Chapter 3

A Little Bit of Model Theory

Interpretations of \mathcal{ALC} can be viewed as graphs (with labeled edges and nodes).

- We introduce the notion of bisimulation between graphs/interpretations
- We show that \mathcal{ALC} -concepts cannot distinguish bisimular nodes
- We use this to show restrictions of the expressive power of \mathcal{ALC}
- We use this to show interesting properties of models for \mathcal{ALC} :
 - tree model property
 - closure under disjoint union
- We show the finite model property of \mathcal{ALC} .

Section 3.1: Bisimulation

Let \mathcal{I}_1 and \mathcal{I}_2 be interpretations.

The relation $\rho \subseteq \Delta^{\mathcal{I}_1} \times \Delta^{\mathcal{I}_2}$ is a bisimulation between \mathcal{I}_1 and \mathcal{I}_2 iff

- $d_1 \rho d_2$ implies $d_1 \in A^{\mathcal{I}_1}$ iff $d_2 \in A^{\mathcal{I}_2}$ for all $A \in \mathbb{C}$
- $d_1 \rho d_2$ and $(d_1, d'_1) \in r^{\mathcal{I}_1}$ implies the existence of $d'_2 \in \Delta^{\mathcal{I}_2}$ such that $d'_1 \rho d'_2$ and $(d_2, d'_2) \in r^{\mathcal{I}_2}$ for all $r \in \mathbf{R}$
- $d_1 \rho d_2$ and $(d_2, d'_2) \in r^{\mathcal{I}_2}$ implies the existence of $d'_1 \in \Delta^{\mathcal{I}_1}$ such that $d'_1 \rho d'_2$ and $(d_1, d'_1) \in r^{\mathcal{I}_1}$ for all $r \in \mathbf{R}$

Dresden

- $\mathcal{I}_1 = \mathcal{I}_2$ is possible
- the empty relation ∅ is a bisimulation.

Let \mathcal{I}_1 and \mathcal{I}_2 be interpretations and $d_1 \in \Delta^{\mathcal{I}_1}, d_2 \in \Delta^{\mathcal{I}_2}$.

 $(\mathcal{I}_1, d_1) \sim (\mathcal{I}_2, d_2)$ iff there is a bisimulation ρ between \mathcal{I}_1 and \mathcal{I}_2 such that $d_1 \rho d_2$

" d_1 in \mathcal{I}_1 is bisimilar to d_2 in \mathcal{I}_2 "

Fig. 3.1. Three interpretations $\mathcal{I}_1, \mathcal{I}_2, \mathcal{I}_3$ represented as graphs

 $(d_1, \mathcal{I}_1) \sim (f_1, \mathcal{I}_3)$ $(d_1, \mathcal{I}_1) \not\sim (e_1, \mathcal{I}_2)$

Let \mathcal{I}_1 and \mathcal{I}_2 be interpretations and $d_1 \in \Delta^{\mathcal{I}_1}, d_2 \in \Delta^{\mathcal{I}_2}$.

 $(\mathcal{I}_1, d_1) \sim (\mathcal{I}_2, d_2)$ iff there is a bisimulation ρ between \mathcal{I}_1 and \mathcal{I}_2 such that $d_1 \rho d_2$

" d_1 in \mathcal{I}_1 is bisimilar to d_2 in \mathcal{I}_2 "

<u>Theorem 3.2</u> (bisimulation invariance of ALC)

If $(\mathcal{I}_1, d_1) \sim (\mathcal{I}_2, d_2)$, then the following holds for all \mathcal{ALC} -concepts C:

 $d_1 \in C^{\mathcal{I}_1} \quad \text{iff} \quad d_2 \in C^{\mathcal{I}_2}$

"ALC-concepts cannot distinguish between bisimilar elements."

Proof: blackboard

Section 3.2: Expressive power

We have introduced extensions of ALC by the concept constructors number restrictions, nominals and the role constructor inverse role.

How can we show that these constructors really extend *ALC*, i.e., that they cannot be expressed using the constructors of *ALC*?

To this purpose, we show that, using any of these constructors, we can construct concept descriptions

- that cannot be expressed by *ALC*-concept descriptions,
- i.e, there is no equivalent \mathcal{ALC} -concept description.

