is a permutation of {1, . . . , k}}

With such theories, there is no extension of rewrite rules to be considered, so the Super-
position inference rule cannot apply. For the ordering, the arguments of a commutative
operator are compared with a multiset extension of the ordering between constants of K.

• Associative theories are represented by axioms f(f(x1, x2), x3) ⇡ f(x1, f(x2, x3)). They
generate three possible extensions of rewrite rules, with the contexts f(·, x), f(x, ·) and
f(x1, ·, x2). Those three contexts can be used for applying term rewriting steps with
respect to (Re

i , Ei). But for the Superposition inference rule between two rules t1 !
s1 and t2 ! s2, we only need to consider their extensions f(t1, x1) ! f(s1, x1) and
f(x2, t2) ! f(x2, s2) because this is the only combination of contexts for which the
unification problem (f(t1, x1) =? f(x2, t2)) can generate a ground most general unifier
(any use of another context would generate a redundant equation). For the ordering, the
arguments of an associative operator are compared with a lexicographic extension of the
ordering between constants of K.

• Associative-Commutative theories are represented by axioms f(x1, x2) ⇡ f(x2, x1) and
f(f(x1, x2), x3) ⇡ f(x1, f(x2, x3)). They generate only one possible extension of rewrite
rules, with the context f(·, x), used for applying term rewriting steps by (Re

i , Ei), and
the Superposition inference rule. For the ordering, the arguments of an AC operator are
compared with a multiset extension of the ordering between constants of K.

The CombCC procedure is refutationally complete, provided that deductions are fairly applied.
Moreover, if the CombCC procedure terminates without finding a contradiction with disequalities
of �, it generates a terminating confluent term rewriting system for the equational theory E[�.

Theorem 1. Let E be any disjoint union of empty, commutative, associative, and associative-

commutative theories over the combined signature ⌃ which is assumed to include uninterpreted

function symbols and constants. Consider � is any set of ground ⌃-equalities and � is any set

of ground ⌃-disequalities. Given the input � [ �, the CombCC procedure halts on ? if � [ �
is E-unsatisfiable. If the CombCC procedure halts on an output distinct from ?, then � [ � is

E-satisfiable, and the output provides a rewriting system R such that (1) R is terminating and

confluent modulo E on T (⌃ [ K), and (2) any two ground terms in T (⌃) are E [ R-equal i↵

they are E [ �-equal. Moreover, the CombCC procedure is necessarily terminating if E does not

involve associative theories.

Example 1. Our procedure may indeed not terminate (if no contradiction exists) with associa-

tive theories. For example, if f and g are associative, given the equalities {f(a, b) ⇡ c, f(a, c) ⇡
f(c, a), g(b, a) ⇡ c, g(a, c) ⇡ g(c, a)}, either the theory process of f , or the one of g, will generate
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an infinite number of rewrite rules, depending on the chosen ordering between constants a and

c deciding of the orientation of the second and fourth equalities. If c � a, the infinitely gen-

erated rules can be schematized by f(a, cn, b) ! f(c, cn). If a � c, they can be schematized by

g(b, cn, a) ! f(c, cn). We also have non-terminating examples with a single associative theory,

but they may be less simple to explain.

To prove the completeness of CombCC, we can rely on a Nelson-Oppen combination method [8]
based on the ping-ponging of entailed equalities between (shared) constants. This combination
method is applicable without loss of completeness because one can rely on a union of convex and
stably infinite theories, using the same proof idea as the one initiated in [2]. The theories we
focus on are convex, since equational theories are Horn theories, and Horn theories are known
to be convex [11]. Actually, the convexity induces a particular way to decide the satisfiability of
equalities plus a conjunction of disequalities: it allows us to consider each disequality separately.
Assuming convexity, a satisfiable set of equalities � together with a set of disequalities � is
satisfiable if and only if for any s 6⇡ t 2 �, we have that s ⇡ t is not entailed by �. In
our context, arbitrary satisfiability problems are equi-satisfiable, via flattening, to satisfiability
problems including only flat literals, meaning that all the disequalities in� are of the form c 6⇡ d
where c and d are constants. Thus, we are looking for inference systems with the property of
being deduction-complete [12], in order to derive each equality c ⇡ d such that � ) c ⇡ d is
valid in the underlying theory. This is exactly the purpose of a congruence closure procedure
when it applies to an input set of flat equalities �. It generates all the equalities between
constants that are logically entailed by �.

In this paper, we consider terminating congruence closure procedures, but also non-termina-
ting ones. Compared to a classical use of the Nelson-Oppen combination method, we have to
accommodate procedures that are not necessarily terminating, as exemplified by Associativity.

Let us shortly explain why CombCC is refutationally complete. According to the complete-
ness of the Nelson-Oppen method, the satisfiability problem in any disjoint union of stably
infinite theories is reducible to the satisfiability problems in the component theories, provided
that all possible arrangements are guessed. Consequently, given any disjoint union of stably
infinite theories, using refutationally complete procedures for the satisfiability problems in the
component theories allows us to get a refutationally complete procedure for the satisfiability
problem in the union. In our context, stably infinite theories are also convex and so the guessing
of all possible arrangements can be replaced by a ping-ponging of entailed equalities between
constants. Then, we use the property that all the entailed equalities between constants are
eventually generated since our congruence closure procedures are deduction-complete.

5 Conclusion

We have implemented the combination of those three kinds of theories (plus the empty theory)
by extending AbstractCC [3]. The result is a very e�cient procedure, even if the initial set of
ground (dis)equalities contains very big terms.

We have defined the orchestrator so that it does not need to handle specific algorithms
of theories Ei. It could be more e�cient using other inference rules like Simplification and
Deletion. But we did this on purpose for the clarity of the paper. We are considering several
extensions of our procedure, to apply it to any theory having a deduction system preserving the
groundness of generated rules/equalities. This applies to flat permutative theories, an extension
of commutative theories. It also applies to extensions of associative or associative-commutative
theories where axioms can be used as shallow collapsing rewrite rules.
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Abstract

Narrowing equational problems is a well-known technique that adds to rewriting the
required power to search for solutions of equational problems. Both rewriting and narrow-
ing techniques are well-studied in first-order languages, but there is still a lot to investigate
when dealing with languages with binders, such as nominal language. In a previous paper,
by the second author, the nominal narrowing relation was introduced. In this abstract,
we present a work in progress on the development of nominal commutative narrowing as
a technique to solve nominal commutative unification problems. We have extended the
definitions of nominal rewriting and nominal narrowing to take into account equational
theories, and we are one step away from proving the Lifting Theorem relating nominal
commutative narrowing and rewriting. The goal of this abstract is to present our ongoing
research and its challenges as well as to obtain feedback from the community.

1 Introduction

The nominal framework [10] emerged as a promising approach to deal with languages with
binders, such as lambda calculus, first-order logic, etc. In the nominal setting, equality coincides
with the ↵-equivalence relation, and freshness constraints are part of the nominal reasoning, and
not deemed to the meta-language. For example, we can express within the nominal language,
as a#M , the fact that if a name a occurs in a term M , it must be abstracted (in other words,
a is fresh for M). To reason within this language, nominal unification [13] was developed.

Extensions of nominal unification with equational theories are being investigated. On the
one hand, when an equational theory E can be presented by a convergent nominal rewrite sys-
tem, nominal E-unification via nominal narrowing was already investigated [6]. On the other
hand, when such presentation by convergent rewriting system does not exist, di↵erent exten-
sions for dealing with rewriting modulo E were necessary. Initially, it was necessary to define
the extensions of nominal equality with the theories associativity (A), commutativity (C) and
associativity-commutativity (AC) [4]. Only recently, algorithms to solve nominal C-unification
problems (and their formalisations) were proposed [1, 2, 7, 5].

In this abstract, we are interested in giving another step towards a more general development
nominal E, treating the case in which E cannot be oriented as a convergent nominal rewrite
system, thus extending the works [11, 14, 8]. We will report on our work in progress developing
the nominal C-narrowing and C-rewriting relations, as well as present some of the extensions of
the nominal language that were necessary to prove the nominal version of the Lifting Theorem
(Corollary 3.5), that relates both narrowing and rewriting. The Lifting Theorem is fundamental
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to prove that nominal narrowing provides a sound and complete procedure for nominal C-
unification. The theorem is partially proven, we are one-step away from completing the proof
due to some extensions that still need to be done in the nominal language and properties that
need to be verified.

2 Nominal Rewriting and Narrowing modulo E

In this section, we introduce our novel definitions of equational nominal rewriting systems
(ENRS) and equational nominal narrowing, sometimes abbreviated to nominal E-rewriting sys-
tems and nominal E-narrowing. While we assume the reader’s familiarity with nominal tech-
niques, we briefly recap some basic definitions. For more details, we refer to [9].

Background. Fix countable infinite pairwise disjoint sets of atoms A = {a, b, c, . . .} and
variables X = {X,Y, Z, . . .}. Let ⌃ be a finite set of function symbols disjoint from A and X
such that for each f 2 ⌃, a unique non-negative integer n (arity of f) is assigned. A permutation
⇡ is a bijection on A with finite domain, i.e., the set dom(⇡) := {a 2 A | ⇡(a) 6= a} is finite.
Nominal terms are defined inductively by the grammar: s, t, u ::= a | ⇡ ·X | [a]t | f(t1, . . . , tn),
where a is an atom, ⇡ · X is a moderated variable, [a]t is the abstraction of a in the term t,
and f(t1, . . . , tn) is a function application with f 2 ⌃ and f : n. A term is ground if it does
not contain (moderated) variables. A substitution is a mapping from variables (from X ) to
(nominal) terms. Note that atoms are objects that can be bound and moderated variables are
objects that can be instantiated by a substitution.

There are two kinds of constraints: s ⇡↵ t is an equality constraint; and a#t is a freshness
constraint which means that a cannot occur unabstracted in t. Primitive constraints have the
form a#X and r,� denote finite sets of primitive constraints. Judgements have the form
� ` s ⇡↵ t and � ` a#t and are derived using the rules in Figure 1. In Figure 1 we use the
di↵erence set of two permutations ds(⇡,⇡0) := {n | ⇡ · n 6= ⇡0 · n}. So ds(⇡,⇡0)#X represents
the set of constraints {n#X | n 2 ds(⇡,⇡0)}. For example, if ⇡ = (a b)(c d) and ⇡0 = (c b),
then ds(⇡,⇡0) = {a, b, c, d}, and ds(⇡,⇡0)#X = {a#X, b#X, c#X, d#X}.

