Unification

Definition

A unifier of the terms s, t is a substitution σ such that $\sigma(s)=\sigma(t)$.

A substitution σ is more general than a substitution σ^{\prime} if there is a substitution δ such that

$$
\sigma^{\prime}=\delta \sigma .
$$

In this case we write $\sigma \lesssim \sigma^{\prime}$, and say that σ^{\prime} is an instance of σ.

Definition

The unifier σ of the terms s, t is a most general unifier (mgu) iff every unifier of s, t is an instance of σ.

We will show: if s, t have a unifier, then they have an mgu, and this mgu can effectively be computed.

Unification

Definition

A unification problem is a finite set of equations

$$
S=\left\{s_{1}={ }^{?} t_{1}, \ldots, s_{n}=?{ }^{?} t_{n}\right\} .
$$

A unifier or solution of S is a substitution σ such that $\sigma\left(s_{i}\right)=\sigma\left(t_{i}\right)$ for $i=1, \ldots, n$.
$\mathcal{U}(S)$ denotes the set of all unifiers of S.
A substitution σ is a most general unifier (mgu) of S if

- $\sigma \in \mathcal{U}(S)$ and
- $\forall \sigma^{\prime} \in \mathcal{U}(S) . \sigma \lesssim \sigma^{\prime}$.

Examples

$\{f(x)=? f(a)\}$ has $\{x \mapsto a\}$ as a unifier
$\left\{x={ }^{?} f(y)\right\} \quad$ has $\{x \mapsto f(y)\},\{x \mapsto f(a), y \mapsto a\}, \ldots$ as unifiers
$\{x=? f(x)\} \quad$ does not have a unifier
$\{f(x)=? g(y)\}$ does not have a unifier

Unification

by transformation

Idea:
Transform set of equations into solved form, from which the mgu can be obtained immediately.

Similar to Gaussian elimination in linear algebra:

$$
\left.\begin{array}{rl}
\begin{array}{r}
x+3 y=0 \\
2 x+8 y=2 z
\end{array} & \leadsto \begin{array}{|r}
x+3 y=0 \\
2 y=2 z
\end{array} \\
& \leadsto \begin{array}{|r}
x+3 y=0 \\
y=z
\end{array} \\
& \leadsto \begin{array}{|r}
x+3 z=0 \\
y=z
\end{array}
\end{array} \backsim \begin{array}{|l}
x=-3 z \\
y=z
\end{array}\right]
$$

Definition

A unification problem

$$
S=\left\{x_{1}={ }^{?} t_{1}, \ldots, x_{n}=?{ }^{?} t_{n}\right\}
$$

is in solved form if the x_{i} are pairwise distinct variables, none of which occurs in any of the t_{i}.

In this case we define

$$
\vec{S}:=\left\{x_{1} \mapsto t_{1}, \ldots, x_{n} \mapsto t_{n}\right\}
$$

Lemma

If S is in solved form then \vec{S} is an mgu of S.

The transformation rules

$$
\begin{array}{lll}
\text { Delete } \quad\{t=? t\} \uplus S & \Longrightarrow & S \\
\text { Decompose } \quad\left\{f\left(t_{1}, \ldots, t_{n}\right)=? f\left(u_{1}, \ldots, u_{n}\right)\right\} \uplus S & \Longrightarrow & \left\{t_{1}=?{ }^{?} u_{1}, \ldots, t_{n}=?{ }^{?} u_{n}\right\} \cup S \\
\text { Orient } \quad\{t=? x\} \uplus S & \Longrightarrow & \{x=? t\} \cup S \text { if } t \notin V \\
\text { Eliminate } \quad\{x=? ? t\} \uplus S & & \Longrightarrow \\
& & \{x=? t\} \cup\{x \mapsto t\}(S) \\
& & \text { if } x \in \mathcal{V} \operatorname{var}(S)-\mathcal{V} \operatorname{ar}(t)
\end{array}
$$

Example

$$
\begin{array}{ll}
\left\{x=? f(a), g(x, x)=^{?} g(x, y)\right\} & \Longrightarrow_{\text {Eliminate }} \\
\left\{x=^{?} f(a), g(f(a), f(a))=^{?} g(f(a), y)\right\} & \Longrightarrow_{\text {Decompose }} \\
\left\{x=? f(a), f(a)=^{?} f(a), f(a)=^{?} y\right\} & \Longrightarrow_{\text {Delete }} \\
\left\{x=? f(a), f(a)=^{?} y\right\} & \Longrightarrow \text { Orient } \\
\{x=? f(a), y=? f(a)\} &
\end{array}
$$

$$
\operatorname{Unify}(S)=\begin{aligned}
& \text { while there is some } T \text { such that } S \Longrightarrow T \text { do } S:=T ; \\
& \text { if } S \text { is in solved form then return } \vec{S} \text { else fail. }
\end{aligned}
$$

Lemma (termination, soundness, completeness)

1. Unify terminates for all inputs.
2. If $S \Longrightarrow T$ then $\mathcal{U}(S)=\mathcal{U}(T)$.
3. If $\operatorname{Unify}(S)$ returns σ, then σ is an mgu of S.
4. If $\operatorname{Unify}(S)$ fails, then the final set of equations contains an equation of the form
(a) $x=? t$ with $x \in \mathcal{V} \operatorname{ar}(t), x \neq t$,
(b) $f(\cdots)=? g(\cdots)$ with $f \neq g$.
5. If $\operatorname{Unify}(S)$ fails, then S has no solution.

Theorem

The function Unif decides, for any input unification problem S, whether it has a solution or not.

If S has a solution, then Unif computes an mgu of S.

Complexity:

- The worst-case complexity of this unification algorithm is exponential (both time and space).
- There exists a linear time unification algorithm.

Matching

Given terms l, s, find a substitution σ such that $\sigma(l)=s$.
The substitution σ is called a matcher of the matching problem $l \lesssim ? s$.

Reduce matching to unification: regard all variables in s as constants, by introducing a new constant c_{x} for each variable x.

Example
The matching problem $f(x, y) \lesssim ? f(g(z), x)$
becomes the unification problem $\left\{f(x, y)=? ~ f\left(g\left(c_{z}\right), c_{x}\right)\right\}$.
The mgu $\left\{x \mapsto g\left(c_{z}\right), y \mapsto c_{x}\right\}$
becomes the matcher $\{x \mapsto g(z), y \mapsto x\}$.