Expressive power

of \mathcal{ALC}

Proposition 3.3 (ALCN is more expressive than ALC)

No \mathcal{ALC} -concept description is equivalent to the \mathcal{ALCN} -concept description ($\leq 1r$).

Proof: blackboard

Expressive power

of \mathcal{ALC}

Proposition 3.4 (ALCI is more expressive than ALC)

No \mathcal{ALC} -concept description is equivalent to

the \mathcal{ALCI} -concept description $\exists r^-.\top$.

Proof: blackboard

Expressive power

of \mathcal{ALC}

Proposition 3.5 (ALCO is more expressive than ALC)

No ALC-concept description is equivalent to the ALCO-concept description $\{a\}$.

Proof: blackboard

Definition 3.6

Let \mathfrak{N} be an index set and $(\mathcal{I}_{\nu})_{\nu \in \mathfrak{N}}$ a family of interpretations $\mathcal{I}_{\nu} = (\Delta^{\mathcal{I}_{\nu}}, \cdot^{\mathcal{I}_{\nu}}).$

Their disjoint union \mathcal{J} is defined as follows:

$$\begin{split} \Delta^{\mathcal{J}} &= \{(d,\nu) \mid \nu \in \mathfrak{N} \text{ and } d \in \Delta^{\mathcal{I}_{\nu}} \}; \\ A^{\mathcal{J}} &= \{(d,\nu) \mid \nu \in \mathfrak{N} \text{ and } d \in A^{\mathcal{I}_{\nu}} \} \text{ for all } A \in \mathbf{C}; \\ r^{\mathcal{J}} &= \{((d,\nu),(e,\nu)) \mid \nu \in \mathfrak{N} \text{ and } (d,e) \in r^{\mathcal{I}_{\nu}} \} \text{ for all } r \in \mathbf{R} \end{split}$$

Notation: $\mathcal{J} = \biguplus_{\nu \in \mathfrak{N}} \mathcal{I}_{\nu}$

Example: $\mathfrak{N} = \{1, 2\}$

Blackboard

Definition 3.6

Let \mathfrak{N} be an index set and $(\mathcal{I}_{\nu})_{\nu \in \mathfrak{N}}$ a family of interpretations $\mathcal{I}_{\nu} = (\Delta^{\mathcal{I}_{\nu}}, \cdot^{\mathcal{I}_{\nu}}).$

Their disjoint union \mathcal{J} is defined as follows:

$$\begin{array}{lll} \Delta^{\mathcal{J}} &=& \{(d,\nu) \mid \nu \in \mathfrak{N} \text{ and } d \in \Delta^{\mathcal{I}_{\nu}} \}; \\ A^{\mathcal{J}} &=& \{(d,\nu) \mid \nu \in \mathfrak{N} \text{ and } d \in A^{\mathcal{I}_{\nu}} \} \text{ for all } A \in \mathbf{C}; \\ r^{\mathcal{J}} &=& \{((d,\nu),(e,\nu)) \mid \nu \in \mathfrak{N} \text{ and } (d,e) \in r^{\mathcal{I}_{\nu}} \} \text{ for all } r \in \mathbf{R} \end{array}$$

Lemma 3.7

For $\nu \in \mathfrak{N}$, all \mathcal{ALC} -concept descriptions C, and all $d \in \Delta^{\mathcal{I}_{\nu}}$ we have $d \in C^{\mathcal{I}_{\nu}}$ iff $(d, \nu) \in C^{\mathcal{J}}$

Proof: blackboard

Definition 3.6

Let \mathfrak{N} be an index set and $(\mathcal{I}_{\nu})_{\nu \in \mathfrak{N}}$ a family of interpretations $\mathcal{I}_{\nu} = (\Delta^{\mathcal{I}_{\nu}}, \cdot^{\mathcal{I}_{\nu}}).$

