Chapter 3 A Little Bit of Model Theory

Interpretations of ALC can be viewed as graphs
(with labeled edges and nodes).

e We introduce the notion of bisimulation between graphs/interpretations

We show that ALC-concepts cannot distinguish bisimular nodes

We use this to show restrictions of the expressive power of ALC

e We use this to show interesting properties of models for ALC:
— tree model property

— closure under disjoint union

We show the finite model property of ALC.
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Definition 3.1 (bisimulation) Section 3.1: Bisimulation

Let 7, and 7, be interpretations.

The relation p C A" x A’ is a bisimulation between Z; and Z, iff

o d, pdy implies d; € AD iff dy € A% forall A€ C

e dy pdyand (dy,d}) € r implies the existence of d, € A” such that
! pdyand (do, dy) € r*» forallT € R

o d; pdsand (do,d)) € r™ implies the existence of d} € A" such that
dy p dyand (dy,d;) € v forall7 € R

A A Note:
P
e 7, =1, is possible
r r
e the empty relation () is
a bisimulation.
f’
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Let Z; and 7, be interpretations and d; € A, dy € A%,

(Zy,dy) ~ (Zy,dy) iff  there is a bisimulation p between Z; and 7,
such that d; pd>

“dq in Zy is bisimilar to dsy in Z5”
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Fig. 3.1. Three interpretations Z;,Z2,Zs represented as graphs

(d1,Z1) ~ (f1,13) (d1,Zy) # (€1, 1)
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Let Z, and 7, be interpretations and d; € A", dy € A2,

(Zy,dy) ~ (Zy,dy) iff  there is a bisimulation p between Z; and 7
such that d; pd>

“dq in Zy is bisimilar to dsy in Z5”

Theorem 3.2 (bisimulation invariance of ALC)

If (Zy,dy) ~ (Zs, d5), then the following holds for all ALC-concepts C:

dy € CH iff dy, € O

“ALC-concepts cannot distinguish between bisimilar elements.”

Proof: blackboard
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Section 3.2: Expressive power

We have introduced extensions of ALC by the concept constructors

number restrictions, nominals and the role constructor inverse role.

How can we show that these constructors really extend ALC,

i.e., that they cannot be expressed using the constructors of ALC?

To this purpose, we show that, using any of these constructors,

we can construct concept descriptions
e that cannot be expressed by ALC-concept descriptions,

e i.e, there is no equivalent ALC-concept description.
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Expressive power of ALC

Proposition 3.3 (ALCN is more expressive than ALC)

No ALC-concept description is equivalent to
the ALCN -concept description (< 17).

Proof: blackboard
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Expressive power of ALC

Proposition 3.4 (ALCZ is more expressive than ALC)

No ALC-concept description is equivalent to

the ALCZ-concept description Jr—. T .

Proof: blackboard
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Expressive power of ALC

Proposition 3.5 (ALCO is more expressive than ALC)

No ALC-concept description is equivalent to

the ALCO-concept description {a}.

Proof: blackboard
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Section 3.3: Closure under disjoint union

Definition 3.6

Let 91 be an index set and (Z,), o a family of interpretations 7, = (A%, .Zv).

Their disjoint union 7 is defined as follows:

AT = {(d,v)|veNandd € A™};
A7 = {(d,v)|veMNandd € A*} forall A € C;
P = {({dv).(e.v) | v € Mand (d.¢) € ") forall r € R,

Notation: J = H,cnZv

Example: 9 = {1, 2}

Blackboard
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Section 3.3: Closure under disjoint union

Dresden

Definition 3.6

Let 91 be an index set and (Z,), o a family of interpretations 7, = (A%, .Zv).