A term in context � ` t expresses that the term t has the freshness constraints imposed
by �. For example, a#X ` f(X,h(b)) expresses that a cannot occur free in instances of X
when instantiating the term f(X,h(b)). Nominal rewriting rules can be defined under freshness
constraints, i.e., r ` l ! r.

Nominal rewriting relation !R is as expected:

� ` s !R t () s = C[s0] ^� ` r✓ ^ s0 ⇡↵ ⇡ · (l✓) ^ t ⇡↵ C[⇡ · (r✓)],

for a substitution ✓, a subterm s0 of s, a position C and a nominal rule r ` l ! r.

Nominal E-rewriting and E-narrowing. Recall that an equational term rewriting sys-
tem (ETRS), denoted R[E, is a set consisting of a theory T containing a set of axioms that can
be split into a set R of rules and a set E of identities. To define (ETRS) we need to define the
extended relation ⇡↵,E, which takes into account ↵-equivalence and equality modulo E.

Remark 2.1. To define ⇡↵,E we need to extend the rules of Figure 1 with the dedicated rules for
the identities defining E. For example, in the case of the theory C, we need to add the following
rule

� ` s0 ⇡↵,C ti � ` s1 ⇡↵,C t1�i i = 0, 1

� ` fC(s0, s1) ⇡↵,C fC(t0, t1)
(⇡↵,C C)

2
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� ` a#b
(#atom)

(⇡�1 · a#X) 2 �

� ` a#⇡ ·X
(#var)

� ` a#[a]t
(#a[a])

� ` a#t

� ` a#[b]t
(#a[b])

� ` a#t1 · · · � ` a#tn

� ` a#f(t1, · · · , tn)
(#app)

� ` a ⇡↵ a
(⇡↵ atom)

ds(⇡,⇡0)#X 2 �

� ` ⇡ ·X ⇡↵ ⇡0 ·X
(⇡↵ var)

� ` s1 ⇡↵ t1 · · · � ` sn ⇡↵ tn

� ` f(s1, · · · , sn) ⇡↵ f(t1, · · · , tn)
(⇡↵ app)

� ` s ⇡↵ t

� ` [a]s ⇡↵ [a]t
(⇡↵ [aa])

� ` s ⇡↵ (a b) · t � ` a#t

� ` [a]s ⇡↵ [b]t
(⇡↵ [ab])

Figure 1: Rules for # and ⇡↵

where fC denotes that fC is a commutative function symbol. Rule (⇡↵ app) only applies when
the function symbol f is not commutative. In addition, we need to modify the rules in Figure 1
to use ⇡↵,C instead of ⇡↵.

Extending the definition of ETRS to nominal terms with respect to a theory E, we obtain the
following definition. Below, [t]⇡E , denotes the equivalence class of the nominal term t modulo
E, i.e., [t]⇡E = {t0 | t0 ⇡↵,E t}.

Definition 2.2 (Equational nominal rewrite system). Let E be set of identities and R a set of
nominal rewrite rules. A nominal term-in-context � ` s, reduces with respect to R/E, when its
equivalence class modulo E reduces via !R/E as below.

� ` ([s]⇡E !R/E [t]⇡E) i↵ there exist s0, t0 such that � ` (s ⇡↵,E s0 !R t0 ⇡↵,E t).

That said, we call R/E an equational nominal rewrite system (ENRS). In particular, R/C is a
commutative nominal rewrite system.

Here we are dealing with ↵,E-congruence classes and they are in general infinite due to the
availability of names for ↵-renaming. Although the pure ⇡↵ relation is decidable, when ⇡↵ is
put together with an equational theory E which contains infinite congruence classes, the relation
!R/E may not be decidable (as in first-order). We will define the nominal relation !R,E that
deals with nominal E-matching instead of inspecting the whole ↵,E-congruence class of a term.

Definition 2.3 (Nominal E-rewriting). The one-step E-rewrite relation � ` s !R,E t is the
least relation such that for any R = (r ` l ! r) 2 R, position C, term s0, permutation ⇡, and
substitution ✓,

s ⌘ C[s0] � `
�
r✓, s0 ⇡↵,E ⇡ · (l✓), C[⇡ · (r✓)] ⇡↵,E t

�

� ` s !R,E t

The E-rewrite relation � ` s !⇤
R,E t is the least relation that includes !R,E and satisfies:

(i) for all �, s, s0 we have � ` s !⇤
R,E s0 if � ` s ⇡↵,E s0; (ii) for all �, s, t, u we have that

� ` s !⇤
R,E t and � ` t !⇤

R,E u implies � ` s !⇤
R,E u. If � ` s !⇤

R,E t and � ` s !⇤
R,E t0,

then we say that R is E-confluent when there exists a term u such that � ` t !⇤
R,E u and

� ` t0 !⇤
R,E u. Also, R is said to be E-terminating if there is no infinite !R,E sequence. An

ENRS R is called E-convergent if it is E-confluent and E-terminating. A term t is said to be in
R,E-normal form (R/E-normal form) whenever one cannot apply another step of !R,E (!R/E).

3
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In first-order languages, it is known that R,E-reducibility is decidable if the E-matching is
decidable. Following Jouannaud et. al. [11], the existence of a finite and complete E-unification
algorithm is a su�cient condition for that decidability. However solving nominal E-unification
problems has the additional complication of dealing with renaming and freshness conditions,
and these have a significant impact in obtaining finite and complete set of nominal E-unification
algorithms.

Remark 2.4. Nominal C-unification is not finitary when one uses freshness constraints and
substitutions for representing solutions [2], but the type of problems that generate an infinite

set of C-unifiers are fixed-point equations ⇡·X?
C⇡?X. For e.g., the nominal C-unification problem

(a b) ·X?
C⇡?X has solutions [X 7! a� b], [X 7! (a� b)� (a� b)], . . .. However, these problems

do not appear in nominal C-matching [3]. Thus, the relation !R,C is decidable.

Now we define the nominal narrowing relation modulo E, extending previous works [6].

Definition 2.5 (Nominal E-narrowing). The one-step E-narrowing relation (� ` s) R,E (�0 `
t) is the least relation such that for any R = (r ` l ! r) 2 R, position C, term s0, permutation
⇡, and substitution ✓,

s ⌘ C[s0] �0 `
�
r✓, �✓, s0✓ ⇡↵,E ⇡ · (l✓), (C[⇡ · r])✓ ⇡↵,E t

�
.

(� ` s) R,E (�0 ` t)

The nominal E-narrowing relation (� ` s)  ⇤
R,E (�0 ` t) is the least relation that includes

 R,E and satisfies: (i) for all �, s, s0 we have (� ` s)  ⇤
R,E (� ` s0) if � ` s ⇡↵,E s0; (ii) for

all �,�0,�00, s, t, u we have that (� ` s)  ⇤
R,E (�0 ` t) and (�0 ` t)  ⇤

R,E (�00 ` u) implies
(� ` s) ⇤

R,E (�00 ` u).

The permutation ⇡ and substitution ✓ above are found by solving the E-unification problem

(r ` l) ?
E⇡? (� ` s0). In this work, we will focus on the theory C, for which a nominal unification

algorithm exists. From now on, our results are concentrated on !R/C,!R,C and  R,C.
Since nominal C-narrowing is defined on nominal C-unification, which is not finitary when we

use pairs (�0, ✓) of freshness contexts and substitutions for representing solutions, and following
the Remark 2.4, we can conclude that our nominal C-narrowing trees are infinitely branching.

Example 1. Consider the signature ⌃ = {h : 1, f : 2,� : 2}, where f,� are commutative
symbols. Let R = { ` h(Y ) ! h(Y ), ` f([a][b] · Z,Z) ! f(h(Z), h(Z))} be a set of rewrite1

rules and C = { ` f(X,Y ) ⇡ f(Y,X), ` X � Y ⇡ Y �X} be the axioms defining the theory.
Let ` h(f([b][a]X,X)) be a nominal term that we want to apply nominal narrowing modulo

C. Observe that we can apply one step of narrowing, and then we obtain a branch that yields
infinite branches due to the fixed-point equation (see Figure 2).

3 Nominal Lifting Theorem modulo C

Let R = {ri ` li ! ri} be a C-convergent NRS. We want to establish correspondence between
nominal C-narrowing and nominal C-rewriting. We will do that via an extension of the Nominal
Lifting Theorem (cf. Theorem 12 [6]) for the extended relations  R,C and !R,C.

We start by defining a normalised substitution with respect to the relation !R,C:

1` l ! r denotes ; ` l ! r.

4
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Figure 2: Infinitely branching tree

(�0 ` s0)
✓0 // (�1 ` s1)

⇤ // (�i ` si)
✓i // (�i+1 ` si+1)

⇤ // . . .
✓n // (�n ` sn)

� ` s0⇢0
✏✏
⇢0

// s1⇢1
✏✏

⇢1

⇤ // si⇢i //✏✏

⇢i

si+1⇢i+1
✏✏

⇢i+1

⇤ // . . . // sn⇢n
✏✏

⇢n

Figure 3: Corresponding Narrowing to Rewriting Derivations

Definition 3.1 (Normalised substitution w.r.t !R,C). A substitution ✓ is normalised in � with
relation to !R,C if � ` X✓ is a R,C-normal form in R for every X. A substitution ✓ satisfies
the freshness context � if there exists a freshness context r such that r ` a#X✓ for each
a#X 2 �. The minimal such r is h�✓inf , the latter which denotes the normal form of the set
of freshness constraints �✓, after bottom-up simplification using the rules in Figure 1.

The next result (correctness) states that for each finite sequence of narrowing steps, there
exists a finite sequence of rewriting steps.

Theorem 3.2. ( ⇤
R,C to !⇤

R,C) Let (�0 ` s0)  ⇤
R,C (�n ` sn) be a nominal C-narrowing

derivation. Let ⇢ be a substitution satisfying �0, i.e., there exists � such that � ` �0⇢. Then,
there exists a rewriting derivation

� ` s0⇢0 !⇤
R,C sn⇢

such that � ` �i⇢i+1 and ⇢i = ✓i . . . ✓n�1⇢, for all 0  i < n. In other words,

� ` (s0✓)⇢ !⇤
R,C sn⇢

where ✓ is the composition of the successive R,C-narrowing substitutions.

Proof. By induction on the length of the narrowing derivation and illustrated in Figure 3.

