

Faculty of Computer Science Institute of Theoretical Computer Science, Chair of Automata Theory

Description Logic

Exercise Sheet 11

Summer Semester 2019 17th June 2019

Prof. Dr.-Ing. Franz Baader, Dipl.-Math. Francesco Kriegel

Exercise 11.1 We consider the extension of \mathcal{ALC} with feature names. Fix some subset $\mathbf{F} \subseteq \mathbf{R}$. The elements of \mathbf{F} are called *feature names*. Of course, each feature name f is also a role name and must thus be interpreted as a binary relation over $\Delta^{\mathcal{I}}$ for each interpretation \mathcal{I} . However, it is further required that the extension $f^{\mathcal{I}}$ is functional, i.e., $f^{\mathcal{I}}$ can be treated as a partial function on $\Delta^{\mathcal{I}}$.

Let f_1, \ldots, f_m and g_1, \ldots, g_n be (not necessarily distinct) feature names. A *feature agreement* is a concept of the form $(f_1 \circ \cdots \circ f_m) \downarrow (g_1 \circ \cdots \circ g_n)$ with the following semantics.

$$((f_1 \circ \dots \circ f_m) \downarrow (g_1 \circ \dots \circ g_n))^{\mathcal{I}} \coloneqq \{\delta \mid \delta \in \Delta^{\mathcal{I}} \text{ and } (f_1^{\mathcal{I}} \circ \dots \circ f_m^{\mathcal{I}})(\delta) = (g_1^{\mathcal{I}} \circ \dots \circ g_n^{\mathcal{I}})(\delta) \}$$

Feature disagreements $(f_1 \circ \cdots \circ f_m) \uparrow (g_1 \circ \cdots \circ g_n)$ are defined analogously. The description logic *ALCF* extends *ALC* with feature agreements and feature disagreements.

Show that satisfiability w.r.t. general TBoxes is undecidable for ALCF.

Exercise 11.2 Fix two concept names *A* and *B* as well as some role name *r*. Does the entailment $\{\forall r.A \sqsubseteq \exists r.A\} \models \forall r.B \sqsubseteq \exists r.B \text{ hold true}\}$

Exercise 11.3 We consider simulations, which are "one-sided" variants of bisimulations. Given interpretations \mathcal{I} and \mathcal{J} , the relation $\sigma \subseteq \Delta^{\mathcal{I}} \times \Delta^{\mathcal{J}}$ is a *simulation* from \mathcal{I} to \mathcal{J} if

- whenever $\delta \sigma \epsilon$ and $\delta \in A^{\mathcal{I}}$, then $\epsilon \in A^{\mathcal{J}}$, for all $\delta \in \Delta^{\mathcal{I}}$, $\epsilon \in \Delta^{\mathcal{J}}$, and $A \in \mathbf{C}$;
- whenever $\delta \sigma \epsilon$ and $(\delta, \zeta) \in r^{\mathcal{I}}$, then there exists an $\eta \in \Delta^{\mathcal{J}}$ such that $\zeta \sigma \eta$ and $(\epsilon, \eta) \in r^{\mathcal{J}}$, for all $\delta, \zeta \in \Delta^{\mathcal{I}}$, $\epsilon \in \Delta^{\mathcal{J}}$, and $r \in \mathbf{R}$.

We write $(\mathcal{I}, \delta) \approx (\mathcal{J}, \epsilon)$ if there is a simulation σ from \mathcal{I} to \mathcal{J} such that $\delta \sigma \epsilon$.

- (a) Show that $(\mathcal{I}, \delta) \sim (\mathcal{J}, \epsilon)$ implies $(\mathcal{I}, \delta) \rightleftharpoons (\mathcal{J}, \epsilon)$ and $(\mathcal{J}, \epsilon) \rightleftharpoons (\mathcal{I}, \delta)$.
- (b) Is the converse of the implication in (a) also true?
- (c) Show that, if $(\mathcal{I}, \delta) \approx (\mathcal{J}, \epsilon)$, then $\delta \in C^{\mathcal{I}}$ implies $\epsilon \in C^{\mathcal{J}}$ for all \mathcal{EL} concept descriptions C.
- (d) Which of the constructors disjunction, negation, or value restriction can be added to \mathcal{EL} without losing the property in (c)?
- (e) Show that ALC is more expressive than EL.
- (f) Show that \mathcal{ELI} is more expressive than \mathcal{EL} .
- (g) Can the fact that subsumption in \mathcal{EL} is decidable in polynomial time, while subsumption in \mathcal{ELI} is EXPTIME-complete, be used to show that \mathcal{ELI} is more expressive than $\mathcal{EL?}$

Exercise 11.4 We consider the description logic \mathcal{EL}_{si} that extends \mathcal{EL} by concept descriptions of the form $\exists^{sim}(\mathcal{I}, \delta)$ where \mathcal{I} is a finite interpretation and $\delta \in \Delta^{\mathcal{I}}$. Their semantics is defined as follows.

$$(\exists^{sim}(\mathcal{I},\delta))^{\mathcal{J}} \coloneqq \{ \epsilon \mid \epsilon \in \Delta^{\mathcal{J}} \text{ and } (\mathcal{I},\delta) \eqsim (\mathcal{J},\epsilon) \}$$

Concept inclusions are then defined as usual.

- (a) Show that each \mathcal{EL}_{si} concept description is equivalent to some concept description of the form $\exists^{sim}(\mathcal{I}, \delta)$.
- (b) Show that \mathcal{EL}_{si} is more expressive than \mathcal{EL} .
- (c) Show that checking subsumption in \mathcal{EL}_{si} without any TBox can be done in polynomial time.