

Faculty of Computer Science Institute of Theoretical Computer Science, Chair of Automata Theory

Term Rewriting Systems

Summer Semester 2018

Exercise Sheet 7 – Termination

Prof. Dr.-Ing. Franz Baader, Dipl.-Math. Francesco Kriegel

30th May 2018

Exercise 7.1 Consider the following modification of the reduction described in Subsection 5.1.1. For a given Turing machine \mathcal{M} , let

$$\Sigma'_{\mathcal{M}} \coloneqq \{s_0, \ldots, s_n\} \cup \{q_0, \ldots, q_p\} \cup \{\overrightarrow{\ell}, \overleftarrow{r}\},$$

and let $R'_{\mathcal{M}}$ be the rewrite system that is obtained from $R_{\mathcal{M}}$ be replacing both $\vec{s_i}$ and $\vec{s_i}$ by s_i . Give an example of a terminating Turing machine \mathcal{M} for which $R'_{\mathcal{M}}$ is not terminating.

Exercise 7.2 Show that the following is not a decision procedure for termination of a ground term rewriting system $R \coloneqq \{\ell_1 \rightarrow r_1, \dots, \ell_n \rightarrow r_n\}$.

Generate all reduction sequences starting with r_1 . If one of these sequences yields a term that has r_1 as subterm, then answer "*R* is not terminating". Otherwise, continue with r_2 , etc. Eventually, answer "*R* is terminating".

Exercise 7.3 Prove the analogue of Theorem 5.1.9 for left-ground systems, and explain why this is not an interesting generalization of the theorem for the ground case.

Exercise 7.4 A term rewriting system *R* is called *right-reduced* if for all $\ell \rightarrow r \in R$, it holds true that *r* is *R*-irreducible. Show that a right-ground term rewriting system is right-reduced only if it is terminating.

Exercise 7.5 We define a relation > on $T(\Sigma, V)$ by

s > t if |s| > |t| and $|s|_x \ge |t|_x$ for all $x \in V$.

Demonstrate that > is a reduction order.