Their disjoint union \mathcal{J} is defined as follows:

$$\begin{array}{lll} \Delta^{\mathcal{J}} &=& \{(d,\nu) \mid \nu \in \mathfrak{N} \text{ and } d \in \Delta^{\mathcal{I}_{\nu}} \}; \\ A^{\mathcal{J}} &=& \{(d,\nu) \mid \nu \in \mathfrak{N} \text{ and } d \in A^{\mathcal{I}_{\nu}} \} \text{ for all } A \in \mathbf{C}; \\ r^{\mathcal{J}} &=& \{((d,\nu),(e,\nu)) \mid \nu \in \mathfrak{N} \text{ and } (d,e) \in r^{\mathcal{I}_{\nu}} \} \text{ for all } r \in \mathbf{R} \end{array}$$

Theorem 3.8

Let \mathcal{T} be an \mathcal{ALC} TBox and $(\mathcal{I}_{\nu})_{\nu \in \mathfrak{N}}$ a family of models of \mathcal{T} .

Then its disjoint union $\mathcal{J} = \biguplus_{\nu \in \mathfrak{N}} \mathcal{I}_{\nu}$ is also a model of \mathcal{T} .

Proof: blackboard

Dresden

Definition 3.6

Let \mathfrak{N} be an index set and $(\mathcal{I}_{\nu})_{\nu \in \mathfrak{N}}$ a family of interpretations $\mathcal{I}_{\nu} = (\Delta^{\mathcal{I}_{\nu}}, \cdot^{\mathcal{I}_{\nu}}).$

Their disjoint union \mathcal{J} is defined as follows:

$$\begin{array}{lll} \Delta^{\mathcal{J}} &=& \{(d,\nu) \mid \nu \in \mathfrak{N} \text{ and } d \in \Delta^{\mathcal{I}_{\nu}} \}; \\ A^{\mathcal{J}} &=& \{(d,\nu) \mid \nu \in \mathfrak{N} \text{ and } d \in A^{\mathcal{I}_{\nu}} \} \text{ for all } A \in \mathbf{C}; \\ r^{\mathcal{J}} &=& \{((d,\nu),(e,\nu)) \mid \nu \in \mathfrak{N} \text{ and } (d,e) \in r^{\mathcal{I}_{\nu}} \} \text{ for all } r \in \mathbf{R} \end{array}$$

Corollary 3.9

Let \mathcal{T} be an \mathcal{ALC} TBox and C an \mathcal{ALC} concept that is satisfiable w.r.t. \mathcal{T} . Then there is a model \mathcal{J} of \mathcal{T} in which the extension $C^{\mathcal{J}}$ of C is infinite.

Proof: blackboard

Section 3.4: Finite model property

Definition 3.10 (finite model)

The interpretation \mathcal{I} is a model of a concept C w.r.t. a TBox \mathcal{T} if \mathcal{I} is a model of \mathcal{T} such that $C^{\mathcal{I}} \neq \emptyset$. We call this model finite if $\Delta^{\mathcal{I}}$ is finite.

Finite model property of *ALC*:

If \mathcal{T} is an \mathcal{ALC} -TBox and C an \mathcal{ALC} -concept description such that C is satisfiable w.r.t. \mathcal{T} , then C has a finite model w.r.t. \mathcal{T} .

Proof first requires some definitions and auxiliary results.

Size of \mathcal{ALC} -concepts • $C = A \in \mathbb{C}$: size(C) := 1; • $C = C_1 \sqcap C_2$ or $C = C_1 \sqcup C_2$: size $(C) := 1 + \text{size}(C_1) + \text{size}(C_2)$; • $C = \neg D$ or $C = \exists r.D$ or $C = \forall r.D$: size(C) := 1 + size(D).

 $\mathsf{size}(A \sqcap \exists r.(A \sqcup B)) = 1 + 1 + (1 + (1 + 1 + 1)) = 6$

Counts the occurrences of concept names, role names, and Boolean operators.

$$\mathsf{size}(\mathcal{T}) := \sum_{C \sqsubseteq D \in \mathcal{T}} \mathsf{size}(C) + \mathsf{size}(D)$$

 $\mathsf{sub}(A \sqcap \exists r.(A \sqcup B))$

$$\mathsf{sub}(\mathcal{T}) := \bigcup_{C \sqsubseteq D \in \mathcal{T}} \mathsf{sub}(C) \cup \mathsf{sub}(D)$$

Lemma 3.11

```
|\operatorname{sub}(C)| \leq \operatorname{size}(C) \text{ and } |\operatorname{sub}(\mathcal{T})| \leq \operatorname{size}(\mathcal{T}).
```


Туре

of an element of a model

Definition 3.12 (S-type)

Let S be a finite set of concept descriptions, and ${\mathcal I}$ an interpretation.

