Chapter 6 The £L family

The DL £ L has the constructors

e existential restriction: Jdr.C; no value restriction

e conjunction: C' I D; no disjunction

e the top concept: T. no negation, no _L_
Every £ L concept is satisfiable w.r.t. any £L£ TBox Why?

and thus satisfiability is not an interesting problem.

Subsumption in £ L is non-trivial, and cannot be reduced to
satisfiability in £L.

We show that subsumption w.r.t. general TBoxes in £L£ can be decided in
polynomial time.

Note: for the dual DL F L, which uses Vr.C' in place of Jr.C,
subsumption w.r.t. general TBoxes is ExpTime-complete.
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6.1 Subsumption in £L w.r.t. general TBoxes

Without loss of generality we assume that the concepts tested for subsumption
are concept names:

LLemma 6.1

Let 7 be a general £L£ TBox, C, D £L concepts, and A, B concept names
not occurring in 7 or C, D. Then

TECCDIiff TU{ACC,DCE B} AC B.

Proof: blackboard.

In addition, we assume that the TBox 7 is in normal form, i.e.,
all GCIs in 7 have one of the following forms:

ACB, AAnNACB, ACdr.B, or drrAC B,

where A, A, Ay, B are concept names or the top concept T
and 7 is a role name.
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Normalisation B of an ££ TBox

One can transform a given TBox into a normalised one by applying the
following normalisation rules:

NFO DCE — DCA, ACE
NFl, ¢CnMDCB — DCA CNALCB
NFl, DNCCB — DCA, ANCLCB
NF2 IDCB — DCA, IrACB
NF3 BC3ID — ACD, BCIrA
NFA BCLDME — BLCD, BCE

where C, D, E denote arbitrary £ L concepts,

D, E denote £L concepts that are neither concept names nor T,
B is a concept name, and
A is a new concept name.
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Normalisation @ example

NFO DCE — DCA, ACE
NFl, CNMDCB — DCA, CNALCB
NFl, DNCCB — DCA ANCLCB
NF2 I DCB — DLCA FIrACB
NF3 BC3ID — ALCD, BCIrA
NFA BCLDME —s BLCD, BCE

Ir ANIrds AC AN B ~pnr drANdrds.AC By, BT AN B,

JrANJIrdsAC By ~»np, drALC By, ByMdrds.AC By,

Bl Mdr.ds. A E Bo ~NF1, dr.ds. A E BQ, Bl [ BQ E Bo,
Jr.ds. A E BQ ~INE2 ds. A E Bg, ElTB5 E BQ,

ByCANB ~nm By A, By B.
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Normalisation terminates

LLemma 6.2

Any £L£ TBox 7T can be transformed into a normalised £L£ TBox 7'
by a linear number of applications of the normalisation rules.

In addition, the size of the resulting TBox 7 is linear in the size of T .

Proof: Show that the abnormality degree of a TBox decreases with each
rule application
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Normalisation terminates

Abnormal occurrence of a concept D within a general £L£ TBox :

1) D is the left-hand side of a GCI D L E where ZA?, E are neither concept
names nor | ; or

(i1) D is neither concept name nor [, and this occurrence is under a
conjunction or an existential restriction operator; or

(iii) the occurrence of [ is under a conjunction operator on the right-hand
side of a GCIL.

The abnormality degree of a general ££ TBox is the number of abnormal
occurrences of a concept in this TBox:

e the abnormality degree of a TBox is bounded by the size of the TBox,

e a TBox with abnormality degree 0 is normalised.

Proof continued on blackboard.

Dresden © Franz Baader



Normalisation correctness

Dresden

appropriate semantic

original > normalised
/
TBox T relationship TBox T
subsumption hierarchy for the yields

. classification of 7’
concept names occurring in T

Note:

T and 7" are not equivalent in the sense that they have the same models

due to the introduction of new concept names by the normalisation rules.

However, 7 is a conservative extension of 7 .
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Conservative extension definition

Definition 6.3

For a given general £L TBox 7y, its signature sig(7y) consists of the
concept and role names occurring in the GCIs of 7.

Given general £L TBoxes 77 and 75, we say that 75 is a
conservative extension of 7y if

o sig(Th) C sig(To),

e cvery model of 75 is a model of 7y, and

e for every model Z; of 7 there exists a model Z, of 75 such that
7, and 7, coincide on sig(T1) U {T},i.e.,

— AT = AT

— Al = A% for all concept names A € sig(77), and

— 5 = %= for all role names r € sig(T;).