The proof of the converse (completeness) is more challenging. In the first-order case, the
approach to prove that each finite sequence of !R,C steps corresponds to a finite sequence of
 R,C steps relies on an additional property: E-coherence. This property can be extended to
the nominal framework as follows:
Definition 3.3 (Nominal E-Coherence). The rela-
tion � ` !R,E is called E-coherent i↵ for all
t1, t2, t3, t4 such that � ` t1 ⇡↵,E t2 and � `
t1 !R,E t3 !⇤

R/E t4, there exist t5, t6, t7 such that
� ` t4 !⇤

R/E t5, t2 !R,E t6 !⇤
R/E t7 and � ` t5 ⇡E

t7, for some �.

� ` t1
R,E

// t3
⇤

R/E
// t4

⇤

R/E
// t5

� ` t2

⇡↵,E

R,E
// t6

⇤

R/E
// t7

⇡↵,E

O✏

O✏

5
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The diagram above illustrates nominal E-coherence: the dashed lines represent existentially
quantified reductions.

Jouannaud et. al. [11, 12] proved, in the first-order case, that !R/E and !R,E coincide, if
!R,E is E-coherent. We conjecture that the same result holds for the nominal framework, as
long as E is a first-order theory (it does not contain bindings and/or freshness constraints).

Conjecture 3.1. Let E be a first-order theory and R be a nominal rewrite system that is E-
confluent and E-terminating. Then the R,E- and R/E-normal forms of any term t are E-equal
i↵ !R,E is E-coherent.

Proof. As in the first order case, we conjecture that the proof will follow by case analysis on the
normal forms t#R,E and t#R/E of a term t. In addition, it will use the fact that !R,E✓!R/E.

Conjecture 3.1 is used in the proof of Theorem 3.4, which we call a naive completeness: the
exact conditions on the freshness contexts have to be further investigated and Conjecture 3.1
has to be proven.

Theorem 3.4 (Naive version of Proposition 3 in [11]). Let R[C be an ENRS such that R
is C-confluent and C-terminating and !R,C is C-coherent. Let V0 be a finite set of variables
containing V = V (�0, s0). Then, for any R,C-derivation

� ` t0 = s0⇢0 !⇤
R,C t0#

to any of its R,C-normal forms, say t0#, where dom(⇢0) ✓ V (s0) ✓ V0 and ⇢0 is a R,C-
normalised substitution that satisfies �0 with �, there exist a R,C-narrowing derivation

(�0 ` s0) ⇤
R,C (�n ` sn),

for each i, 0  i < n, with the composition of substitutions ✓, and a R,C-normalised substitution
⇢n such that � ` sn⇢n ⇡↵,C t0# and � ` ⇢0|V ⇡↵,C ✓⇢n|V .

Proof. By induction on the length of the rewriting derivation.

Thus, we obtain our main result:

Corollary 3.5 (C-Lifting Theorem). Nominal lifting modulo C is a consequence of Theorem 3.2
and Theorem 3.4.

The C-Lifting Theorem is fundamental to prove that nominal narrowing provides a sound
and complete procedure for nominal C-unification.

4 Conclusion and Future Work

In this work, we proposed definitions for nominal R,C-rewriting and R,C-narrowing and proved
some properties relating them. So far, we have partially proved the nominal version of the
Lifting Theorem taking into account commutativity. The next step is to complete its proof.
Since nominal C-unification based on freshness constraints only is not finitary, our nominal
C-narrowing tree is not finite. As future work, we plan to investigate alternative approaches to
nominal C-unification for which the representation of solutions is finite, such as the approach
using fixed-point constraints.
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Abstract

Testing the convexity of boolean formulae has applications in problems such as the con-

vertibility of access control policies. In this paper, we report on our ongoing work on

developing a polynomial algorithm for testing the convexity of the set of minterms of a

disjunctive normal form formula where every term has exactly two literals in it (2DNF).

1 Introduction and Preliminaries

Our goal in this paper is to develop an algorithm for testing the convexity of the set of minterms
of a boolean formula in disjunctive normal form where every term has exactly two literals in
it (2DNF). The motivation for this problem comes from the convertibility problem for rule-based
access control policies [4, 5].

Let X = {x1, . . . , xn} be a set of Boolean variables. Expressions, terms (products or
conjuncts), and minterms are defined as usual [3]. Given a set of Boolean variables X, we
denote the set of all possible minterms as MX . For a Boolean expression  , let µ( ) be the set
of its minterms. Note that each minterm of an expression can also be viewed as a (representation
of a) satisfying assignment for that expression.

We define a partial order  on bit strings (of the same length) as follows: first define the order
on single bits as 0  0, 0  1 and 1  1. This is extended to bit strings X and Y as

– X  Y i↵ X[j]  Y [j] for all j and

– X < Y i↵ X  Y and X 6= Y .

Definition 1.1. A set of minterms M is convex if and only if for every pair m1  m2 2 M :

{ m | m1  m  m2} ✓ M.

Definition 1.2. Let M be a set of minterms. Its upward closure M" is defined as

M" = { u | 9m 2 M : m  u}.

Definition 1.3. A set of minterms M is upward closed if and only if M = M".
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Definition 1.4. For a term t, the product of its positive literals is denoted by ⇧(t) and the
product of its negative literals is denoted by N (t).

If there are no positive literals in a term t, then ⇧(t) = 1. Similarly, if there are no negative
literals in a term t, then N (t) = 1.

Definition 1.5. Given two product terms t1 and t2, their separator, denoted as sep(t1, t2),
is ⇧(t2)N (t1), i.e., the conjunction of the positive literals of t2 and the negative literals of t1.

For instance, if t1 = x1x2 and t2 = x3x4 then sep(t1, t2) = x2x3.

In an earlier paper [5], we showed that:

Lemma 1.1. The set of minterms of a boolean expression � in DNF is convex if and only if
every separator is an implicant of �.

Another characterization of convexity is as follows.

Lemma 1.2. The set of minterms of a boolean expression � in DNF is convex if and only if
there exist positive DNF expressions  1 and  2 such that

� ⌘  1 ^ ¬ 2

Note that a boolean expression in DNF is said to be in positive DNF form if and only if no
negated literals appear in it.

Our goal in this paper is to design an e�cient algorithm for checking the convexity of an
expression in DNF. By Lemma 1.2 this problem can be formulated as a matching problem as
follows:◆

✓
⇣
⌘

Instance: A formula � in DNF.

Question: Are there positive DNF formulae A and B such that � ⌘ A ^ ¬B ?

We consider in this paper a restricted version of this problem where every product term in
the DNF formula has exactly two literals. There are three main cases:

(a) There exists an all-positive term and an all-negative term.

(b) Every term is mixed, i.e., every term has a negated literal and an unnegated literal. Thus
we have neither all-positive terms nor all-negative terms. We refer to such formulae as
“all-mixed 2DNF.”

(c) There is an all-positive term, but no all-negative term. (The dual case where there is an
all-negative term but no all-positive terms is similar.)

Case (a) is the most straightforward. The set of minterms µ(t) of an all-positive term t con-
tains the highest minterm. Similarly if t is all-negative, then µ(t) contains the lowest minterm.

2
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Hence, the set of minterms of such a formula is convex if and only if the formula is valid [4].
The validity of such formulae can be checked in linear time [1].

In Section 2, we discuss Case (b), i.e., where every product term is of the form xixj .
We derive a graph-theoretic characterization of the implication graph of the negation of such
formulae (which clearly will be in CNF). This leads to a linear algorithm for testing convexity.
We also briefly discuss a quadratic-time algorithm for Case (c) in Section 3, and conclude the
paper in Section 4.

2 Linear-Time Algorithm For All-Mixed Case

Let � be an all-mixed 2DNF formula and let ¬� be its complement in CNF. Let IG(¬�) be
the implication graph of ¬� [1]:

• For each variable xi, we add two nodes named xi and xi.

• For each clause u _ v of ¬�, we add edges u ! v and v ! u.

Note that every clause in ¬� is of the form xi _ xj . Hence we only keep the part of the
graph with nodes with positive literals since there are no edges between nodes with positive
literals and nodes with negative literals.

Lemma 2.1. Let � be an all-mixed 2DNF formula and let x1 and x2 be two distinct variables.
Then x1x2 is an implicant of � if and only if there is a path from x1 to x2 in IG(¬�).

Lemma 2.2. Let � be an all-mixed 2DNF formula. Then � is convex if and only if the fol-
lowing holds for all distinct variables x1, x2, x3, x4:

if x1x2 and x3x4 are terms in � then there are paths in IG(¬�) from x1 to x4 and
from x3 to x2.

Proof. Follows from Lemmas 1.1 and 2.1, since x1x4 and x2x3 are separators.

Since the implication graph may be cyclic, we will also need to consider the component
graph CIG(¬�) of the implication graph. This is obtained by coalescing all nodes in a strongly-
connected component (SCC) into one node. This component graph can be constructed in time
linear in the size of the original digraph [2].

Lemma 2.3. Let � be an all-mixed DNF formula. Then � is convex only if the following holds
for all distinct variables x1, x2, x3, x4:

If x1x2 _ x2x3 _ x3x4 is a subexpression of � then x2 and x3 belong to the same
strongly-connected component in CIG(¬�).

3
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Proof. There must be a path in IG(¬�) from x3 to x2 by Lemma 2.2.

Corollary 2.3.1. Let � be an all-mixed DNF formula. If � is convex, then CIG(¬�) cannot
contain a path of 3 edges.

We now have to consider two separate cases:

1. All paths in CIG(¬�) are of length 1.

2. There is a path of length 2 in CIG(¬�).

(There is also the case where CIG(¬�) has exactly one node, but that case is taken care of
by the definition of radial dags given below.)

We call a dag G radial if there is a unique node v such that there is an edge from every
source node to v, there is an edge to every sink node from v, and every node other than v is
either a source node or a sink node. In other words, the set of nodes V can be partitioned into
3 disjoint subsets (V1, {v}, V2) such that V1 is the set of source nodes, V2 is the set of sink
nodes, every node in V1 is connected to v and v is connected to every node in V2. (See Figure 1:
Nodes x1 and x2 are source nodes, x4 is the only sink node and x3 is the “middle node.”)

x1

x3

x2

x4

A bipartite dag is a dag where the set of nodes V can be partitioned into two disjoint subsets
V1 and V2, such that every edge is from a node in V1 to a node in V2. In other words, every
node in V1 is a source node, and every node in V2 is a sink node. A complete bipartite dag is a
dag where the set of nodes V can be partitioned into two disjoint subsets V1 and V2, such that
every node in V1 has an edge to every node in V2.

