Chapter 3

A Little Bit of Model Theory

Interpretations of $\mathcal{A L C}$ can be viewed as graphs
(with labeled edges and nodes).

- We introduce the notion of bisimulation between graphs/interpretations
- We show that $\mathcal{A L C}$-concepts cannot distinguish bisimular nodes
- We use this to show restrictions of the expressive power of $\mathcal{A L C}$
- We use this to show interesting properties of models for $\mathcal{A L C}$:
- tree model property
- closure under disjoint union
- We show the finite model property of $\mathcal{A L C}$.

Definition 3.1 (bisimulation)

Let \mathcal{I}_{1} and \mathcal{I}_{2} be interpretations.
The relation $\rho \subseteq \Delta^{\mathcal{I}_{1}} \times \Delta^{\mathcal{I}_{2}}$ is a bisimulation between \mathcal{I}_{1} and \mathcal{I}_{2} iff

- $d_{1} \rho d_{2}$ implies $d_{1} \in A^{\mathcal{I}_{1}}$ iff $d_{2} \in A^{\mathcal{I}_{2}} \quad$ for all $A \in \mathbf{C}$
- $d_{1} \rho d_{2}$ and $\left(d_{1}, d_{1}^{\prime}\right) \in r^{\mathcal{I}_{1}}$ implies the existence of $d_{2}^{\prime} \in \Delta^{\mathcal{I}_{2}}$ such that $d_{1}^{\prime} \rho d_{2}^{\prime}$ and $\left(d_{2}, d_{2}^{\prime}\right) \in r^{\mathcal{I}_{2}} \quad$ for all $r \in \mathbf{R}$
- $d_{1} \rho d_{2}$ and $\left(d_{2}, d_{2}^{\prime}\right) \in r^{\mathcal{I}_{2}}$ implies the existence of $d_{1}^{\prime} \in \Delta^{\mathcal{I}_{1}}$ such that $d_{1}^{\prime} \rho d_{2}^{\prime}$ and $\left(d_{1}, d_{1}^{\prime}\right) \in r^{\mathcal{I}_{1}} \quad$ for all $r \in \mathbf{R}$

Note:

- $\mathcal{I}_{1}=\mathcal{I}_{2}$ is possible
- the empty relation \emptyset is a bisimulation.

Let \mathcal{I}_{1} and \mathcal{I}_{2} be interpretations and $d_{1} \in \Delta^{\mathcal{I}_{1}}, d_{2} \in \Delta^{\mathcal{I}_{2}}$.
$\left(\mathcal{I}_{1}, d_{1}\right) \sim\left(\mathcal{I}_{2}, d_{2}\right) \quad$ iff \quad there is a bisimulation ρ between \mathcal{I}_{1} and \mathcal{I}_{2} such that $d_{1} \rho d_{2}$
" d_{1} in \mathcal{I}_{1} is bisimilar to d_{2} in \mathcal{I}_{2} "

Fig. 3.1. Three interpretations $\mathcal{I}_{1}, \mathcal{I}_{2}, \mathcal{I}_{3}$ represented as graphs

$$
\left(d_{1}, \mathcal{I}_{1}\right) \sim\left(f_{1}, \mathcal{I}_{3}\right) \quad\left(d_{1}, \mathcal{I}_{1}\right) \nsim\left(e_{1}, \mathcal{I}_{2}\right)
$$

Let \mathcal{I}_{1} and \mathcal{I}_{2} be interpretations and $d_{1} \in \Delta^{\mathcal{I}_{1}}, d_{2} \in \Delta^{\mathcal{I}_{2}}$.
$\left(\mathcal{I}_{1}, d_{1}\right) \sim\left(\mathcal{I}_{2}, d_{2}\right) \quad$ iff \quad there is a bisimulation ρ between \mathcal{I}_{1} and \mathcal{I}_{2} such that $d_{1} \rho d_{2}$
" d_{1} in \mathcal{I}_{1} is bisimilar to d_{2} in \mathcal{I}_{2} "

Theorem 3.2 (bisimulation invariance of $\mathcal{A \mathcal { L C } \text {) }) ~}$
If $\left(\mathcal{I}_{1}, d_{1}\right) \sim\left(\mathcal{I}_{2}, d_{2}\right)$, then the following holds for all $\mathcal{A} \mathcal{L C}$-concepts C :

$$
d_{1} \in C^{\mathcal{I}_{1}} \quad \text { iff } \quad d_{2} \in C^{\mathcal{I}_{2}}
$$

" $\mathcal{A L C}$-concepts cannot distinguish between bisimilar elements."

