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Abstract

This talk will explore a notion of independence for formulas considered by De Jongh
and Chagrova for intuitionistic propositional logic in [1] that is closely related to a notion
of independence for elements of an algebraic structure studied by Marczewski and others in
the 1950s [2]. Terms t1, . . . , tn are said to be independent in a variety (equational class) V
if any substitution mapping each variable xi to ti V -unifies only the equations in x1, . . . , xn

that are already satisfied by V . In [1], it is shown that this property is decidable for Heyting
algebras, using Pitts’ proof of uniform interpolation for intuitionistic propositional logic
[4], and a description is given of independent pairs of formulas. Following [3], this talk
will consider the problems of deciding and describing independence for several other case
studies from logic and algebra, including groups, semigroups, lattices, modal algebras,
and MV-algebras, and explain how independence relates to the notions of coherence and
admissibility.
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