TECHNISCHE
UNIVERSITÄT
DRESDEN

Faculty of Computer Science Institute of Theoretical Computer Science, Chair of Automata Theory

Term Rewriting Systems

Exercise Sheet 12 - Completion

Prof. Dr.-Ing. Franz Baader, Dipl.-Math. Francesco Kriegel

Exercise 12.1 (a) Apply the rules of the improved completion procedure to the following set of identities.

$$
E:=\{f(f(x, y), z) \approx f(x, f(y, z)), f(x, x) \approx x, f(f(x, y), x) \approx x\}
$$

Use a strategy that resembles the basic completion procedure, but simplifies rules as follows: upon adding new rules, simplify old ones by means of L-SIMPLIFY-RULE and R-SIMPLIFY-RULE. For the proof

$$
P:=\langle f(x, f(y, f(y, x))), f(x, f(f(y, y), x)), f(x, f(y, x)), f(f(x, y), x), x\rangle
$$

construct a rewrite proof P^{\prime} in R_{ω} with $P \succ_{\mathcal{C}} P^{\prime}$ using the proof of Lemma 7.3.4 in Term Rewriting and All That.
(b) Fix the following set of identities.

$$
E:=\{x+(y+z) \approx(x+y)+z, f(x)+f(y) \approx f(x+y)\}
$$

Apply the completion procedure described above to the input E and the polynomial order induced by

$$
P_{f}(X):=X+1 \quad \text { and } \quad P_{+}(X, Y):=X \cdot Y^{2}
$$

Exercise 12.2 Consider the following completion procedure for ground term rewriting systems.
Input: A finite set G_{0} of ground identities over Σ and a reduction order $>$ that is total on the set of ground terms over Σ.

Procedure: Exhaustively apply the rules L-Simplify-RULE, Delete, and Orient.
Output: A ground term rewriting system.
Show that this procedure
(a) always terminates,
(b) is fair,
(c) is correct, and
(d) never fails.

Exercise 12.3 The simple semi-decision procedure described in the proof of Theorem 7.3.5 in Term Rewriting and All That is rather inefficient, because after each inference step it tests whether s and t are joinable by computing all normal forms of s and t with respect to the (possibly non-confluent) term rewrite system R_{n}.

Show that the following modification of the procedure still yields a semi-decision procedure for the word problem.

- Begin with $s_{0}:=s$ and $t_{0}:=t$.
- After the i th inference step, compute one arbitrary R_{i}-normal form s_{i} of s_{i-1} and one arbitrary R_{i}-normal form t_{i} of t_{i-1}.
- Output "yes" if there exists some n such that $s_{n}=t_{n}$.

(g) $2 \approx E^{0} e^{N S} 9$ qq $f \approx E^{0} f^{N 1}$ tol $9 \|$ NS $>0^{\circ}$