Proof: blackboard

Section 3.2: Expressive power

We have introduced extensions of $\mathcal{A L C}$ by the concept constructors number restrictions, nominals and the role constructor inverse role.

How can we show that these constructors really extend $\mathcal{A} \mathcal{L C}$, i.e., that they cannot be expressed using the constructors of $\mathcal{A L C}$?

To this purpose, we show that, using any of these constructors, we can construct concept descriptions

- that cannot be expressed by $\mathcal{A L C}$-concept descriptions,
- i.e, there is no equivalent $\mathcal{A L C}$-concept description.

Expressive power

$$
\text { of } \mathcal{A L C}
$$

Proposition $3.3(\mathcal{A L C N}$ is more expressive than $\mathcal{A L C})$

> No $\mathcal{A} \mathcal{L C}$-concept description is equivalent to the $\mathcal{A} \mathcal{L C N}$-concept description $(\leq 1 r)$.

Proof: blackboard

Expressive power

$$
\text { of } \mathcal{A L C}
$$

Proposition $3.4(\mathcal{A L C I}$ is more expressive than $\mathcal{A L C})$ No $\mathcal{A L C}$-concept description is equivalent to the $\mathcal{A L C I}$-concept description $\exists r^{-}$. \top.

Proof: blackboard

Expressive power

$$
\text { of } \mathcal{A L C}
$$

Proposition $3.5(\mathcal{A L C O}$ is more expressive than $\mathcal{A L C})$ No $\mathcal{A L C}$-concept description is equivalent to the $\mathcal{A L C O}$-concept description $\{a\}$.

Proof: blackboard

Section 3.3: Closure under disjoint union

Definition 3.6

Let \mathfrak{N} be an index set and $\left(\mathcal{I}_{\nu}\right)_{\nu \in \mathfrak{N}}$ a family of interpretations $\mathcal{I}_{\nu}=\left(\Delta^{\mathcal{I}_{\nu}},{ }^{\mathcal{I}_{\nu}}\right)$.
Their disjoint union \mathcal{J} is defined as follows:

$$
\begin{aligned}
\Delta^{\mathcal{J}} & =\left\{(d, \nu) \mid \nu \in \mathfrak{N} \text { and } d \in \Delta^{\mathcal{I}_{\nu}}\right\} \\
A^{\mathcal{J}} & =\left\{(d, \nu) \mid \nu \in \mathfrak{N} \text { and } d \in A^{\mathcal{I}_{\nu}}\right\} \text { for all } A \in \mathbf{C} \\
r^{\mathcal{J}} & =\left\{((d, \nu),(e, \nu)) \mid \nu \in \mathfrak{N} \text { and }(d, e) \in r^{\mathcal{I}_{\nu}}\right\} \text { for all } r \in \mathbf{R} .
\end{aligned}
$$

$$
\text { Notation: } \mathcal{J}=\biguplus_{\nu \in \mathfrak{N}} \mathcal{I}_{\nu}
$$

Example: $\mathfrak{N}=\{1,2\}$
Blackboard

Section 3.3: Closure under disjoint union

Definition 3.6

Let \mathfrak{N} be an index set and $\left(\mathcal{I}_{\nu}\right)_{\nu \in \mathfrak{N}}$ a family of interpretations $\mathcal{I}_{\nu}=\left(\Delta^{\mathcal{I}_{\nu}},{ }^{\mathcal{I}_{\nu}}\right)$.
Their disjoint union \mathcal{J} is defined as follows:

$$
\begin{aligned}
\Delta^{\mathcal{J}} & =\left\{(d, \nu) \mid \nu \in \mathfrak{N} \text { and } d \in \Delta^{\mathcal{I}_{\nu}}\right\} \\
A^{\mathcal{J}} & =\left\{(d, \nu) \mid \nu \in \mathfrak{N} \text { and } d \in A^{\mathcal{I}_{\nu}}\right\} \text { for all } A \in \mathbf{C} \\
r^{\mathcal{J}} & =\left\{((d, \nu),(e, \nu)) \mid \nu \in \mathfrak{N} \text { and }(d, e) \in r^{\mathcal{I}_{\nu}}\right\} \text { for all } r \in \mathbf{R} .
\end{aligned}
$$

Lemma 3.7

For $\nu \in \mathfrak{N}$, all $\mathcal{A} \mathcal{L C}$-concept descriptions C, and all $d \in \Delta^{\mathcal{I}_{\nu}}$ we have

$$
d \in C^{\mathcal{I}_{\nu}} \text { iff }(d, \nu) \in C^{\mathcal{J}}
$$

Proof: blackboard

Section 3.3: Closure under disjoint union

Definition 3.6

Let \mathfrak{N} be an index set and $\left(\mathcal{I}_{\nu}\right)_{\nu \in \mathfrak{N}}$ a family of interpretations $\mathcal{I}_{\nu}=\left(\Delta^{\mathcal{I}_{\nu}},{ }^{\mathcal{I}_{\nu}}\right)$.
Their disjoint union \mathcal{J} is defined as follows:

$$
\begin{aligned}
\Delta^{\mathcal{J}} & =\left\{(d, \nu) \mid \nu \in \mathfrak{N} \text { and } d \in \Delta^{\mathcal{I}_{\nu}}\right\} \\
A^{\mathcal{J}} & =\left\{(d, \nu) \mid \nu \in \mathfrak{N} \text { and } d \in A^{\mathcal{I}_{\nu}}\right\} \text { for all } A \in \mathbf{C} ; \\
r^{\mathcal{J}} & =\left\{((d, \nu),(e, \nu)) \mid \nu \in \mathfrak{N} \text { and }(d, e) \in r^{\mathcal{I}_{\nu}}\right\} \text { for all } r \in \mathbf{R} .
\end{aligned}
$$

Theorem 3.8

Let \mathcal{T} be an $\mathcal{A L C}$ TBox and $\left(\mathcal{I}_{\nu}\right)_{\nu \in \mathfrak{N}}$ a family of models of \mathcal{T}.
Then its disjoint union $\mathcal{J}=\biguplus_{\nu \in \mathfrak{N}} \mathcal{I}_{\nu}$ is also a model of \mathcal{T}.

Proof: blackboard

Section 3.3: Closure under disjoint union

Definition 3.6

Let \mathfrak{N} be an index set and $\left(\mathcal{I}_{\nu}\right)_{\nu \in \mathfrak{N}}$ a family of interpretations $\mathcal{I}_{\nu}=\left(\Delta^{\mathcal{I}_{\nu}},{ }^{\mathcal{I}_{\nu}}\right)$.
Their disjoint union \mathcal{J} is defined as follows:

$$
\begin{aligned}
\Delta^{\mathcal{J}} & =\left\{(d, \nu) \mid \nu \in \mathfrak{N} \text { and } d \in \Delta^{\mathcal{I}_{\nu}}\right\} \\
A^{\mathcal{J}} & =\left\{(d, \nu) \mid \nu \in \mathfrak{N} \text { and } d \in A^{\mathcal{I}_{\nu}}\right\} \text { for all } A \in \mathbf{C} ; \\
r^{\mathcal{J}} & =\left\{((d, \nu),(e, \nu)) \mid \nu \in \mathfrak{N} \text { and }(d, e) \in r^{\mathcal{I}_{\nu}}\right\} \text { for all } r \in \mathbf{R} .
\end{aligned}
$$

Corollary 3.9

Let \mathcal{T} be an $\mathcal{A L C}$ TBox and C an $\mathcal{A L C}$ concept that is satisfiable w.r.t. \mathcal{T}.
Then there is a model \mathcal{J} of \mathcal{T} in which the extension $C^{\mathcal{J}}$ of C is infinite.

