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Chapter 3 A Little Bit of Model Theory 
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Section 3.1: Bisimulation 
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Fig. 3.1. Three interpretations I1, I2, I3 represented as graphs

of a bisimulation needs to be parametrized w.r.t. the employed set of
concept names C and role names R. In the following, we assume that
these two sets are fixed, and thus do not mention them explicitly. It
should also be noted that the interpretations I1 and I2 in Definition 3.1
are not required to be distinct. In addition, the empty relation is always
a bisimulation, though not a very interesting one.
Given the three interpretations depicted in Figure 3.1 (where c is

supposed to represent the role child , M the concept Male and F the
concept Female), it is easy to see that (d1, I1) and (f1, I3) are bisimilar,
whereas (d1, I1) and (e1, I2) are not.
The followimg theorem states that ALC cannot distinguish between

bisimilar elements.

Theorem 3.1 If (I1, d1) ⇠ (I2, d2), then the following holds for all
ALC concepts C:

d1 2 CI1 i↵ d2 2 CI2 .

Proof: Since (I1, d1) ⇠ (I2, d2), there is a bisimulation ⇢ between I1
and I2 such that d1⇢d2. We prove the theorem by induction on the
structure of C. Since, up to equivalence, any ALC concept can be con-
structed using only the constructors conjunction, negation, and existen-
tial restriction (see Lemma 2.7), we consider only these constructors in
the induction step. The base case is the one where C is a concept name.

• Assume that C = A 2 C. Then

d1 2 AI1 i↵ d2 2 AI2

is an immediate consequence of d1⇢d2 (see (i) of Definition 3.1).
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Proof: blackboard 
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Section 3.2: Expressive power 
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Expressive power 

Proof: blackboard 
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Expressive power 

Proof: blackboard 
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Expressive power 

Proof: blackboard 
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Section 3.3: Closure under disjoint union 

Blackboard 
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Proof: blackboard 
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Proof: blackboard 
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Proof: blackboard 

Section 3.3: Closure under disjoint union 
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Proof  first requires some definitions and auxiliary results. 

Section 3.4: Finite model property 
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Subconcepts  
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Type 

Proof: obvious 
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Filtration 
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Filtration 

Proof: blackboard 
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Proof:  blackboard 
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Proof:  blackboard 

No finite model property 
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Section 3.5: Tree model property 
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Unraveling 
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Unraveling 

Blackboard 
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Proof: blackboard 
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