

Faculty of Computer Science Institute of Theoretical Computer Science, Chair of Automata Theory

Description Logic

Exercise Sheet 4

Summer Semester 2019 24th April 2019

Prof. Dr.-Ing. Franz Baader, Dipl.-Math. Francesco Kriegel

Exercise 4.1 Prove or refute the following claim: If an \mathcal{ALC} -concept description C is satisfiable w.r.t. an \mathcal{ALC} -TBox \mathcal{T} , then for all $n \ge 1$ there is a finite model \mathcal{I}_n of \mathcal{T} such that $|C^{\mathcal{I}_n}| \ge n$.

Does the claim hold true if the condition " $|C^{\mathcal{I}_n}| \ge n$ " is replaced by " $|C^{\mathcal{I}_n}| = n$ "?

Exercise 4.2 Prove or refute the following claim: Given an \mathcal{ALC} -concept description C and an \mathcal{ALC} -TBox \mathcal{T} , if \mathcal{I} is an interpretation and \mathcal{J} its filtration w.r.t. $sub(C) \cup sub(\mathcal{T})$ (see Definition 3.14), then the relation $\rho := \{(d, [d]) \mid d \in \Delta^{\mathcal{I}}\}$ is a bisimulation between \mathcal{I} and \mathcal{J} .

Hint. If the above relation ρ were a bisimulation, why do we have to explicitly prove Lemma 3.15 in the lecture? Wouldn't Lemma 3.15 then be a consequence of Theorem 3.2?

Exercise 4.3 We consider bisimulations between an interpretation \mathcal{I} and itself, which are called bisimulations on \mathcal{I} . For two elements $d, e \in \Delta^{\mathcal{I}}$, we write $d \approx_{\mathcal{I}} e$ if they are *bisimilar*, i.e., if there is a bisimulation ρ on \mathcal{I} such that $d \rho e$.

- (a) Show that $\approx_{\mathcal{I}}$ is an equivalence relation on $\Delta^{\mathcal{I}}$.
- (b) Show that $\approx_{\mathcal{I}}$ is a bisimulation on \mathcal{I} .
- (c) Show that, for finite interpretations \mathcal{I} , the relation $\approx_{\mathcal{I}}$ can be computed in time polynomial in the cardinality of \mathcal{I} (if the signature is finite as well).

Consider the interpretation \mathcal{J} that is defined like the filtration (Definition 3.14), but with $\approx_{\mathcal{I}}$ instead of \simeq .

- (d) Show that $\rho := \{(d, [d]_{\approx_{\mathcal{I}}}) \mid d \in \Delta^{\mathcal{I}}\}$ is a bisimulation between \mathcal{I} and \mathcal{J} .
- (e) Show that, if \mathcal{I} is a model of an \mathcal{ALC} -concept description C w.r.t. an \mathcal{ALC} -TBox \mathcal{T} , then so is \mathcal{J} .
- (f) Why can we not use the previous result to show the finite model property for \mathcal{ALC} ?

Exercise 4.4 For the following interpretation \mathcal{I} , draw the unraveling of \mathcal{I} at d up to depth 5, i.e., restricted to d-paths of length at most 5 (see Definition 3.21):

Exercise 4.5 Prove or refute the following claim: If \mathcal{K} is an \mathcal{ALC} -knowledge base and C is an \mathcal{ALC} -concept description such that C is satisfiable w.r.t. \mathcal{K} , then C has a tree model w.r.t. \mathcal{K} .