Their disjoint union 7 is defined as follows:

AT = {(d,v)|veNandd € A™};
A7 = {(d,v)|veMNandd € A*} forall A € C;
P = {({dv).(e.v) | v € Mand (d.¢) € ") forall r € R,

Lemma 3.7

For v € M, all ALC-concept descriptions C, and all d € A’ we have
d e C% iff (d,v) e C’

Proof: blackboard
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Section 3.3: Closure under disjoint union

Definition 3.6

Let 91 be an index set and (Z,), o a family of interpretations 7, = (A%, .Zv).

Their disjoint union 7 is defined as follows:

AT = {(d,v)|veNandd € A™};
A7 = {(d,v)|veMNandd € A*} forall A € C;
P = {({dv).(e.v) | v € Mand (d.¢) € ") forall r € R,

Theorem 3.8

Let 7 be an ALC TBox and (Z,),cyn a family of models of 7.

Then its disjoint union [/ = @uem 7T, is also a model of 7T .

Proof: blackboard
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Section 3.3: Closure under disjoint union

Dresden

Definition 3.6

Let 91 be an index set and (Z,), o a family of interpretations 7, = (A%, .Zv).

Their disjoint union 7 is defined as follows:

AT = {(d,v)|veNandd € A™};
A7 = {(d,v)|veMNandd € A*} forall A € C;
P = {({dv).(e.v) | v € Mand (d.¢) € ") forall r € R,

Corollary 3.9

Let 7 be an ALC TBox and C' an ALC concept that is satisfiable w.r.t. T .
Then there is a model 7 of 7 in which the extension C of C'is infinite.

Proof: blackboard
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Section 3.4: Finite model property

Definition 3.10 (finite model)

The interpretation Z is a model of a concept C' w.r.t. a TBox 7T if
T is a model of T such that C* # ().

We call this model finite if AZ is finite.

Finite model property of ALC:

If 7 is an ALC-TBox and C' an ALC-concept description such that
(' is satisfiable w.r.t. 7, then C has a finite model w.r.t. 7.

Proof first requires some definitions and auxiliary results.
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Size of ALC-concepts

o ('=AcC: size(C) :=1;
o C=CiMNCyorC =C,UCy: size(C) =1+ size(Cy) + size(Cy);

e C=—-DorC=3r.DorC =VYr.D: size(C) :=1+size(D).

sizeAMT3r.(AUB))=1+14+(1+(14+141))=6

Counts the occurrences of concept names, role names, and Boolean operators.

size(T) := Z size(C') + size(D)
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‘ SUbCOIlCGptS I of ALC-concepts

Dresden

o O'=AcC: sub(C):={A};

e C=CMNCyorC=C1UCy: sub(C):={C}Usub(Ch)Usub(Cs);

o C=—DorC=3rDorC=Vr.D: sub(C):={C} Usub(D).

sub(AM3r.(AU B))

sub(7) := U sub(C') U sub(D)

CCDeT

Lemma 3.11

| sub(C')| < size(C') and |sub(7)| < size(7).
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Typ C of an element of a model

Definition 3.12 (S-type)

Let S be a finite set of concept descriptions, and Z an interpretation.

The S-type of d € A is defined as
ts(d):={C €S |de C*}.

Lemma 3.13 (number of S-types)

{ts(d) | d € AT} < 209

Proof: obvious
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Filtration create a model in which every S-type

is realized by at most one element

Definition 3.14 (S-filtration)

Let S be a finite set of concept descriptions, and Z an interpretation.

We define an equivalence relation ~ on A” as follows:
d~e iff tg(d) =tg(e)

The ~-equivalence class of d € A is denoted by [d].
The S-filtration of 7 is the following interpretation 7 :
o N ={[d]|de A’}
o AV :={[d||3d €d.d € AT} forall A € C

o 7 :={([d],[e]) | 3d' € [d], ¢ € [e]. (d',¢') € r*} forallT € R

By Lemma 3.13,
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Filtration important property

We say that the finite set .S of concept descriptions is closed iff

 H{sub(C) [ C e S} C S

Lemma 3.15

Let S be a finite, closed set of ALC-concept descriptions,
7 an interpretation, and ./ the S-filtration of Z. Then we have

dect iff [decd

foralld € ALand C € S.