Dresden
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Conservative extension [ properties

The notion of a conservative extensions is transitive:

7> conservative extension of 77 \
/ ‘T3 conservative extension of 77
‘T3 conservative extension of 7

LLemma 6.4

Let 71 and 75 be general £L TBoxes such that 75 is a conservative extension
of 71, and C', D £L concepts containing only concept and role names from

sig(T1).
Then 71 =ECLC D iff T, =CLC D.

Proof: blackboard.

Dresden © Franz Baader



Conservative extension [ application

Dresden

Proposition 6.5

Assume that 75 is obtained from 77 by applying one of the normalisation rules.

Then 75 is a conservative extension of 77.

Proof: blackboard.

Corollary 6.6

Let 7 be a general £L TBox and 7' the normalised TBox obtained from 7 using
the normalisation rules, as described in the proof of Lemma 6.2.

Then we have
TEACB iff TEACB
for all concept names A, B € sig(T ).

Proof: immediate consequence of Proposition 6.5, transitivity, and Lemma 6.4.
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Conservative extension [ application

subsumption hierarchy for the yields o
classification of 7~

concept names occurring in 7

Corollary 6.6

Let 7 be a general £L TBox and 7' the normalised TBox obtained from 7 using
the normalisation rules, as described in the proof of Lemma 6.2.

Then we have
TEACB iff TEACB
for all concept names A, B € sig(T ).

Proof: immediate consequence of Proposition 6.5, transitivity, and Lemma 6.4.
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Classification procedure for £L

We assume that the input TBox 7 is a general £L TBox in normal form.

The procedure starts with the GCIs in 7 and adds implied GCIs using
appropriate inference rules.

All the GClIs generated in this way are of a specific form:

Definition 6.7

A T -sequent is a GCI of the form
ACB, AiNACB, ACdr.B, or 3rAC B,

where A, Ay, Ay, B are concept names in sig(7") or the top concept T,
and 7 is a role name in sig(7T ).

Note: e The overall number of 7 -sequents is polynomial in the size of 7.

e Every GClin 7 is a T -sequent.

e A set of 7 -sequents consists of GCIs, and thus is a TBox.
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Classification rules for EL

CR1 CR2

AC A ACT

A1 CE Ay A C Az CR4 AC A AC Ay AiNMA2C B

R
CR3 A C As ACB

A E E|7“.A1 Al E Bl 3’}”.31 E B
ACB

CR5

The rules given above are, of course, not concrete rules, but rule schemata.

Concrete instance: replace meta-variables A, Ay, Ao, B, By by concrete £L
concepts and meta-variable r by a concrete role name.

Only instantiations are allowed for which all the GCIs occurring in the rule

are ‘| -sequents!
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Classification rules for EL

Dresden

CR1 AC A CR2 AT T
A1 CE Ay A C Az AC A AC Ay AiNMA2C B
CR3 A, C A CR4 AT B

A E E|7“.A1 A1 E B1 3’}“.31 E B

CR5 AC B

Rule application:

if all the 7 -sequents above the line occur in the current TBox 77,
add the T -sequent below the line to T’

unless it already belongs to 7.
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Classification rules for EL

AC A R ACT

CR1

A1 CE Ay A C Az AC A AC Ay AiNMA2C B

CR3 A, C A CR4 AT B
A E E|7“.A1 A1 E B1 3’}“.31 E B
CR5 AC B
Example 6.8
T ={AC 3rA, T, ={AC IrA

3r.B C By, Jr.AC B}.
TC B,
A L B27

BN B, C C}
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Classification rules for EL

CR1 CR2

AC A ACT

A1 CE Ay A C Az CR4 AC A AC Ay AiNMA2C B

R
CR3 A C As ACB

A E E|7“.A1 Al E Bl 3’}”.31 E B

CR5 AC B

Saturation of 7T
e apply the classification rules exhaustively to the input TBox 7T

e the resulting TBox 7 * is called the saturated TBox

Lemma 6.9
The saturated TBox 7 * is uniquely determined by 7, and it can be computed
by a polynomial number of rule applications.