Lemma 2.4. Let � be an all-mixed DNF formula such that CIG(¬�) has no edges at all.
Then � is convex if and only if CIG(¬�) has only one node.

Lemma 2.5. Let � be an all-mixed DNF formula such that all paths in CIG(¬�) are of
length 1. Then � is convex if and only if CIG(¬�) a complete bipartite dag.

Lemma 2.6. Let � be an all-mixed DNF formula such that there is a path of length 2 in CIG(¬�).
Then � is convex if and only if CIG(¬�) is a radial dag.

Theorem 1. An all-mixed DNF formula � is convex if and only if CIG(¬�) is either a
complete bipartite dag or a radial dag.

4
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Proof. Follows from Corollary 2.3.1 and lemmas 2.5 and 2.6.

The above theorem provides a linear-time algorithm for the all-mixed case.

Example 2.1. Consider the DNF expression � = x1x2 _ x1x2. CIG(¬�) has exactly one
node {1, 2}. Thus this expression is convex.

Example 2.2. Consider the DNF expression � = x1x2 _ x1x2 _ x3x4 _ x3x4. CIG(¬�)
has two nodes but no edges. This formula is not convex because 1100 is not a minterm of �,
whereas 1110 and 1000 are.

Example 2.3. Consider the DNF expression � = x1x2 _ x1x4 _ x3x4. Then the CIG(¬�)
is:

x1

x3

x2

x4

Since the graph is not a complete bipartite dag, according to Lemma 2.5, � is not convex.
Note that x2x3, which is a separator, is not an implicant.

Example 2.4. Consider the DNF expression � = x1x2 _ x2x3 _ x2x3 _ x2x4 _ x3x5. Then
CIG(¬�) is as follows:

x1 {x2, x3}

x4

x5

Note that this dag is radial. The given expression is convex.

5
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3 Quadratic-Time Algorithm For Case with An All-Positive
Term

In this case it can be shown that the formula is convex if and only if it is upward-closed.

Lemma 3.1. A formula � in DNF is upward-closed if and only if it is convex and contains an
all-positive term.

Lemma 3.2. A formula � in DNF is upward-closed if and only if for every term t in �, ⇧(t)
is an implicant of �.

Proof. This follows from Lemma 1.1: if � contains an all-positive term, then from every mixed
term t we can get ⇧(t) as a separator.

A quadratic algorithm can be derived fairly easily since all we need to do is to check for
every mixed term uv whether u is an implicant of the formula.

4 Conclusion and Future Work

In this paper, we investigated the problem of testing the convexity of DNF formula where every
term has exactly two literals, splitting the problem into three main cases. We showed that
the problem is easiest when both an all-positive and an all-negative term exist, since in that
case convexity reduces to validity. We provided a linear-time algorithm to solve the second
case, where every term is mixed, based on a characterization of the implication graph of the
negation of the formula. We also showed that the third case, where the formula contains either
an all-positive term or an all-negative term (but not both), can be solved in polynomial time.
As part of future work we plan to derive another graph-theoretic characterization of the last
case.
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1 Introduction

We are interested in knowledge problems that occur in the analysis of security protocols, namely
deduction, distinguishability, and static equivalence. In this context, the capabilities of an in-
truder are specified by an equational theory, possibly expressed by a term rewrite system. For
example, a number of decision procedures for these knowledge problems have been developed
for the particular case of subterm convergent rewrite systems [1]. Non-orientable axioms are
also useful in practice and the prominent case of Associativity-Commutativity (AC for short)
has been successfully investigated and a number of decision procedures have been developed, for
example see [1,4]. The AC equational theory is not the only example of non-orientable axioms
that deserve to be investigated. The simpler case of shallow permutative axioms, like Commuta-
tivity, and decision procedures for the above knowledge problems have been developed in [9]. In
this paper, we consider permutative theories in general. For the deduction problem, decidability
for the class of permutative theories can be easily proven. The main contribution of the paper
is to prove the undecidability of the static equivalence problem in the more restricted class of
leaf permutative theories which is a subclass of permutative theories. To retrieve decidability
of static equivalence, one can restrict to some particular variable-permuting theories [8].

2 Preliminaries

We use the standard notation of equational unification [6] and term rewriting systems [5].

Notions of Knowledge. The applied pi calculus and frames are used to model attacker
knowledge [2]. In this model, the set of messages or terms which the attacker knows, and which
could have been obtained from observing one or more protocol sessions, are the set of terms
in Ran(�) of the frame � = ⌫ñ.�, where � is a substitution ranging over ground terms. We
also need to model cryptographic concepts such as nonces, keys, and publicly known values.
We do this by using names, which are essentially free constants. Here also, we need to track
the names which the attacker knows, such as public values, and the names which the attacker
does not know a priori, such as freshly generated nonces. ñ consists of a finite set of restricted
names, these names represent freshly generated names which remain secret from the attacker.
The set of names occurring in a term t is denoted by fn(t). For any frame � = ⌫ñ.�, let fn(�)
be the set of names fn(�)\ñ where fn(�) =

S
t2Ran(�) fn(t); and for any term t, let t� denote

by a slight abuse of notation the term t�. We say that a term t satisfies the name restriction

(of �) if fn(t) \ ñ = ;.
Let us now define the knowledge problems we consider in this paper.
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Definition 1 (Deduction). Let � = ⌫ñ.� be a frame, and t a ground term. We say that t is

deduced from � modulo E, denoted by � `E t, if there exists a term ⇣ such that ⇣� =E t and
fn(⇣) \ ñ = ;. The term ⇣ is called a recipe of t in � modulo E.

Definition 2 (Static Equivalence). Two terms s and t are equal in a frame � = ⌫ñ.� modulo

an equational theory E, denoted (s =E t)�, if s� =E t�, and ñ \ (fn(s) [ fn(t)) = ;. The

set of all equalities s = t such that (s =E t)� is denoted by Eq(�). Given a set of equalities

Eq, the fact that (s =E t)� for all s = t 2 Eq is denoted by � |= Eq. Two frames � = ⌫ñ.�
and  = ⌫ñ.⌧ are statically equivalent modulo E, denoted as � ⇡E  , if Dom(�) = Dom(⌧),
� |= Eq( ) and  |= Eq(�).

Alternatively, one can consider the negation of this problem, finding a term pair that shows
two frames are not static equivalent. That is, it distinguishes the two frames.

Definition 3 (Frame Distinguishability). Given frames � = ⌫ñ.� and  = ⌫ñ.⌧ , we say that �
is distinguishable from  in theory E, denoted � 6⇡E  , if there exists two terms, t and s (with

ñ \ (fn(s) [ fn(t)) = ;), such that t� =E s� and t⌧ 6=E s⌧ .

Classes of Permutative Theories. We also need to define the (sub)classes of permutative
theories we consider in this paper. This is important not only for properly defining the results
proven here but also because there are some previous definitions of leaf permutative theories
which don’t match the definition given here. For example, the definition of leaf permutative
given in this paper di↵ers from the one given in [7] (See Definition 6 below). In [7](Definition 6)
the permutation is restricted to just the variables and is only applicable to linear terms. Thus,
the definition in [7] would perhaps be better named as a linear variable permutative, while the
one given here is just a permutation if the leaf-nodes of the term, see Definition 5.

Definition 4 (Permutative Theory). An equational theory E is permutative if for each axiom

l = r in E, l and r contain the same symbols with the same number of occurrences.

One can easily check that A = {f(x, f(y, z)) = f(f(x, y), z)} (Associativity), C = {f(x, y) =
f(y, x)} (Commutativity) andAC = {f(x, f(y, z)) = f(f(x, y), z), f(x, y) = f(y, x)} (Associati-
vity-Commutativity) are permutative.

Two important subclasses of permutative theories are given by considering the cases where
the permutations only occur on leafs or on variables.

Definition 5 (Leaf Permutative Theory). An equational theory E is Leaf permutative if for

each axiom l = r in E, r is a leaf permutation of l, i.e., r = l�, where � is a permutation of

the leaf nodes of l (variables and constants of l).

For example, C is leaf permutative, but A is not.

Definition 6 (Variable-Permuting Theory). An axiom l = r is said to be variable-permuting [12]

if all the following conditions are satisfied:

1. the set of occurrences of l is identical to the set of occurrences of r,

2. for any non-variable occurrence p of l, l(p) = r(p),

3. for any x 2 Var(l) [ Var(r), the number of occurrences of x in l is identical to the number

of occurrences of x in r.

2
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Both deduction and distinguishability are known to be decidable in subterm convergent
rewrite systems [1]. It has already been shown in [8] that deduction is decidable in permutative
theories.

Theorem 1 ([8]). Deduction is decidable in any permutative theory.

This is due to the fact that you can put a bound on the number of terms you need to consider
since permutative theories are non-size reducing. However, when considering distinguishability,
the problem becomes more di�cult as we show in the next section.

3 Distinguishability is Undecidable for Leaf Permutative
Theories

In this section we prove that the frame distinguishability problem, and thus static equivalence,
is undecidable for leaf permutative theories. The results proceeds as follows, we first state an
undecidable result for Linear Bounded Automata (LBA) which we will use in the reduction.
LBA are Turing Machines with a tape that is bounded by the size of the input string (plus two
tape end-caps) [10, 11]. Next, we show how to create a leaf permutative TRS from an LBA.
Finally, we use the TRS and the frame distinguishability problem to solve the undecidable
problem for LBA.

Lemma 1. Given a deterministic LBA, M , with input alphabet ⌃, it’s undecidable if there

exists a string, w 2 ⌃⇤
, such that M accepts w.

Proof. Easy reduction from the LBA empty language problem proved undecidable in [3]. There
it is shown that it is undecidable if for an arbitrary deterministic LBA M , L(M) = ;.

Lemma 2. Given a deterministic LBA, M , one can construct a leaf permutative TRS R such

that if M accepts a string w then there exists a term t which encodes the initial configuration

of M on input w and a term s that encodes the final accepting configuration of M on w such

that t#R = s.

Proof. Here we modify the encoding from [14] to obtain a conversion from an LBA to a leaf
permutative TRS.

Let M = (Q,⌃,�, q0, qa, qr, �). Assume ⌃ = {a1, a2, . . . , an} and � = {<,>,t} [ ⌃, where
<,> are the left and right end caps respectively, and t is the blank symbol.