The S-type of $d\in \Delta^{\mathcal{I}}$ is defined as

 $t_S(d) := \{ C \in S \mid d \in C^{\mathcal{I}} \}.$

Lemma 3.13 (number of *S*-types)

 $|\{t_S(d) \mid d \in \Delta^{\mathcal{I}}\}| \le 2^{|S|}$

Proof: obvious

Filtration

create a model in which every S-type is realized by at most one element

Definition 3.14 (S-filtration)

Let S be a finite set of concept descriptions, and \mathcal{I} an interpretation. We define an equivalence relation \simeq on $\Delta^{\mathcal{I}}$ as follows: $d \simeq e \text{ iff } t_S(d) = t_S(e)$

The \simeq -equivalence class of $d \in \Delta^{\mathcal{I}}$ is denoted by [d].

The S-filtration of \mathcal{I} is the following interpretation \mathcal{J} :

- $\Delta^{\mathcal{J}} := \{ [d] \mid d \in \Delta^{\mathcal{I}} \}$
- $A^{\mathcal{J}} := \{ [d] \mid \exists d' \in [d]. \ d' \in A^{\mathcal{I}} \} \text{ for all } A \in \mathbf{C}$
- $r^{\mathcal{J}} := \{([d], [e]) \mid \exists d' \in [d], e' \in [e]. \ (d', e') \in r^{\mathcal{I}}\} \text{ for all } r \in \mathbf{R}$

By Lemma 3.13, $|\Delta^{\mathcal{J}}| \leq 2^{|S|}$.

Filtration

important property

We say that the finite set S of concept descriptions is closed iff

 $\bigcup \{ \mathsf{sub}(C) \mid C \in S \} \subseteq S$

Lemma 3.15

Let S be a finite, closed set of \mathcal{ALC} -concept descriptions, \mathcal{I} an interpretation, and \mathcal{J} the S-filtration of \mathcal{I} . Then we have

 $d \in C^{\mathcal{I}}$ iff $[d] \in C^{\mathcal{J}}$

for all $d \in \Delta^{\mathcal{I}}$ and $C \in S$.

Proof: blackboard

The following proposition shows that \mathcal{ALC} satisfies a property that is even stronger than the finite model property.

<u>Theorem 3.16</u> (bounded model property)

Let \mathcal{T} be an \mathcal{ALC} -TBox, C an \mathcal{ALC} -concept description, and $n = \text{size}(\mathcal{T}) + \text{size}(C)$.

If C has a model w.r.t. \mathcal{T} , then it has a model $\widehat{\mathcal{I}}$ such that $|\Delta^{\widehat{\mathcal{I}}}| \leq 2^n$.

Proof: let \mathcal{I} be a model of \mathcal{T} with $C^{\mathcal{I}} \neq \emptyset$, and $\widehat{\mathcal{I}}$ be the *S*-filtration of \mathcal{I} , where $S := \mathsf{sub}(C) \cup \mathsf{sub}(\mathcal{T})$.

We must show:

- $|\Delta^{\widehat{\mathcal{I}}}| \le 2^n$ Lemma 3.11 and Lemma 3.13
- C^Î ≠ Ø
 Î is a model of T _____

follow from Lemma 3.15

The following proposition shows that \mathcal{ALC} satisfies a property that is even stronger than the finite model property.

<u>Theorem 3.16</u> (bounded model property)

Let \mathcal{T} be an \mathcal{ALC} -TBox, C an \mathcal{ALC} -concept description, and $n = \text{size}(\mathcal{T}) + \text{size}(C)$.

If C has a model w.r.t. \mathcal{T} , then it has a model $\widehat{\mathcal{I}}$ such that $|\Delta^{\widehat{\mathcal{I}}}| \leq 2^n$.