Proof: blackboard.
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Classification procedure

Dresden

for £L

To show that polynomial-time saturation of €L TBoxes yields a
polynomial-time classification procedure, it is sufficient to prove the

following equivalence:

TEACBIiff ACLBeT"

Soundness of the classification procedure (i.e, the if-direction of the
equivalence) is an easy consequence of the next lemma:

Lemma 6.10 (Soundness)

If all the GCls in 7' follow from 7T
and

the 7 -sequents above the line of one
of the rules belong to T’

then

the 7 -sequent below the
line also follows from T

Proof: blackboard.
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Classification procedure for £L

TEACBIiff ACLBeT"

Completeness: instead of showing the only-if direction of the equivalence
directly, we prove its contrapositive:

if ACB¢& T thenT £ AL B.

For this purpose, we use 7 * to construct a canonical model of 7 that
e does not satisfy the GC1 A C B

e incase AL BZT™
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Canonical model

Definition 6.11

Let 7 be a general £L TBox in normal form and 7 the saturated TBox
obtained by exhaustive application of the classification rules.

The canonical interpretation Z7- induced by 7 * is defined as follows:

ALr = {A ] Aisaconcept name in sig(7T)} U{T},
Al ={B € A" | BC A € T*} for all concept names A € sig(T),
7T — {(A,B) € AZr s« AL | A C Jr.B € T*} for all role names r € sig(T).

Note: e By definition, we have B ¢ A7 itf BC A€ T*
for all concept names A € sig(7T).

e The same is actually true for A = T.
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Canonical model

Dresden

Lemma 6.12

The canonical interpretation induced by 7 * is a model of the
saturated TBox 7.

Proof: blackboard.

Lemma 6.13 (Completeness)

Let 7 be a general £L TBox in normal form and 7 the saturated TBox
obtained by exhaustive application of the classification rules. Then

TEACB implies AC Be T,
Proof: blackboard.

Theorem 6.14

Subsumption in £L w.r.t. general TBoxes is decidable in polynomial time.

Proof: blackboard.
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6.2 Subsumption in £L7 w.r.t. general TBoxes

Inverse roles: if r 1s a role, then r~ denotes its inverse

(r )" = {(e.d) | (d.e) € "} I

As usual, we will use 7~ to denote s if » = s~ for a role name s.

In contrast to the case of £L£ , subsumption in £L7Z w.r.t. general TBoxes is
no longer polynomial, but EXPTIME-complete.

One reason for the higher complexity of subsumption in £LZ is that it can
express a restricted form of value restrictions, and thus comes close to J L:

dr~.C' C D hasthesamemodelsas C' C Vr.D

In the following, we will show the EXPTIME-upper bound.
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Normalisation B of an ££7 TBox

Dresden

We say that the general ££7 TBox 7 is in i.normal form (or i.normalised)
if all its GCls are of one of the following forms:

ACB, AANACB, ACIr.B, or ACVr.B,

where A, Ay, Ao, B are concept names or the top-concept T
and 7 1s a role name or the inverse of a role name.

Corollary 6.15

Given a general ££7 TBox 7, we can compute in polynomial time an
i.normalised £L£7Z TBox 7T that is a conservative extension of T .

In particular, we have

TEACBIiff TTEACB
for all concept names A, B € sig(T ).
Proof: blackboard.
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Classification procedure J for ££Z

Dresden

We assume that the input TBox 7 is a general ££7 TBox in i.normal form.

The higher complexity of subsumption in £LZ necessitates the use of an
extended notion of sequents:

Definition 6.16

A T -i.sequent is an expression of the form

KC{A}, KC3rK' or KCVr{A}

where K, K’ are sets of concept names in sig(T ), A is a concept name in
sig(T ), and r is a role name in sig(7T ) or the inverse of a role name in sig(7 ).

Note: e The overall number of 7 -i.sequents is exponential in the size of 7.

e A setin a7 -i.sequent stands for the conjunction of its element.

empty conjunction is T
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Classification procedure J for ££Z

Dresden

We assume that the input TBox 7 is a general ££7 TBox in i.normal form.

The higher complexity of subsumption in £LZ necessitates the use of an
extended notion of sequents:

Definition 6.16

A T -i.sequent is an expression of the form

KC{A}, KC3rK' or KCVr{A}

where K, K’ are sets of concept names in sig(T ), A is a concept name in
sig(T ), and r is a role name in sig(7T ) or the inverse of a role name in sig(7 ).