Proof: blackboard
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The following proposition shows that ALC satisfies a property

that is even stronger than the finite model property.

Theorem 3.16 (bounded model property)

Let 7 be an ALC-TBox, C an ALC-concept description, and n = size(T) + size(C').

If ' has a model w.r.t. 7, then it has a model 7 such that
| Ai <o,

Proof: let Z be a model of 7 with C # (), and 7 be the S-filtration of Z,
where S := sub(C') U sub(7).

We must show:

o |Ai| <2 Lemma 3.11 and Lemma 3.13

o (T # ()
follow from Lemma 3.15
e 7 is amodel of T
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Dresden

The following proposition shows that ALC satisfies a property
that is even stronger than the finite model property.

Theorem 3.16 (bounded model property)

Let 7 be an ALC-TBox, C an ALC-concept description, and n = size(T) + size(C').

If ' has a model w.r.t. 7, then it has a model 7 such that
| Ai <o,

Corollary 3.17 (Finite model property)

Let 7 be an ALC-TBox and C' an ALC-concept description

If C' has a model w.r.t. 7, then it has a finite model.

Corollary 3.18 (Decidability)

In ALC, satisfiability of a concept description w.r.t. a TBox is decidable.

Proof: blackboard
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No finite model property

Theorem 3.19 (no finite model property)

ALCIN does not have the finite model property.

Proof: blackboard
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Section 3.5: Tree model property

Recall that interpretations can be viewed as graphs:

e nodes are the elements of AZ ;

model of
e interpretation of role names yields edges; AC 3r.B
= de A
e interpretation of concept names yields node labels. BLard
AUBLC ds.T

Starting with a given node, the graph
can be unraveled into a tree without

“changing membership” in concepts.

AUBLC ds.T
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Definition 3.20 (Tree model)

Let 7 be a TBox and C' a concept description.

The interpretation Z is a tree model of C' w.r.t. T iff
7 is a model of T, and the graph

Qz _ (AI7 U 7”I>

reR

is a tree whose root belongs to CZ.

Goal: Show that every ALC-concept that is satisfiable w.r.t. 7
has a tree model w.r.t. T .
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Unraveling more formally

Let Z be an interpretation and d € AZ.

A d-path in 7 is a finite sequence p = d, dy,...,d,_1 of n > 1 elements of
A’ such that

[ d():d,

e foralli,1 < i < n,thereisaroler; € Rsuchthat (d;, 1,d;) € r

7

n = length of this path end(p) = d,_1 end node of this path

Definition 3.21 (Unraveling)

The unravelling of Z at d is the following interpretation .7 :

{p| pisad-pathinZ},
{pe A7 | end(p) € A*} forall A € C,

{(p,p) € AT x AT | p' = (p,end(p’)) and (end(p),end(p’)) € ?"I}
for all r € R.
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Unraveling example

Blackboard

Definition 3.21 (Unraveling)

The unravelling of Z at d is the following interpretation .7 :

A7 = {p]| pisad-pathinZ},
A7 = {pe A7 |end(p) € A%} forall A € C,
i = {p,p) € A x AT | )/ = (p,end(p)) and (end(p), end(p)) € 7}

for all » € R.
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Lemma 3.22

The relation

p={(p.end(p)) | p € A7}

is a bisimulation between ./ and Z.

Proposition 3.23

For all ALC concepts C' and all p € A7 we have
p e C7 iff end(p) € CZ.

Theorem 3.24 (tree model property)

ALC has the tree model property,

ie., if T is an ALC-TBox and C an ALC-concept description such that
(' is satisfiable w.r.t. 7, then C has a tree model w.r.t. 7.

Proof: blackboard
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Proposition 3.25 (no tree model property)

ALCQO does not have the tree model property.

Proof:

The concept {a} does not have a tree model w.r.t. {{a} C Jr.{a}}.
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