We now need to construct the terms that will represent the tape of the LBA. We introduce
three new non-constant function symbols, f, g, h and three new constants, a, b, and P . We use
each as follows:

• h has arity |Q|+1 and is used to represent the state of the LBA. To represent state qi, a
constant b is placed at the ith position with the remaining positions containing a constants.
For example, if |Q| = 2 then q0 is represented as h(b, a, a). The final configuration, with
constant b in the final position, is used to represent a non-state or “dummy state”, which
the use of is described below. We denote this dummy state as qd. We use the notation
h(qi) to abbreviate the encoding of the state qi using h.

• g has arity |�| and is used to encode the alphabet characters. We place a constant b
at position i in g with constants a placed at all other positions to encode ai. Positions
n + 1, . . . , n + 3 are used to encode {<,>,t} in the same way. We use the notation
h(ai) to abbreviate the encoding of the character ‘ai’ using h.

3
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• f is used to form terms which consist of an encoding of a state, an encoding of a single
character, and an f -rooted subterm or the constant P . The subterm is used to encode
the rest of the string. The constant P is used to stop the encoding. For example, the
dummy state and the character ai can be encoded as the term f(h(qd), g(ai), P ).

We now form terms representing the state of the LBA and its tape as follows:

• For any string w 2 �+ we represent w as a layered f -term, one layer per alphabet
character. The last layer is ended using the constant P . The dummy state is used by
default for each of the state positions in the f -terms. We use the notation f(w) to
abbreviate the encoding of the string w using f-terms.

We now need to construct the leaf permutative TRS. Let’s consider the moves of the tran-
sition function, �, and construct from them a TRS R:

• For each right move, �(qi, ai) = (qj , aj , R), we create a rule for each possible character
ak 2 � below, of the form:

f(h(qi), g(ai), f(h(qd), g(ak), x)) ! f(h(qd), g(aj), f(h(qj), g(ak), x))

• For each left move, �(qi, ai) = (qj , aj , L), we create a rule for each possible character
ak 2 � below, of the form:

f(h(qd), g(ak), f(h(qi), g(ai), x)) ! f(h(qj), g(ak), f(h(qd), g(aj), x))

Finally, we need to describe the initial configurations for the LBA. The LBA will start in the
configuration qohwi for input w. We encode this as an f -term, where all the states are initially
h(qd) except the first (leftmost) h. That is, we encode using the term t = f(h(q0), g(<), f(w>)).

Notice that each of the rules in R are leaf permutative. In addition, the LBA accepts
the string w i↵ f(h(q0), g(<), f(w>)) !⇤

R s such that s is a term that includes just one en-
coded h(qa).

Lemma 3. Let M be a deterministic LBA. Then the leaf permutative TRS, R, constructed

from M is locally confluent. Furthermore, if M is both deterministic and terminating then R
is convergent.

Next, it’s easy to show that from an LBA M1 one we can construct the following LBA.

Lemma 4. Let M1 be a deterministic LBA that before accepting and halting it replaces the tape

(except the end caps) with blank symbols and stops (enters the accept or reject state) with the

tape head over the left end-cap. One can construct an LBA M2 from M1 such that L(M2) = ;
and every transition M1 and M2 are the same except the accepting transitions from M1 are now

rejecting in M2.

Notice that for each LBA M1 and M2 there is a corresponding leaf permutative TRS, R1

and R2 respectively. Next we can easily combine these two TRSs into a single TRS.

Lemma 5. Given deterministic LBAs M1 and M2 and their leaf permutative TRSs R1 and R2

respectively. Let q0i be the initial state for Mi. One can construct a leaf permutative TRS R1,2

such that for input string w and term ti = f(h(q0i), g(<), f(w>)), that ti !⇤
R1,2

si i↵ ti !⇤
Ri

si,
i 2 {1, 2}.

4
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Proof. One just needs to ensure that {Q1 \ {qa, qr}} \ {Q2 \ {qa, qr}} = ;. Then, the rules of
R1 and R2 are disjoint. Starting a configuration with a start state in Qi will ensure each of the
following configurations, except the final with shared states qa or qr, are disjoint.

Theorem 2. Frame distinguishability is undecidable in general when E is a leaf permutative

theory.

Proof. We can proceed by reduction using Lemma 1. Assume we are given a deterministic
LBA M1. Without loss of generality assume that before halting and entering qa or qr that M1

erases its tape and halts with the head over the left end-cap. Furthermore, assume that as
an initial step M1 scans the tape from left to right end-cap and then back to the left. Since
these steps could be added to any LBA without changing its language, they don’t represent a
restriction. We proceed as follows.

1. From M1 construct the always rejecting LBA M2 as in Lemma 4. We can assume w.l.g.,
that {Q1 \ {qa, qr}}\ {Q2 \ {qa, qr}} = ;. This can be done by simply creating a marked
version of Q1 \ {qa, qr} and using that for the set of states for M2, i.e., Q2. Let q01 be the
start state for M1 and q02 for M2.

2. From M1 and M2 construct R1 and R2 respectively as in Lemma 2.

3. Construct R1,2 from R1 and R2 as in Lemma 5.

4. Construct two frames, such that ñ = ; for each frame:

�1 = ⌫ñ.�1 = {x 7! q01 , y 7! qa}a) �2 = ⌫ñ.�2 = {x 7! q02 , y 7! qa}b)

Assume that we have an algorithm for the frame distinguishability problem and it returns
a term pair (t, s). Then, t�1 !⇤

R1,2
s�1 and t�2 6!⇤

R1,2
s�2. Notice, it can’t be that s = t

nor can t be ground, otherwise t�2 !⇤
R1,2

s�2. Thus, t�1 !+
R1

s�1. We now need to show
the following:

(a) t�i is a well formed term encoding an initial configuration of an LBA Mi for some
initial input string w.

• Notice that the rules of R1,2 can only be applied to well-formed subterms of t.
Since M1 (and thus M2) first scan the tape from left to right the rewrite deriva-
tion on t�1 would stop when any malformed subterm was reached and before
the final configuration. However, since the steps of M2, except the step entering
the final configuration, are the same as those for M1, M2 would stop at the same
point in the derivation from t�2. That is, t�2 !⇤

R1,2
s�2.

• We can assume the initial rewrite step in the derivations t�i !⇤
R1,2

s�i, occur at
✏ since any part of the term above the subterm f(h(x), g(<), f(w >)) will not
change and thus can be discarded.

(b) s�1 is a final configuration of an LBA M1 and represents an accepting configuration.

• s�1 must be a final accepting configuration, otherwise t�2 !⇤
R1,2

s�2. Recall that
all the transitions of M2, except the final ones entering a final configuration, are
the same. Thus, starting from a well-formed initial configuration, the only way
to have t�1 !⇤

R1,2
s�1 and t�2 6!⇤

R1,2
s�2 is for s�1 to be a final accepting

configuration.

5
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Therefore, a frame distinguishablility algorithm would allow us to decide if for an arbitrary
LBA M1 if there exist some string, w, accepted by M1, violating Lemma 1.

If the frame distinguishability problem is undecidable then we also get undecidability of the
static equivalence problem.

Corollary 1. Static equivalence modulo E is undecidable in general when E is a leaf permu-

tative theory.

4 Conclusion

In the context of security protocols, it is crucial to identify classes of theories with decidable
knowledge problems. When a theory is given by a subterm convergent term rewrite system,
these knowledge problems are known to be decidable thanks to the seminal work initiated
in [1]. Furthermore, decidability of the knowledge problems for shallow permutative theories
has been shown in [9]. Then, it is possible to stay on the decidability side when considering
a subterm rewrite system which is convergent modulo a shallow permutative theory [9]. In [8]
we constructed a restricted subclass of variable-permuting theories, called SVP theories, where
static equivalence is decidable. These theories restrict the roots of the left and right-hand sides
of the rules such that decidability is achieved.

We plan to continue the study of the knowledge problems in equational theories given
by rewrite systems modulo permutative axioms. On the one hand, it is possible to consider
extensions of subterm rewrite systems, such as contracting rewrite systems [8,13]. On the other
hand, we can now envision to go beyond shallow permutative axioms. Due to the undecidability
result reported here, it is clear now that we cannot consider any arbitrary set of permutative
axioms.
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Abstract

Algebras as monoids, semi-groups, and Abelian semi-groups, including absorption op-

erators with their relative absorption constants, are also equipped with commutative

(C) and associative (A) properties such as the product operator with the constant zero:

x ∗ 0 ≈ 0 ∗ x ≈ 0. We present a sound algorithm and some examples of the anti-unification

problem for absorption (a) theories, including A or C operators.

1 Introduction

Anti-unification (AU) or generalization is a crucial method of reasoning. The problem of AU
consists of finding commonalities between two expressions. algorithms aiming to solve this
problem find a set of terms that minimally express all possible similarities between input ex-
pressions. The problem was introduced by Plotkin and Reynolds, addressing the (syntactic)
first-order languages [7, 8]. AU has been studied in several equational theories, such as theories
with associative (A) and commutative (C) operators [1], unital [5], and absorption (a) theories
[3]. Moreover, one of the relatively unexplored areas is the investigation of combinations be-
tween these theories, as highlighted in related works in [2] and [4]. This abstract discusses the
combinations of absorption theories with associative or commutative operators. For a survey
on anti-unification, see [6]. In a recent paper [3], the authors presented a sound and complete
algorithm that solves anti-unification modulo absorption theories, theories with operators that
satisfy the axioms {f("f , x) ≈ "f , f(x, "f) ≈ "f}. This work aims to present recent advance-
ments, introducing two distinct extensions of the anti-unification problem modulo absorption.
We consider absorption symbols together with associative and commutative symbols, treated
separately in the same set of axioms. The inclusion of this kind of symbols raises new gener-
alizations that were not considered before either in a- or C- or A-theories, then we assemble
the existing algorithms in [3, 1] and introduce new rules to handle these generalizations. It is
important to highlight that here in this new approach, the role of � in the expansions of the
absorption constants within commutative or associative properties could lead us to new gen-
eralizations that need to be captured for the algorithm. This algorithm is terminating, sound,
and capable of capturing generalizations for this kind of combination.

