Term Rewriting Systems

Exercise Sheet 7 – Termination

Prof. Dr.-Ing. Franz Baader, Dipl.-Math. Francesco Kriegel

Exercise 7.1 Prove undecidability of the *uniform halting problem*.

Hint.

Exercise 7.2 Consider the following modification of the reduction described in Subsection 5.1.1.

For a given Turing machine \mathcal{M}, let

$$\Sigma'_\mathcal{M} := \{s_0, \ldots, s_n\} \cup \{q_0, \ldots, q_p\} \cup \{\ell, \rightarrow, \leftarrow\},$$

and let $R'_\mathcal{M}$ be the rewrite system that is obtained from $R\mathcal{M}$ by replacing both s_i and s_i by s_j. Give an example of a terminating Turing machine \mathcal{M} for which $R'_\mathcal{M}$ is not terminating.

Exercise 7.3 Show that the following is not a decision procedure for termination of a ground term rewriting system $R := \{\ell_1 \rightarrow r_1, \ldots, \ell_n \rightarrow r_n\}$.

Generate all reduction sequences starting with r_1. If one of these sequences yields a term that has r_1 as subterm, then answer “R is not terminating”. Otherwise, continue with r_2, etc. Eventually, answer “R is terminating”.

Exercise 7.4 Prove the analogue of Theorem 5.1.9 for left-ground systems, and explain why this is not an interesting generalization of the theorem for the ground case.

Exercise 7.5 A term rewriting system R is called *right-reduced* if for all $\ell \rightarrow r \in R$, it holds true that r is R-irreducible. Show that a right-ground term rewriting system is right-reduced only if it is terminating.

Exercise 7.6 We define a relation $>$ on $T(\Sigma, V)$ by

$$s > t \text{ if } |s| > |t| \text{ and } |s|_x \geq |t|_x \text{ for all } x \in V.$$

Demonstrate that $>$ is a reduction order.