Note: e The overall number of 7 -i.sequents is exponential in the size of 7.

A set in a T -i.sequent stands for the conjunction of its element.
e 7 -i.sequents are GClIs, and a set of ' -i.sequents is a general £ L7 TBox.

e Every GCI in the i.normalised TBox 7T is either equivalent to a
T -i.sequent or a tautology, i.e., satisfied in every interpretation.
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Classification rules for ELT

Dresden

. . . /
i.CR1 KC A 7y if A e K and K occurs in T

MC{B}foral Be K KCC
MCC

i.CR2 if M occurs in T’

M2 ; EI?“.Ml M1 ; \V/T_{A}

i.CR3 Mo C (A}

M1 E ElT.MQ M1 E \V/T{A}
M, C E|7“.(M2 U {A})

i.CR4

The rules given above are, again, not concrete rules, but rule schemata.

Concrete instance: replace K, M, M, M5 by sets of concept names in Sz'g(T),

A by a concept name in sig(7T ),
r by a role name or inverse of a role name in sig(7 ),
(' by any admissible right-hand side of a T -i.sequent.
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Classification rules explanations

Dresden

ICR]. m lf A -~ K and K occurs n 7-,

MCE{B}foral Be K KCC
MCC

i.CR2 if M occurs in T’

In i.CR1, only instantiations are allowed for which K actually occurs
explicitly in some 7 -i.sequent in the current TBox 7.
Reason:

Otherwise, the procedure would always generate an exponential number
of T -i.sequents.

The analogous restriction on M in rule i.CR2 is needed in the case
where K = ().

condition “M C {B} forall B € K~
trivially satisfied for all sets M
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Classification rules explanations

ICR]. m lf A -~ K and K occurs n 7-,

MCE{B}foral Be K KCC

MCC if M occurs in T’

I.CR2

Example 6.17

T={ACBIU{A4 C A |1<i<n}

We have 7 = M U {A} C {B} for all (exponentially many) sets
D#£MC{A, ..., A}

None of these T -i.sequents is actually generated by the rules when applied to

T ={A}C{B}U{{A} C{A}[1<i<n}.
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‘ Classification rules I explanations

. . . /
i.CR1 KT A if A€ K and K occurs in T

MCE{B}foral Be K KCC
MCC

i.CR2 if M occurs in T’

Example 6.18 (i.CR1 and i.CR2 in action)

T ={AC Ir(4, M AN A, 3r.(A N A) C B}

Blackboard.
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Classification rules explanations

Dresden

. . . /
i.CR1 KC A 7y if A e K and K occurs in T

MC{B}foral Be K KCC

. . . /
i.CR2 MEC if M occurs in T
) M2 ; EI?“.Ml M1 ; \V/T_{A}
.CR
RS M © {A)
ICR4 M1 E ElT.MQ M1 E \V/T{A}

M, C E|7“.(M2 U {A})

Due to the occurrence restrictions, the rules i.CR1 and i.CR2 cannot

introduce new sets of concept names into 7.
The same is obviously true (without any restriction) for i.CR3.

In contrast, rule i.CR4 can generate new sets, and thus may cause an

exponential blowup.
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‘ Classification rules I explanations

Dresden

i.CR1 if A€ K and K occurs in T’

K C {4}

MC{B}foral Be K KCC
MCC

i.CR2 if M occurs in T’

M2 ; EI?“.Ml M1 E \V/T_{A}

i.CR3 Mo C (A}

M1 E ElT.MQ M1 E \V/T{A}

.CR4
C M C 3r.(Ma U {A})

Example 6.19 (exponential blowup)

T ={AC I T}IU{Ir . AC A |i=1,...,n}

inormalisation: 7' := {{A} C Ir0} U{{A} CVr{A}|i=1,...

N}
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Classification algorithm

Dresden

i.Saturation of T :
e apply the classification rules exhaustively to the input TBox T

e the resulting TBox 7 * is called the i.saturated TBox

The i.saturated TBox 7 * is again uniquely determined by 7.

Proposition 6.20 (soundness and completeness)

For all concept names A, B in sig(7T ) such that { A} occurs in 7 we have
TEACB iff {AYC {BYec T

Condition { A} occurs in 7
can easily be satisfied by adding A C A to the input TBox.