1.1 Preliminaries

Let V be a countable set of variables and F a set of function symbols with a fixed arity.
Additionally, we assume F to contain a special constant �, referred to as the wild card. The set
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of terms derived from F and V is denoted by T (F ,V), whose members are constructed using
the grammar t ∶∶= x � f(t1, . . . , tn), where x ∈ V and f ∈ F with arity n ≥ 0. When n = 0, f
is called a constant. The set of variables occurring in t is denoted by var(t). The size of a
term is defined inductively as: size(x) = 1, and size(f(t1, . . . , tn)) = 1 +∑n

i=1 size(ti). Let �
be a substitution, dom(�), and rvar(�) denote the domain and the set of variables occurring
in terms of the range of �, respectively. The head of a term t is defined as head(x) = x and
head(f(t1, . . . , tn)) = f , for n ≥ 0.
The focus of this work is anti-unification modulo equational theories E that may include commu-
tative symbols, for short C-symbols, with axioms for commutativity, {f(x, y) = f(y, x)}, asso-
ciative symbols (A-symbols), with axioms for Associativity, {f(f(x, y), z) = f(x, f(y, z))}, and
absorption symbols, for short a-symbols, with absorption axioms, {f(x, "f) ≈ "f , f("f , x) ≈ "f}.
Symbols f and "f are called related a-symbols. An (E)(E′)-theory includes E-symbols and E′-
symbols and an EE′-theory includes symbols holding E- and E′-axioms simultaneously.

Definition 1 (E-generalization, �E). The generalization relation of the theory induced by E
holds for terms r, s ∈ T (F ,V), written r �E s, if there exists a substitution � such that r� ≈E s.
An E-generalization r of s and t is a term r such that r �E s and r �E t.

Example 1. Consider aC = {f("f , x) ≈ "f , f(x, y) ≈ f(y, x)}. Then f(x, a) is an aC-generali-
zation of "f and f(a, a): f(x, a){x� "f} ≈aC "f and f(x, a){x� a} ≈aC f(a, a).
Definition 2 (Minimal complete set of E-generalizations). The minimal complete set of E-
generalizations of the terms s and t, denoted as mcsgE(s, t), is a subset of GE(s, t), the set of
all E-generalizations of s and t, satisfying: (i) for each r ∈ GE(s, t) there exists r′ ∈ mcsgE(s, t)
such that r �E r′; (ii) if r, r′ ∈ mcsgE(s, t) and r �E r′, then r = r′.
Example 2. Continuing Example 1, notice that mcsgaC("f , f(a, a)) = {f(x, a), f(x,x)}, and
mcsga("f , f(a, a)) = {f(x, a), f(a, x), f(x,x)}.
Definition 3 (Anti-unification type). The anti-unification type of an equational theory E is
said to be unitary if mcsgE(s, t) is a singleton for all terms s and t; it is finitary if it is not
unitary but mcsgE(s, t) is always finite; it is infinitary if it is neither unitary nor finitary but
mcsgE(s, t) always exists; otherwise, it is said to be nullary.

Syntactic AU is unitary [7, 8], AU over (A) and (C) theories is finitary [1], AU over (a)
theories is infinitary [4], and AU with a disjoint combination of unital equations is nullary [5].

An anti-unification triple (AUT), s �x t, consists of a label x ∈ V, and two terms s and t.
Given a set A of AUTs, labels(A) = {x � s �x t ∈ A} and size(A) = ∑s�xt∈A �size(s)+ size(t)�. A
set of AUTs is valid if its labels are pairwise disjoint. A wild AUT is of the form either � �x s
or s �x �. A non-wild AUT s �x t is solved over an absorption theory a if head(s) and head(t)
are di↵erent and they are not related a-symbols.

The label x in an AUT s �x t, as a variable, is a most general generalization of the terms
s and t, and it is used to associate the generalizations of s and t. The wild card plays an
important role when anti-unification problems are decomposed, and related a-symbols appear
in the head of AUTs; they will represent any possible term expanding and a-constant symbol
needs to be expanded ("f ≈a f("f ,�) or "f ≈a f(�, "f)), see [3].

2
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2 Anti-Unification in Absorption Theories with Commu-
tative or Associative Properties

Several algebras having absorption property like semi-groups, Abelian semi-groups, and monoids
may include the associative or/and commutative property. Interesting examples of these alge-
bras are the integers with multiplication with zero as absorption constant; the integers with the
greatest common divisor gcd with one as the absorption constant; the n×n-matrices over reals
with the product and the zero matrix; the powerset of a given set with the intersection ∩ with� as absorption constant; Boolean algebras with two binary operations, where each operation
is associative, commutative, and has zero element. This section shows how generalizations for
a theories with A, C symbols di↵er from generalizations of pure a theories presented in [3].

Example 3. The set mcsga("f , f(a, a)) = {f(x, a), f(a, x), f(x,x)}, which is di↵erent from the
set mcsgaC("f , f(a, a)) (see Example 2), is computed by the algorithm in [3]. Also, for the more
elaborated example, mcsgaC("f , f(f(a, a), f(a, a))) does not include a minimal generalizations
as f(f(a, a), f(u, a)) and f(f(a, u), f(a, u)) in mcsga("f , f(f(a, a), f(a, a))).

An algorithm to compute generalizations in (a)(aC)(C)-theories should include rules to treat
C symbols as in [1], and also adaptations of the expansion and merge rules introduced in [3] for
a theories, to deal with aC symbols.

Example 4. The set mcsgaA(g("f , a), g(f(f(a, a), f(a, a)), f(a, f(a, a)))) includes the aA-
generalization g(f(x, y), y), where g is a syntactic symbol and f is an aA-symbol. Notice that
this is not an a-generalization.

In the case of (a)(aA)(A)-theories, standard flattened notation is used, and for an A-symbol,
f , the flattened term f(t) equals t. An algorithm to compute the generalizations requires
designing specialized rules, adapted from [3], to deal with aA symbols.

3 Algorithm for Absorption with Commutative or Asso-
ciative Theories

Tables 1, 2, and 3 present inference rules for theories with a-, aC-, aA-, A-, and C-symbols.
The algorithm AUnif consists of applying these rules exhaustively, returning a set of objects
from which generalizations of the input AUTs may be derived. The inference rules work on
configurations, defined below.

Definition 4 (Configuration). A configuration is a quadruple of the form �A;S;D; ✓�, where,
A is a valid set of AUTs ( active set); S is a valid set of solved AUTs ( store); D is a valid
set of wild AUTs (delayed set); ✓ is a substitution such that rvar(✓) = labels(A) ∪ labels(S) ∪
labels(D) ( anti-unifier); and with the property that labels(A), labels(S), labels(D), and dom(✓)
are pairwise disjoint.

All terms occurring in a configuration are in their a-normal forms. For aA- and A-symbols,
all terms in a configuration are considered in the flattened form.

Table 1 contains rules: Decompose (
Dec�⇒), Solve (

Sol�⇒), Expansions for Left Absorption,

(
ExpL1�⇒ and

ExpL2�⇒), Expansions for Right Absorption (
ExpR1�⇒ and

ExpR2�⇒), and Expansion Absorption

in Both sides (
ExpB1�⇒ and

ExpB2�⇒), representing the common rules. Table 2 has the extra rules

3
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Commutative (
Com�⇒), and Table 3 shows the additional rules Associativity Left and Right (

AL�⇒)

and (
AR�⇒), and Absorption-Associative Left and Right 1,2 (

aAL1�⇒), (
aAL2�⇒), (

aAR1�⇒), and (
aAR2�⇒).

By C �⇒∗ C′ we denote a finite sequence of inference rule applications starting at C and
ending with C′. In both cases we say C′ is derived from C. An initial configuration is a
configuration of the form �A;�;�; ◆�, where ◆ = {fA(x) � x � x ∈ labels(A)} with fA ∶ V →(V � labels(A)) being a bijection over variables. A configuration C is referred to as final if no
inference rule applies to C. We denote the set of final configurations finitely derived from an
initial configuration C by AUnif(C).
Example 5. Notice that AUnif computes the generalization f(x, a) for the problem in Example
3 using the rules (ExpL1) and (Sol); and the generalization g(f(x, z), y) for the problem in
Example 4 using the rules (Dec),(aAL1) for k = 1, and (Sol).

Table 1: Inference rules common to all theories.

(
Dec�⇒)

�{f(s1, . . . , sn) �x f(t1, . . . , tn)} �A;S;D; ✓�
�{s1 �y1 t1, . . . , sn �yn tn} ∪A;S;D; ✓{x� f(y1, . . . , yn)}�

where f is any symbol, n ≥ 0, and y1, . . . , yn are fresh variables.

(
Sol�⇒)

�{s �x t} �A;S;D; ✓�
�A;{s �x t} ∪ S;D; ✓�

where head(s) ≠ head(t) and they are not related a-symbols.

(
Mer�⇒)

��;{s1 �x t1, s2 �y t2} ∪ S;T ; ✓���;{s2 �y t2} ∪ S;T ; ✓{x� y}�
where s1 ≈E s2, t1 ≈E t2, x ≠ y, and E is an equational theory.

In the following rules, f is an a-, aC-, or aA-symbol, and y1, y2 are fresh variables:

(
ExpL1�⇒)

�{"f �x f(t1, t2)} �A;S;D; ✓�
�{"f �y1 t1} ∪A;S;{� �y2 t2} ∪D; ✓{x� f(y1, y2)}�

(
ExpL2�⇒)

�{"f �x f(t1, t2)} �A;S;D; ✓�
�{"f �y2 t2} ∪A;S;{� �y1 t1} ∪D; ✓{x� f(y1, y2)}�

(
ExpR1�⇒)

�{f(s1, s2) �x "f} �A;S;D; ✓�
�{s1 �y1 "f} ∪A;S;{s2 �y2 �} ∪D; ✓{x� f(y1, y2)}�

(
ExpR2�⇒)

�{f(s1, s2) �x "f} �A;S;D; ✓�
�{s2 �y2 "f} ∪A;S;{s1 �y1 �} ∪D; ✓{x� f(y1, y2)}�

(
ExpB1�⇒)

�{"f �x "f} �A;S;D; ✓�
�A;S;{"f �y1 �, � �y2 "f} ∪D; ✓{x� f(y1, y2)}�

(
ExpB2�⇒)

�{"f �x "f} �A;S;D; ✓�
�A;S;{� �y1 "f , "f �y2 �} ∪D; ✓{x� f(y1, y2))}�

Lemma 1 (Configuration Preservation). Let C be a configuration and C �⇒∗ C′. Then C′ is a
configuration.

