

Faculty of Computer Science Institute of Theoretical Computer Science, Chair of Automata Theory

Description Logic

Exercise Sheet 9

Summer Semester 2019

29th May 2019

Prof. Dr.-Ing. Franz Baader, Dipl.-Math. Francesco Kriegel

Exercise 9.1 Determine whether Player 1 has a winning strategy in the following finite Boolean games, where in both cases $\Gamma_1 \coloneqq \{p_1, p_3\}$ and $\Gamma_2 \coloneqq \{p_2, p_4\}$.

- (a) $((p_1 \land p_3) \rightarrow \neg p_2) \land (\neg p_1 \rightarrow p_1) \land (\neg p_2 \rightarrow (p_3 \lor p_4))$
- (b) $(p_1 \vee \neg p_2) \land (p_2 \vee p_3) \land (\neg p_3 \vee \neg p_4) \land (\neg p_1 \vee \neg p_2 \vee p_3 \vee p_4)$

Exercise 9.2 Use the ALC-Elim algorithm to decide satisfiability of

- (a) the concept name A w.r.t. $\mathcal{T} \coloneqq \{A \sqsubseteq \exists r.A, \top \sqsubseteq A, \forall r.A \sqsubseteq \exists r.A\}$, and
- (b) the concept description $\forall r.\forall r.\neg B$ w.r.t. $\mathcal{T} \coloneqq \{\neg A \sqsubseteq B, A \sqsubseteq \neg B, \top \sqsubseteq \neg \forall r.A\}$.

Give the constructed type sequence $\Gamma_0, \Gamma_1, \ldots$. In case of satisfiability, also give the satisfying model constructed in the proof of Lemma 5.10.

Exercise 9.3 Extend the ALC-Elim algorithm to the description logic ALCI. Prove the correctness of the extended algorithm.

Exercise 9.4 The description logic S extends ALC with *transitivity axioms* trans(r) for role names $r \in \mathbf{R}$. Their semantics is defined as follows: $\mathcal{I} \models \text{trans}(r)$ if, and only if, $r^{\mathcal{I}}$ is transitive. Furthermore, an S knowledge base $(\mathcal{T}, \mathcal{A}, \mathcal{R})$ consists of an ALC knowledge base $(\mathcal{T}, \mathcal{A})$ and an *RBox* \mathcal{R} of transitivity axioms. Prove the following claims:

- formula in the two variable fragment of FOL, which has the finite model property. Hiut' It is possible to show that $\forall x. \forall y. \forall z. (R(x, y) \land R(y, z)) \rightarrow R(x, z)$ is not equivalent to a (a) trave(t) cannot be exbressed in $\forall TC$, i.e.' \mathcal{S} is more exbressive than $\forall TC$.
- (b) For an arbitrary TBox \mathcal{T} , the concept description $C_{\mathcal{T}}$ is defined as $\prod_{C \sqsubseteq D \in \mathcal{T}} \neg C \sqcup D$. Then \mathcal{T} and $\{\top \sqsubseteq C_{\mathcal{T}}\}$ have the same models.
- (c) Let $\mathcal{K} = (\mathcal{T}, \mathcal{A}, \mathcal{R})$ be an \mathcal{S} knowledge base such that w.l.o.g. \mathcal{T} consists of a single GCI $\top \sqsubseteq C_{\mathcal{T}}$, and $C_{\mathcal{T}}$ is in NNF. Define the \mathcal{ALC} knowledge base $\mathcal{K}^+ \coloneqq (\mathcal{T}^+, \mathcal{A})$ where

 $\mathcal{T}^+ \coloneqq \mathcal{T} \cup \{ \forall r. C \sqsubseteq \forall r. \forall r. C \mid \mathsf{trans}(r) \in \mathcal{R} \text{ and } \forall r. C \in \mathsf{Sub}(C_{\mathcal{T}}) \}.$

Then \mathcal{K} is consistent if, and only if, \mathcal{K}^+ is consistent. Consequently, the tableaux algorithm for \mathcal{ALC} can also be utilized for \mathcal{S} .

(d) The problem of deciding consistency of an S knowledge base (with a general TBox) is EXPTIMEcomplete.