\\T—i.sequent {A} C {A}
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Classification algorithm soundness

Soundness, 1.e. the if direction of Proposition 6.20, is an easy consequence
of the next lemma and the fact that any GCI in 7 follows from 7T .

[LLemma 6.21 (soundness)

Assume that
e all the GCIs in 7" follow from 7 and

e the 7 -i.sequents above the line of one of the classification rules
belong to 7.

Then the 7 -i.sequent below the line also follows from 7.

Proof: blackboard.
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Classification algorithm [ completeness

To show completeness, i.e. the only-if direction of Proposition 6.20,

we construct an appropriate canonical interpretation.

Definition 6.22 (canonical interpretation)

Let 7 be a general £L7 TBox in i.normal form and 7 * the i.saturated TBox
obtained by exhaustive application of the classification rules.

The canonical interpretation Z7- induced by T * is defined as follows:

AT ={M | M is a set of concept names in sig(7T) that occurs in T *},
Al ={M e A" | M C {A} € T*},
sl ={(M,N) € AT x AT | M C 3s.N € T* and N is maximal,
i.e., thereisno N’ 2 N suchthat M C 3s.N' € T*} U
{(N,M) e A" x AT | M E 35 .N € T*and N is maximal,
i.e., thereisno N’ 2 N suchthat M C Js~.N' € T*}.
A concept name in sig(7); s role name in sig(T).
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Classification algorithm [ completeness

Dresden

Lemma 6.23

Let r be a role name or the inverse of a role name. Then
rir={(M,N) e AT x AT | M C Ir.N € T*, N maximal} U
{(N,M) e A" x AIm | M C 3r~.N € T*, N maximal}.

Proof: blackboard.

Lemma 6.24

The canonical interpretation induced by 7 * is a model of
the i.saturated TBox 7T *.

Proof: blackboard.
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Classification algorithm [ completeness

Dresden

Example (maximality condition needed)

Consider Example 6.19, where all the 7 -i.sequents

{A} C Ir. M for M C {Aq,..., A}
belong to T ™.

We have ({A}, {Ay,..., A }) €,

but ({A}, M) & r%. for any strict subset M C {Ay, ..., A,}.

In fact, such a role relationship would violate one of the GClIs

[AY CVr {4}
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Classification algorithm [ completeness

Lemma 6.25 (completeness)

Let A, B in sig(T ) be such that { A} occurs in 7.
Then 7 = A C Bimplies {A} = {B} € T".

Proof: blackboard.

Theorem 6.26

Subsumption in £ L7 w.r.t. general TBoxes is decidable in exponential time.

Proof: blackboard.
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Classification algorithm J for ££7 applied to ££

We can show that the algorithm for £L7 runs in polynomial time if it receives
a general £L TBox as input.

EL-T-i.sequents are T -i.sequents satisfying the following restrictions:
1. the only sets occurring in them are the empty set and singleton sets,

2. value restrictions in these 7 -i.sequents are only w.r.t. inverses of role
names;

3. existential restrictions in these 7 -i.sequents are only w.r.t. role names.

If we start with an €L TBox 7, then the corresponding i.normalised TBox T

(written as a set of 7 -i.sequents) contains only £ L-7 -i.sequents.
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Classification algorithm J for ££7 applied to ££

Lemma 6.27

There are only polynomially many £ L£-7 -i.sequents in the size of 7T .

In addition, applying a classification rule for ££7 to a set 7' of
EL-T -i.sequents yields a set of £L-T -i.sequents.

Proof: blackboard.

Proposition 6.28

The subsumption algorithm for £ L7 yields a polynomial-time

decision procedure for subsumption in £ L.

Proof: blackboard.
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Classification algorithm J for ££7 is exponential

Dresden

In Example 6.19, the i.saturated TBox 7 contains exponentially many

T -i.sequents,

In the following example, one needs to derive exponentially many 7 -i.sequents
before the consequence { A} C { B} can be derived.

Example 6.29 (unavoidable exponential blowup)

{A} C {X;}for0<i<n-—1,
0 30,
(X, Xo,..., Xi 1} T YWr{X;j}for0<i<n-—1,
(X, Xo,...,X; 1} C W X;}for0<i<n-—1,
(X, X;} C Vr{X;}for0<j<i<n-1,
{(X;, X;} E Wr{Xj}for0<j<i<n-—1,
{Xo,..., Xn1} T {B},
{B} C Vr {B}.
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