Proof. According to the rules in Tables 1,2 and 3 we can have the following two cases:

4
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Table 2: Inference rule for aC- and C-symbols.

(
Com�⇒)

�{f(s1, s2) �x f(t1, t2)} �A;S;T ; ✓�
�{s1 �y1 t2, s2 �y2 t1} ∪A;S;T ; ✓{x� f(y1, y2)}�

for f an aC- or C-symbol and y1, y2 fresh variables.

Table 3: Inference rule for aA and A symbols.

In the next two rules, g is either an aA-symbol or an A-symbol:

(
AL�⇒)

�{g(s1, . . . , sn) �x g(t1, . . . , tm)} �A;S;T ; ✓�
�{s1 �y1 g(t1, . . . , tk), g(s2, . . . , sn) �y2 g(tk+1, . . . , tm)} ∪A;S;T ; ✓{x� g(y1, y2)}�

for 1 ≤ k ≤m − 1 and y1, y2 are fresh variables.

(
AR�⇒)

�{{g(s1, . . . , sn) �x g(t1, . . . , tm)} �A;S;T ; ✓�
�{g(s1, . . . , sk) �y1 t1, g(sk+1, . . . , sn) �y2 g(t2, . . . , tm)} ∪A;S;T ; ✓{x� g(y1, y2)}�

for 1 ≤ k ≤ n − 1 and y1, y2 are fresh variables.

Next five rules apply to aA-symbols, and 1 ≤ k ≤ n − 1, and y1, y2 are fresh variables:

(
aAL1�⇒)

�{"f �x f(t1, . . . , tn)} �A;S;T ; ✓�
�{"f �y1 f(t1, . . . , tk)} ∪A;S;{"f �y2 f(tk+1, . . . , tn)} ∪ T ; ✓{x� f(y1, y2)}�

(
aAL2�⇒)

�{"f �x f(t1, . . . , tn)} �A;S;T ; ✓�
�{"f �y2 f(tk+1, . . . , tn)} ∪A;S;{"f �y1 f(t1, . . . , tk)} ∪ T ; ✓{x� f(y1, y2)}�

(
aAR1�⇒)

�{f(s1, . . . , sn) �x "f} �A;S;T ; ✓�
�{f(t1, . . . , tk) �y1 "f} ∪A;S;{f(tk+1, . . . , tn) �y2 "f} ∪ T ; ✓{x� f(y1, y2)}�

(
aAR2�⇒)

�{f(s1, . . . , sn) �x "f} �A;S;T ; ✓�
�{f(tk+1, . . . , tn) �y2 "f} ∪A;S;{f(t1, . . . , tk) �y1 "f} ∪ T ; ✓{x� f(y1, y2)}�

• A rule removes an AUT s �x t from the active set of C. Then either s �x t occurs in
the store of C′, or the anti-unifier component of C′ is the composition of the anti-unifier
component of C with {x � r}, where var(r) are fresh variables labeling newly added
AUTs in the active and delayed sets of C′.

• A rule removes an AUT s �x t from the store of C. Then the store of C′ is a subset of
the store of C and the anti-unifier component of C′ is the composition of the anti-unifier
component of C with {x � y}, where y is a label of an AUT in the store of C such that
x ≠ y.

In both cases, the properties of a configuration are preserved.

Theorem 1 (Termination). Let C be a configuration. Then AUnif(C) is finitely computable.

Proof. The termination of AUnif is proved using a lexicographical measure over configurations.
The measure for C = �A;S;T ; ✓� is given by (size(A), size(S)). All rules except (Mer) decrease
the first component, and (Mer) maintains the first but decreases the second component.

Termination (Theorem 1) guarantees that always is possible to obtain a final configuration.
Configurations of the form ��;S;D; ✓� where S has no duplicated AUTs, except for the label,

5
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are final configurations since no rule can be applied. Since all rules, except for (Mer), decrease
the size of the active set, it becomes empty, and the rule (Mer) will eliminate all such possible
duplication in the store. Configuration preservation (Lemma 1) and termination allow proving
the soundness of AUnif for the combination of the a-, aC-, aA-, C-, and A-theories.

Theorem 2 (Soundness). Let ��;Sn;Dn; ✓n� ∈ AUnif(�A0;S0;D0; ✓0�), and E be any combi-
nation of the theories a, aC, aA, C, and A. Then, for all s �x t ∈ A0 ∪ S0, x✓n ∈ GE(s, t).
Proof. The proof is by induction on the length of derivations, analyzing each rule application.

4 Work in progress

Work in progress addresses adaptation of AUnif to allow combinations in which (AC)- and
(aAC)-symbols are also allowed. Of course, it also aims to prove completeness. For theories with
C-, a-, and aC-symbols, currently under study, the proof requires induction on the occurrence
of variables in the possible generalizations interrelated with structural analysis of the AUTs
under the action of AUnif. The analysis is much more elaborate than the applied on the proof
of completeness for a-theories in [3]. Additionally, succeeding in the completeness proof will
imply that the anti-unification problem is infinitary.
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Abstract

We discuss how to extend anti-unification to generalize higher-order terms with dif-
ferent types by extending the type system used within an existing framework with union
and intersection types. We provide examples illustrating desirable properties of the corre-
sponding least general generalizers.

Keywords: Anti-Unification, higher-order terms, intersection and union types.

1 Introduction

Anti-unification was introduced and studied by Plotkin [18] and Reynolds [19] in the 1970s. It
requires identifying similarities between two symbolic expressions and retaining them as a new
symbolic expression, called a generalizer of the given ones. At the same time, the di↵erences
between the given expressions are also reflected in their generalization in the form of new
variables. This new symbolic expression is referred to as least general (or most particular)
when it maximally captures the structure of the input expressions and abstracts the di↵erences
by new variables uniformly. For instance, a least general generalizer (lgg) of two first-order
terms f(a, g(a)) and f(b, g(b)) is f(x, g(x)). In the first-order syntactic case, the least general
generalizer (lgg) is unique. But there are theories and problems for which there exist more than
one (even infinitely many) lggs, or lggs do not exist at all.

In recent years, research on anti-unification has intensified, mainly due to its various appli-
cations. Questions about anti-unification have been studied in di↵erent syntactic and semantic
frameworks; for example, Baader [4] studied it for a class called commutative theories, Alpuente
et al. [2] considered anti-unification over equational theories with associative (A), and commu-
tative (C) operators, Cerna and Kutsia studied theories with idempotent operators [8] and
most recently, Ayala-Rincón et al. studied theories with absorbing operators [3]. Concerning
higher-order anti-unification for simply-typed �-terms, Cerna and Kutsia [11] proposed a generic
framework of algorithms producing top-maximal (i.e., retaining maximal common top part of
the given terms) and shallow (i.e., forbidding nested generalization variables) generalization
variants, while Cerna and Buran [9] proved nullarity of anti-unification in this calculus for the
unrestricted case. Some of those equational and higher-order anti-unification algorithms have
been implemented and are accessible online [1, 6]. The recent survey [12] gives more detailed
information about equational and higher-order anti-unification.
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As an example of one of the variants included in the framework presented in [11], namely,
the common subterms variant or, shortly, CS-variant, consider terms s = �x.f(g(x), g(g(g(x))))
and t = �x.f(g(x), h(h(g(x)))). They have unique top-maximal shallow CS-lgg r =
�x.f(g(x), X(g(x))), which retains not only the topmost maximal common structure of s and
t, but also keeps the common subterm g(x) that appears under distinct symbols in them. This
common subterm appears in r under the generalization variable X. An example of a non-
shallow top-maximal lgg of s and t is �x.f(g(x), X(X(g(x)))), where generalization variables
appear nested.

Both mentioned papers [9, 11], as well as some other ones (e.g., [7, 13, 16]) assume that in
generalization problems, the input terms have the same type. Relaxing this restriction would
widen the practical application area of anti-unification techniques. This abstract presents work
in progress towards lifting this restriction in the context of intersection and union types. We
employ these types to capture the semantics of generalizing terms of di↵erent types and illustrate
our approach through examples.

2 Preliminaries

Types are constructed from a set of base types ⇡ using the grammar ⌧ ::= ⇡ | ⌧ ! ⌧ | ⌧^⌧ | ⌧_⌧ ,
where ^ stands for type intersection and _ for type union. We use Greek letters ⌧ , � and ⇢ to
denote types.

�-terms (typically s, t, r) are built using the grammar t ::= x | c | �x.t | t t, where x is a
variable and c is a constant. Notions as ↵-conversion, �-reduction, ⌘-long, and �-normal forms
are defined as usual (e.g., [14]). Unless otherwise stated, we only consider �-terms in �-normal
⌘-long form and use term and �-term synonymously. A complete system for typing terms is
presented in [5] (see also [17]).

The subtype relation is formalized as the set of valid consequences derived using the inference
rules presented below (S-ref, S-tran, and S-arrow); these rules derive statements of the form
⌧1  ⌧2, read as “⌧1 is a subtype of ⌧2” or “⌧2 is a supertype of ⌧1”.

(S-ref) �  �
�1  �2 �2  �3(S-tran)

�1  �3

�  �0 ⌧ 0  ⌧
(S-arrow)

�0 ! ⌧ 0  � ! ⌧

The subtyping relation with respect to a given type system T has the following property:
If the judgment � `T t : � holds and �  ⌧ , then � `T t : ⌧ holds:

� ` t : � �  ⌧
(T-Sub)

� ` t : ⌧

Properties of subtyping over the intersection and union types relevant to our work are
presented below. Note, � ⇠ ⌧ denotes that both �  ⌧ and ⌧  � hold.

1. � ^ � ⇠ � ⇠ � _ �, 2. �i  �1 _ �2, i = 1, 2, 3. �1 ^ �2  �i, i = 1, 2.

This abstract assumes the following:

A1. � _ ⌧ is the least upper bound of � and ⌧ w.r.t. the subtyping relation,

A2. � ^ ⌧ is the greatest lower bound of � and ⌧ w.r.t. the subtyping relation.

A substitution (typically ✓) is a finite set of pairs {X1 7! t1, · · · , Xn 7! tn}, where Xi 6= Xj

if i 6= j. Postfix notation, e.g., t✓, denotes substitution application.
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Let the relation � (� is the strict part) be a preorder over terms defined as follows: r � t if
a substitution ✓ exists such that r✓ = t. A term r is a generalizer of two terms s and t if r � s
and r � t. A term r is a least general generalizer (lgg) of s and t if there is no term r0 such
that r0 is a generalizer of s and t and r � r0. The anti-unification problem for s and t, denoted
as s , t, is defined as

Given: terms t : ⌧1 and s : ⌧2 in ⌘-long �-normal form.