Corollary 3.17 (Finite model property)

Let $\mathcal T$ be an $\mathcal{ALC}\text{-}\mathsf{TBox}$ and C an $\mathcal{ALC}\text{-}\mathsf{concept}$ description

If C has a model w.r.t. \mathcal{T} , then it has a finite model.

Corollary 3.18 (Decidability)

Proof: blackboard

In \mathcal{ALC} , satisfiability of a concept description w.r.t. a TBox is decidable.

No finite model property

<u>Theorem 3.19</u> (no finite model property)

 \mathcal{ALCIN} does not have the finite model property.

Proof: blackboard

Section 3.5: Tree model property

Recall that interpretations can be viewed as graphs:

- nodes are the elements of $\Delta^{\mathcal{I}}$;
- interpretation of role names yields edges;
- interpretation of concept names yields node labels.

Starting with a given node, the graph can be unraveled into a tree without "changing membership" in concepts.

Definition 3.20 (Tree model)

Let \mathcal{T} be a TBox and C a concept description.

The interpretation \mathcal{I} is a tree model of C w.r.t. \mathcal{T} iff \mathcal{I} is a model of \mathcal{T} , and the graph

$$\mathcal{G}_{\mathcal{I}} = (\Delta^{\mathcal{I}}, \bigcup_{r \in \mathbf{R}} r^{\mathcal{I}})$$

is a tree whose root belongs to $C^{\mathcal{I}}$.

Goal: Show that every \mathcal{ALC} -concept that is satisfiable w.r.t. \mathcal{T} has a tree model w.r.t. \mathcal{T} .

Unraveling

more formally

Let \mathcal{I} be an interpretation and $d \in \Delta^{\mathcal{I}}$.

A *d*-path in \mathcal{I} is a finite sequence $p = d_0, d_1, \ldots, d_{n-1}$ of $n \ge 1$ elements of $\Delta^{\mathcal{I}}$ such that

- $d_0 = d$,
- for all $i, 1 \leq i < n$, there is a role $r_i \in \mathbf{R}$ such that $(d_{i-1}, d_i) \in r_i^{\mathcal{I}}$.

n =length of this path $end(p) = d_{n-1}$ end node of this path

Definition 3.21 (Unraveling)

The unravelling of \mathcal{I} at d is the following interpretation \mathcal{J} :

$$\begin{array}{lll} \Delta^{\mathcal{J}} &=& \{p \mid p \text{ is a } d\text{-path in } \mathcal{I}\}, \\ A^{\mathcal{J}} &=& \{p \in \Delta^{\mathcal{J}} \mid \mathsf{end}(p) \in A^{\mathcal{I}}\} \text{ for all } A \in \mathbf{C}, \\ r^{\mathcal{J}} &=& \{(p, p') \in \Delta^{\mathcal{J}} \times \Delta^{\mathcal{J}} \mid p' = (p, \mathsf{end}(p')) \text{ and } (\mathsf{end}(p), \mathsf{end}(p')) \in r^{\mathcal{I}}\} \\ &\quad \text{ for all } r \in \mathbf{R}. \end{array}$$

Lemma 3.22

The relation

 $\rho = \{(p, \mathsf{end}(p)) \mid p \in \Delta^{\mathcal{J}}\}$

is a bisimulation between \mathcal{J} and \mathcal{I} .

Proposition 3.23

For all \mathcal{ALC} concepts C and all $p \in \Delta^{\mathcal{J}}$ we have $p \in C^{\mathcal{J}}$ iff $\operatorname{end}(p) \in C^{\mathcal{I}}$.

<u>Theorem 3.24</u> (tree model property)

 \mathcal{ALC} has the tree model property,

i.e., if \mathcal{T} is an \mathcal{ALC} -TBox and C an \mathcal{ALC} -concept description such that C is satisfiable w.r.t. \mathcal{T} , then C has a tree model w.r.t. \mathcal{T} .

Proof: blackboard

Proposition 3.25 (no tree model property)

 \mathcal{ALCO} does not have the tree model property.

Proof:

The concept $\{a\}$ does not have a tree model w.r.t. $\{\{a\} \sqsubseteq \exists r. \{a\}\}\}$.