Section 3.4: Finite model property

Definition 3.10 (finite model)

The interpretation \mathcal{I} is a model of a concept C w.r.t. a TBox \mathcal{T} if
\mathcal{I} is a model of \mathcal{T} such that $C^{\mathcal{I}} \neq \emptyset$.
We call this model finite if $\Delta^{\mathcal{I}}$ is finite.

Finite model property of $\mathcal{A L C}$:
If \mathcal{T} is an $\mathcal{A L C}$-TBox and C an $\mathcal{A} \mathcal{L C}$-concept description such that
C is satisfiable w.r.t. \mathcal{T}, then C has a finite model w.r.t. \mathcal{T}.

Proof first requires some definitions and auxiliary results.

- $C=A \in \mathbf{C}: \operatorname{size}(C):=1$;
- $C=C_{1} \sqcap C_{2}$ or $C=C_{1} \sqcup C_{2}$: size $(C):=1+\operatorname{size}\left(C_{1}\right)+\operatorname{size}\left(C_{2}\right)$;
- $C=\neg D$ or $C=\exists r . D$ or $C=\forall r . D: \quad \operatorname{size}(C):=1+\operatorname{size}(D)$.

$$
\operatorname{size}(A \sqcap \exists r .(A \sqcup B))=1+1+(1+(1+1+1))=6
$$

Counts the occurrences of concept names, role names, and Boolean operators.

$$
\operatorname{size}(\mathcal{T}):=\sum_{C \sqsubseteq D \in \mathcal{T}} \operatorname{size}(C)+\operatorname{size}(D)
$$

Subconcepts

- $C=A \in \mathbf{C}: \operatorname{sub}(C):=\{A\}$;
- $C=C_{1} \sqcap C_{2}$ or $C=C_{1} \sqcup C_{2}$: sub $(C):=\{C\} \cup \operatorname{sub}\left(C_{1}\right) \cup \operatorname{sub}\left(C_{2}\right)$;
- $C=\neg D$ or $C=\exists r . D$ or $C=\forall r . D: \operatorname{sub}(C):=\{C\} \cup \operatorname{sub}(D)$.

$$
\operatorname{sub}(A \sqcap \exists r .(A \sqcup B))
$$

$$
\operatorname{sub}(\mathcal{T}):=\bigcup_{C \sqsubseteq D \in \mathcal{T}} \operatorname{sub}(C) \cup \operatorname{sub}(D)
$$

Lemma 3.11

$$
|\operatorname{sub}(C)| \leq \operatorname{size}(C) \text { and }|\operatorname{sub}(\mathcal{T})| \leq \operatorname{size}(\mathcal{T})
$$

Definition 3.12 (S-type)

Let S be a finite set of concept descriptions, and \mathcal{I} an interpretation.
The S-type of $d \in \Delta^{\mathcal{I}}$ is defined as

$$
t_{S}(d):=\left\{C \in S \mid d \in C^{\mathcal{I}}\right\}
$$

Lemma 3.13 (number of S-types)

$$
\left|\left\{t_{S}(d) \mid d \in \Delta^{\mathcal{I}}\right\}\right| \leq 2^{|S|}
$$

Proof: obvious

Definition 3.14 (S-filtration)

Let S be a finite set of concept descriptions, and \mathcal{I} an interpretation.
We define an equivalence relation \simeq on $\Delta^{\mathcal{I}}$ as follows:

$$
d \simeq e \text { iff } t_{S}(d)=t_{S}(e)
$$

The \simeq-equivalence class of $d \in \Delta^{\mathcal{I}}$ is denoted by $[d]$.
The S-filtration of \mathcal{I} is the following interpretation \mathcal{J} :

