Exercise 4.1 Prove or refute the following claim: If an \mathcal{ALC}-concept description C is satisfiable w.r.t. an \mathcal{ALC}-TBox T, then for all $n \geq 1$ there is a finite model I_n of T such that $|C^{I_n}| \geq n$.

Does the claim hold true if the condition "$|C^{I_n}| \geq n$" is replaced by "$|C^{I_n}| = n$"?

Exercise 4.2 Prove or refute the following claim: Given an \mathcal{ALC}-concept description C and an \mathcal{ALC}-TBox T, if I is an interpretation and J its filtration w.r.t. $\text{sub}(C) \cup \text{sub}(T)$ (see Definition 3.14), then the relation $\rho := \{(d, [d]) \mid d \in \Delta^I\}$ is a bisimulation between I and J.

Hint. If the above relation ρ were a bisimulation, why do we have to explicitly prove Lemma 3.15 in the lecture? Wouldn't Lemma 3.15 then be a consequence of Theorem 3.2?

Exercise 4.3 We consider bisimulations between an interpretation I and itself, which are called bisimulations on I. For two elements $d, e \in \Delta^I$, we write $d \approx_I e$ if they are bisimilar, i.e., if there is a bisimulation ρ on I such that $d \rho e$.

(a) Show that \approx_I is an equivalence relation on Δ^I.

(b) Show that \approx_I is a bisimulation on I.

(c) Show that, for finite interpretations I, the relation \approx_I can be computed in time polynomial in the cardinality of I (if the signature is finite as well).

Consider the interpretation J that is defined like the filtration (Definition 3.14), but with \approx_I instead of \simeq.

(d) Show that $\rho := \{(d, [d]_{\approx_I}) \mid d \in \Delta^I\}$ is a bisimulation between I and J.

(e) Show that, if I is a model of an \mathcal{ALC}-concept description C w.r.t. an \mathcal{ALC}-TBox T, then so is J.

(f) Why can we not use the previous result to show the finite model property for \mathcal{ALC}?

Exercise 4.4 For the following interpretation I, draw the unraveling of I at d up to depth 5, i.e., restricted to d-paths of length at most 5 (see Definition 3.21):

```
\begin{center}
\begin{tikzpicture}
  \node (A) at (0,0) {$A$};
  \node (s) at (-1,-1) {$s$};
  \node (r) at (-1,-2) {$r$};
  \node (f) at (-2,-1) {$f$};
  \node (e) at (-2,-2) {$e$};

  \draw[->] (s) -- (A);
  \draw[->] (r) -- (A);
  \draw[->] (f) -- (r);
  \draw[->] (e) -- (r);
  \draw[->] (s) -- (f);
  \draw[->] (e) -- (A);

\end{tikzpicture}
\end{center}
```
Exercise 4.5 Prove or refute the following claim: If \mathcal{K} is an \mathcal{ALC}-knowledge base and C is an \mathcal{ALC}-concept description such that C is satisfiable w.r.t. \mathcal{K}, then C has a tree model w.r.t. \mathcal{K}.