

Faculty of Computer Science Institute of Theoretical Computer Science, Chair of Automata Theory

Term Rewriting Systems

Exercise Sheet 4 – Orders and Confluence

Summer Semester 2018

2nd May 2018

Prof. Dr.-Ing. Franz Baader, Dipl.-Math. Francesco Kriegel

Exercise 4.1 Consider the *Ackermann function*, which is defined as follows.

 $\begin{aligned} \mathsf{ack} \colon \mathbb{N} \times \mathbb{N} &\to \mathbb{N} \\ (n,m) &\mapsto \begin{cases} m+1 & \text{if } n=0 \\ \mathsf{ack}(n-1,1) & \text{if } m=0 \\ \mathsf{ack}(n-1,\mathsf{ack}(n,m-1)) & \text{otherwise} \end{cases} \end{aligned}$

Show that ack is well-defined.

uniquely determined by the formula above. function ack is well-defined, i.e., for each pair (n,m) of natural numbers, the value $\operatorname{ack}(n,m)$ is Hiut. Choose an appropriate order on $\mathbb{N} \times \mathbb{N}$ and use well-founded induction to prove that the

Exercise 4.2 Prove that, if $>_A$ is a linear strict order on A and $>_B$ is a linear strict order on B, then the lexicographic product $>_{A \times B}$ is a linear strict order on $A \times B$.

Exercise 4.3 Let (A, \succ) be a strictly ordered set. Prove or refute the following claims.

- (a) If A has a smallest element, then \succ is well-founded.
- (b) If every non-empty subset of A has a smallest element, then \succ is well-founded.
- (c) If \succ is well-founded, then, for each element $a \in A$, there are only finitely many $b \in A$ with $a \succ b$.
- (d) If \succ is well-founded, then, for each element $a \in A$, there is an $n_a \in \mathbb{N}$ such that each \succ -path starting at a is of length at most n_a .
- (e) If \succ is well-founded, then each non-empty subset of A has a smallest element.
- **★** Exercise 4.4 A reduction \Rightarrow is a *refinement* of \rightarrow if $\rightarrow \subseteq \stackrel{*}{\Rightarrow}$, and a *compatible refinement* if additionally $x \stackrel{*}{\Rightarrow} y$ implies $x \downarrow y$.

Show the following statements.

- (a) Let \Rightarrow be a refinement of \rightarrow . Then \Rightarrow is a compatible refinement of \rightarrow if, and only if, $x \Rightarrow y \xrightarrow{*} z$ implies $x \downarrow z$.
- (b) Let \Rightarrow be a compatible refinement of \rightarrow . Then \Rightarrow is confluent if, and only if, \rightarrow is confluent.

Hiut Use (a) for proving the only if direction.

Exercise 4.5 Prove that, if \rightarrow enjoys the diamond property, then every element either is in normal form or does not have a normal form.

element can be extended by a further element. Hiur Use to the diamond property to show that each chain of reductions issuing from a reducible

Exercise 4.6 Give a counterexample which shows that strong confluence does not imply the following property.

 $y_1 \leftarrow x \rightarrow y_2$ implies $\exists z \colon y_1 \stackrel{=}{\rightarrow} z \stackrel{=}{\leftarrow} y_2$

Exercise 4.7 Which of the following statements hold true? Justify your answer.

- (a) If $x \downarrow y$ and $y \downarrow z$, then $x \downarrow z$.
- (b) A relation is confluent if, and only if, it is strongly confluent.
- (c) Every terminating relation is confluent.
- (d) Every normalizing relation terminates.