- $\Delta^{\mathcal{J}}:=\left\{[d] \mid d \in \Delta^{\mathcal{I}}\right\}$
- $A^{\mathcal{J}}:=\left\{[d] \mid \exists d^{\prime} \in[d] . d^{\prime} \in A^{\mathcal{I}}\right\}$ for all $A \in \mathbf{C}$
- $r^{\mathcal{J}}:=\left\{([d],[e]) \mid \exists d^{\prime} \in[d], e^{\prime} \in[e] .\left(d^{\prime}, e^{\prime}\right) \in r^{\mathcal{I}}\right\}$ for all $r \in \mathbf{R}$

By Lemma 3.13, $\left|\Delta^{\mathcal{J}}\right| \leq 2^{|S|}$.


```
important property
```

We say that the finite set S of concept descriptions is closed iff

$$
\bigcup\{\operatorname{sub}(C) \mid C \in S\} \subseteq S
$$

Lemma 3.15
Let S be a finite, closed set of $\mathcal{A L C}$-concept descriptions,
\mathcal{I} an interpretation, and \mathcal{J} the S-filtration of \mathcal{I}. Then we have

$$
d \in C^{\mathcal{I}} \quad \text { iff } \quad[d] \in C^{\mathcal{J}}
$$

for all $d \in \Delta^{\mathcal{I}}$ and $C \in S$.

Proof: blackboard

The following proposition shows that $\mathcal{A L C}$ satisfies a property that is even stronger than the finite model property.

Theorem 3.16 (bounded model property)

Let \mathcal{T} be an $\mathcal{A L C}$-TBox, C an $\mathcal{A} \mathcal{L C}$-concept description, and $n=\operatorname{size}(\mathcal{T})+\operatorname{size}(C)$.
If C has a model w.r.t. \mathcal{T}, then it has a model $\widehat{\mathcal{I}}$ such that $\left|\Delta^{\widehat{\mathcal{I}}}\right| \leq 2^{n}$.

Proof: let \mathcal{I} be a model of \mathcal{T} with $C^{\mathcal{I}} \neq \emptyset$, and $\widehat{\mathcal{I}}$ be the S-filtration of \mathcal{I}, where $S:=\operatorname{sub}(C) \cup \operatorname{sub}(\mathcal{T})$.

We must show:

- $\left|\Delta^{\widehat{\mathcal{I}}}\right| \leq 2^{n} \quad$ Lemma 3.11 and Lemma 3.13
- $C^{\hat{\mathcal{I}}} \neq \emptyset$
- $\widehat{\mathcal{I}}$ is a model of \mathcal{T}

The following proposition shows that $\mathcal{A L C}$ satisfies a property that is even stronger than the finite model property.

Theorem 3.16 (bounded model property)

Let \mathcal{T} be an $\mathcal{A L C}$-TBox, C an $\mathcal{A} \mathcal{L C}$-concept description, and $n=\operatorname{size}(\mathcal{T})+\operatorname{size}(C)$.
If C has a model w.r.t. \mathcal{T}, then it has a model $\widehat{\mathcal{I}}$ such that
$\left|\Delta^{\widehat{\mathcal{T}}}\right| \leq 2^{n}$.

Corollary 3.17 (Finite model property)

Let \mathcal{T} be an $\mathcal{A L C}$-TBox and C an $\mathcal{A} \mathcal{L C}$-concept description
If C has a model w.r.t. \mathcal{T}, then it has a finite model.

Corollary 3.18 (Decidability)

In $\mathcal{A L C}$, satisfiability of a concept description w.r.t. a TBox is decidable.
Proof: blackboard

No finite model property

Theorem 3.19 (no finite model property)
$\mathcal{A L C I N}$ does not have the finite model property.

Proof: blackboard

Section 3.5: Tree model property

Recall that interpretations can be viewed as graphs:

- nodes are the elements of Δ^{I};
- interpretation of role names yields edges;
- interpretation of concept names yields node labels.

Starting with a given node, the graph can be unraveled into a tree without "changing membership" in concepts.

Definition 3.20 (Tree model)

Let \mathcal{T} be a TBox and C a concept description.
The interpretation \mathcal{I} is a tree model of C w.r.t. \mathcal{T} iff
\mathcal{I} is a model of \mathcal{T}, and the graph

$$
\mathcal{G}_{\mathcal{I}}=\left(\Delta^{\mathcal{I}}, \bigcup_{r \in \mathbf{R}} r^{\mathcal{I}}\right)
$$

is a tree whose root belongs to $C^{\mathcal{I}}$.