Find: an lgg r : ⌧ of s and t such that ⌧1 _ ⌧2 = ⌧ .

The intuition behind the lgg is that it should express the common structure of typed input
expressions as much as possible while “minimizing the subtyping distance” between its type
and the input types. Generalizers represent the divergences in the input term structures by
variables. Thus, generalizers can be instantiated into the input terms of the problem. As for
the generalizer type, it should be the least possible common supertype of the original ones.
From the generalization definition, it follows that there should exist substitutions ✓1 and ✓2
such that r✓1 = s : ⌧ and r✓2 = t : ⌧ , where ⌧ is a supertype of both ⌧1 and ⌧2. There can be
many supertypes of ⌧1 and ⌧2. However, ⌧ is selected as the most specific supertype of ⌧1 and
⌧2, i.e., ⌧ must be the least upper bound of the types of s and t, which, by assumption 2, is
exactly ⌧1 _ ⌧2.

3 Extending Generalization to Types

Generalizing applications. Consider an anti-unification problem f(a) , g(b) with f : � !
⌧ , g : �0 ! ⌧ 0, a : ⇢a  � and b : ⇢b  �0. It is straightforward that the term XY with an
adequate type is its solution. The main problem is how to systematically build the adequate
generalizer and its type. Such a mechanism is still a work in progress, not addressed in this
abstract. Instead, the focus is on the desired properties of such generalizations regarding works
on HO-generalization as [10].

Looking at XY above, we see that X must be of function type, i.e., X : �1 ! �2 because it
applies to Y . Furthermore, X is a generalizer of f and g. Thus, its type must be a supertype
of both types of f and g: � ! ⌧  �1 ! �2 and �0 ! ⌧ 0  �1 ! �2. To satisfy both relations,
it is necessary that �1  � and �1  �0, and that ⌧  �2 and ⌧ 0  �2. Choose �1 = � ^ �0 and
�2 = ⌧ _ ⌧ 0. Then, the subtyping statements � ! ⌧  �1 ! �2 and �0 ! ⌧ 0  �1 ! �2 follow
from a derivation by the (S-arrow) rule:

� ^ �0  � ⌧  ⌧ _ ⌧ 0

� ! ⌧  (� ^ �0) ! (⌧ _ ⌧ 0)

� ^ �0  �0 ⌧ 0  ⌧ _ ⌧ 0

�0 ! ⌧ 0  (� ^ �0) ! (⌧ _ ⌧ 0)

Next, since Y generalizes a and b, the type of Y , say ⇢y, must be a supertype of both ⇢a
and ⇢b. Also, ⇢y  �1 since XY should be well-typed. It implies that

⇢a _ ⇢b  ⇢y  � ^ �0. (1)

Suppose that condition (1) holds, and select the lower bounds of the supertypes obtained
above, i.e.,

X : �1 ! �2 = (� ^ �0) ! (⌧ _ ⌧ 0)

Y : ⇢y = ⇢a _ ⇢b.
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Then, it follows that we have f(a) : ⌧ , g(b) : ⌧ 0 and their generalizer XY : ⌧ _ ⌧ 0.
The generalizer XY of f(a) and g(b) is not a shallow term. It was chosen to facilitate

readers’s comprehension since it is an application (as the input terms). If a 6= b, then the
unique top-maximal shallow generalizer of f(a) and g(b) is just X.

Cerna and Kutsia introduced a so-called common-subterm variant for HO-generalization
(CS-variant, see [11]). It is one of the special cases of top-maximal shallow generalization. In
this variant, every free generalization variable occurring in an lgg of two terms s and t and
generalizing their subterms s0 and t0, should apply to maximal common subterms that appear
in s0 and t0. For example, X(h(a)) is a CS-generalizer of f(h(a), a) , g(b, h(a)) while X(Y, Z)
is not (although it is their generalizer).

Now consider f(a) , g(a) with f : � ! ⌧ , g : �0 ! ⌧ 0, a : ⇢1  � and a : ⇢2  �0. The
CS-generalizer of this problem is X(a) with the types X : �1 ! �2 = (� ^ �0) ! (⌧ _ ⌧)0 and
a : ⇢1 _ ⇢2, subject of an additional constraint ⇢1 _ ⇢2  � ^ �0.

Generalizing abstractions. Consider an anti-unification problem where both input terms
are di↵erent identity functions: �x.x , �y.y where x : � and y : ⌧ . It is straightforward that
�z.z with the appropriated type will be the generalizer of the input terms.

To see what should be the generalization type, first notice that r = �z.z must have a
function type, i.e., r : �1 ! �2. Also, this type must be a supertype of both input types:
� ! �  �1 ! �2 and ⌧ ! ⌧  �1 ! �2. To satisfy both relations, it is necessary that �1  �,
�1  ⌧ , �  �2 and �  �2. By a reasoning analogous to the application case above, taking
into account that z : � ^ ⌧ implies z : � _ ⌧ , we get that

r = �z.z : (� ^ ⌧) ! (� _ ⌧). (2)

Observe in (2) that the typing condition for the generalizer decreased the domain and
increased the range of those input terms. Otherwise, it would not satisfy the requirement that
the type of the generalizer must be a supertype of the types of the input terms. Obviously,
(� ^ ⌧) ! (� ^ ⌧) is a supertype neither of � ! � nor of ⌧ ! ⌧ . The same is true for
(� _ ⌧) ! (� _ ⌧). This is a consequence of the contravariance in the rule (S-arrow).

Example 1. Now, consider the identity function defined in di↵erent sets: IDN(n) = n and
IDZ(z) = z. They are expressed in �-calculus by �(x : N).(x : N) and �(y : Z).(y : Z), then
the generalizer of those functions will be �(k : N ^ Z).(k : N _ N). Therefore, the generalizer is
IDgen(k) = k with domain N \ Z and range N [ Z which means that the computed generalizer
is a non-surjective identity function from N to Z.

This abstract does not discuss the inhabitation of intersection types. It is clear that by
interpreting types as sets, some intersection types may get uninhabited. In these special cases,
some generalizations will not have semantic meaning, suggesting that generalizations of the
input terms do not exist. (A similar phenomenon was observed in the calculus of construc-
tions [15] where there is no semantic interpretation of the generalization of abstract kinds, Set,
Prop, Type, etc.) For instance, consider two identity functions: one defined on the set of ratio-
nal numbers and the other one on the set of irrational numbers, respectively: IDQ(q) = q and
IDI(i) = i. The generalizer should be IDgen(g) = g with domain Q\ I and range Q[ I; however,
this domain set is empty. Consequently, the generalizer does not exist.

Now, consider a generalization problem �x.f(x, a) , �y.g(b, y) with x : �x  �, f : � ! ⌧ ,
y : �y  �0 and g : �0 ! ⌧ 0, and the requirement that a solution of this problem should retain
the common top-maximal structure of the given terms. Since both terms are abstractions, the
desired generalizer should be an abstraction, too. Also, since the scopes of the input terms
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have di↵erent heads f and g, the scope of the generalizer must be a free variable. Therefore,
�z.X(z) is the lgg that can be transformed to the original expressions via the substitutions
✓1 = {X 7! �u.f(u, a)} and ✓2 = {X 7! �u.g(b, u)}:

�z.X(z)✓1 = �z.(�u.f(u, a))(z) =� �z.f(z, a) =↵ �x.f(x, a)

�z.X(z)✓2 = �z.(�u.f(b, u))(z) =� �z.g(b, z) =↵ �y.g(b, y).

What about the type of this generalizer? Let �z.X(z) : �1 ! �2. Again, to infer the
conditions for this to be an adequate type, we have �x ! ⌧  �1 ! �2 and �y ! ⌧ 0  �1 ! �2,
which imply

�z.X(z) : (�x ^ �y) ! (⌧ _ ⌧ 0).

Then z : �x ^ �y and X(z) : ⌧ _ ⌧ 0. Since X applies z and has range ⌧ _ ⌧ 0, it follows that
X : (�x ^ �y) ! (⌧ _ ⌧ 0).

Example 2. With this example, we illustrate how generalization with intersection and union
types can be used to synthesize a generic function from two concrete instances. As the given
concrete ones, consider two functions, congruences modulo 3 and 5, defined respectively as

MOD3(n : N) : {0, . . . , 2} = if n < 3 then n else MOD3(n� 3) (3)

MOD5(n : N) : {0, . . . , 4} = if n < 5 then n else MOD5(n� 5), (4)

where the explicit types indicate that MOD3 : N ! {0, . . . , 2} and MOD5 : N ! {0, . . . , 4}.
We aim to synthesize a generic function for congruence modulo, from which proper instan-

tiations are used to obtain these concrete ones. This we do in two steps, where only the first
one concerns generalizer computation:

Step 1. Anti-unify (3) and (4). It will give

X(n) = if n < k then n else X(n� k) (5)

where X and k are generalization variables of types respectively X : (N ^ N) !
({0, . . . , 2}_ {0, . . . , 4}) = N ! {0, . . . , 4} and k : N. The original expressions (3) and (4)
can be obtained by the substitutions, respectively:

{X 7! �x.MOD3(x), k 7! 3}
{X 7! �x.MOD5(x), k 7! 5}.

Step 2. Notice that although (5) is a (least general) generalizer of two function definitions
(3) and (4), it is not a function definition itself because of those free generalization vari-
ables. Now, we turn it into such a definition by introducing a new function name GENMOD
(meaning generic MOD) instead of X. It has both n and k as its arguments:

GENMOD(n, k) = if n < k then n else GENMOD(n� k, k) (6)

With some further processing that is beyond the scope of this abstract, one can connect
the type to GENMOD to k as, e.g., N ! N ! {0, . . . , k � 1}.
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4 Final Remarks

This abstract presented preliminary investigations about higher-order generalization with in-
tersection and union types, aiming at extending existing HO-generalization problems (e.g.,
[7, 10, 11]) to this setting. We illustrated some desirable properties of such generalizers. An
anti-unification algorithm to construct generalizers and an algorithm to compute their (min-
imal) types are subjects of ongoing work. Future research should cover anti-unification with
abstractions and terms of di↵erent structures.
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[1] Maŕıa Alpuente, Demis Ballis, Angel Cuenca-Ortega, Santiago Escobar, and José Meseguer.
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