Goal: Show that every $\mathcal{A} \mathcal{L C}$-concept that is satisfiable w.r.t. \mathcal{T} has a tree model w.r.t. \mathcal{T}.

Unraveling

Let \mathcal{I} be an interpretation and $d \in \Delta^{\mathcal{I}}$.
A d-path in \mathcal{I} is a finite sequence $p=d_{0}, d_{1}, \ldots, d_{n-1}$ of $n \geq 1$ elements of $\Delta^{\mathcal{I}}$ such that

- $d_{0}=d$,
- for all $i, 1 \leq i<n$, there is a role $r_{i} \in \mathbf{R}$ such that $\left(d_{i-1}, d_{i}\right) \in r_{i}^{\mathcal{I}}$.
$n=$ length of this path \quad end $(p)=d_{n-1}$ end node of this path

Definition 3.21 (Unraveling)

The unravelling of \mathcal{I} at d is the following interpretation \mathcal{J} :

```
\(\Delta^{\mathcal{J}}=\{p \mid p\) is a \(d\)-path in \(\mathcal{I}\}\),
\(A^{\mathcal{J}}=\left\{p \in \Delta^{\mathcal{J}} \mid \operatorname{end}(p) \in A^{\mathcal{I}}\right\}\) for all \(A \in \mathbf{C}\),
\(r^{\mathcal{J}}=\left\{\left(p, p^{\prime}\right) \in \Delta^{\mathcal{J}} \times \Delta^{\mathcal{J}} \mid p^{\prime}=\left(p, \operatorname{end}\left(p^{\prime}\right)\right)\right.\) and \(\left.\left(\operatorname{end}(p), \operatorname{end}\left(p^{\prime}\right)\right) \in r^{\mathcal{I}}\right\}\)
    for all \(r \in \mathbf{R}\).
```


The unravelling of \mathcal{I} at d is the following interpretation \mathcal{J} :

```
\(\Delta^{\mathcal{J}}=\{p \mid p\) is a \(d\)-path in \(\mathcal{I}\}\),
\(A^{\mathcal{J}}=\left\{p \in \Delta^{\mathcal{J}} \mid \operatorname{end}(p) \in A^{\mathcal{I}}\right\}\) for all \(A \in \mathbf{C}\),
\(r^{\mathcal{J}}=\left\{\left(p, p^{\prime}\right) \in \Delta^{\mathcal{J}} \times \Delta^{\mathcal{J}} \mid p^{\prime}=\left(p, \operatorname{end}\left(p^{\prime}\right)\right)\right.\) and \(\left.\left(\operatorname{end}(p), \operatorname{end}\left(p^{\prime}\right)\right) \in r^{\mathcal{I}}\right\}\)
    for all \(r \in \mathbf{R}\).
```

Lemma 3.22
The relation

$$
\rho=\left\{(p, \operatorname{end}(p)) \mid p \in \Delta^{\mathcal{J}}\right\}
$$

is a bisimulation between \mathcal{J} and \mathcal{I}.

Proposition 3.23
For all $\mathcal{A} \mathcal{L C}$ concepts C and all $p \in \Delta^{\mathcal{J}}$ we have

$$
p \in C^{\mathcal{J}} \text { iff } \operatorname{end}(p) \in C^{\mathcal{I}}
$$

Theorem 3.24 (tree model property)
$\mathcal{A L C}$ has the tree model property,
i.e., if \mathcal{T} is an $\mathcal{A L C}$-TBox and C an $\mathcal{A L C}$-concept description such that C is satisfiable w.r.t. \mathcal{T}, then C has a tree model w.r.t. \mathcal{T}.

Proof: blackboard

Proposition 3.25 (no tree model property)
$\mathcal{A L C O}$ does not have the tree model property.

Proof:
The concept $\{a\}$ does not have a tree model w.r.t. $\{\{a\} \sqsubseteq \exists r .\{a\}\}$.

