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6.1 Subsumption in EL 145

CR1
A ⊑ A

CR2
A ⊑ ⊤

CR3
A1 ⊑ A2 A2 ⊑ A3

A1 ⊑ A3

CR4
A ⊑ A1 A ⊑ A2 A1 ⊓A2 ⊑ B

A ⊑ B

CR5
A ⊑ ∃r.A1 A1 ⊑ B1 ∃r.B1 ⊑ B

A ⊑ B

Fig. 6.2. The classification rules for EL.

6.1.2 The Classification Procedure

Let T be a general EL TBox in normal form. We start with the GCIs
in T and add implied GCIs using appropriate inference rules. All the
GCIs generated in this way are of a specific form.

Definition 6.7. A T -sequent is a GCI of the form

A ⊑ B, A1 ⊓ A2 ⊑ B, A ⊑ ∃r.B, or ∃r.A ⊑ B,

where A,A1, A2, B are concept names in sig(T ) or the top-concept ⊤,
and r is a role name in sig(T ).

Obviously, the overall number of T -sequents is polynomial in the size
of T , and every GCI in T is a T -sequent. A set of T -sequents consists
of GCIs, and thus is a TBox. Inspired by its use in sequent calculi,
we employ the name sequent rather than GCI to emphasize the fact
that new T -sequents can be derived using inference rules. The prefix T
specifies the original TBox and restricts T -sequents to being normalised
GCIs containing only concept and role names from sig(T ).
Given the normalised input TBox T , we define the current TBox T ′

to be initially T , and then add new T -sequents to T ′ by applying the
classification rules of Figure 6.2. The rules given in this figure are, of
course, not concrete rules, but rule schemata. To build a concrete in-
stance of such a rule schema, the meta-variablesA,A1, A2, B,B1 must be
replaced by a concrete EL concept and the meta-variable r by a concrete
role name. However, it is important to note that only instantiations are
allowed for which all the GCIs occurring in the rule are T -sequents. A
rule instance obtained in this way is then to be read as follows: if all
the T -sequents above the line occur in the current TBox T ′, then add
the T -sequent below the line to T ′ unless it already belongs to T ′. To
simplify notation, we will in the following dispense with drawing a strict
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i.CR1
K ⊑ {A}

if A ∈ K and K occurs in T ′

i.CR2
M ⊑ {B} for all B ∈ K K ⊑ C

M ⊑ C
if M occurs in T ′

i.CR3
M2 ⊑ ∃r.M1 M1 ⊑ ∀r−.{A}

M2 ⊑ {A}

i.CR4
M1 ⊑ ∃r.M2 M1 ⊑ ∀r.{A}

M1 ⊑ ∃r.(M2 ∪ {A})

Fig. 6.3. The classification rules for ELI.

As in the previous section, the rules given in this figure are actually
rule schemata. To build a concrete instance of such a rule schema, the
meta-variables K,M,M1,M2 must be replaced by sets of concept names
in sig(T ), the meta-variable A by a concept name in sig(T ), and the
meta-variable r by a role name in sig(T ) or the inverse of a role name
in sig(T ). The meta-variable C can be replaced by any expression that
is an admissible right-hand side of a T -i.sequent.
For the rule schema i.CR1, only instantiations are allowed for which the

set of concept names K actually occurs explicitly in some T -i.sequent in
the current TBox T ′. The reason for this restriction is that without it the
procedure would always generate an exponential number of T -i.sequents
since there are exponentially many sets K of concept names in sig(T ).
The analogous restriction on M in rule i.CR2 is needed in the case where
K = ∅. In fact, in this case the condition “M ⊑ {B} for all B ∈ K”
is trivially satisfied for all sets M of concept names in sig(T ). Thus,
without the restriction, the presence of a T -i.sequent of the form ∅ ⊑ C
would cause the generation of exponentially many T -i.sequents of the
form M ⊑ C.
Though in general the generation of exponentially many T -i.sequents

cannot be avoided, the restriction on the applicability of rules i.CR1 and
i.CR2 to sets K and M , respectively, already occurring in T ′ prevent
such an explosion in cases where it is not needed.

Example 6.17. For example, if T = {A ⊑ B}∪ {Ai ⊑ Ai | 1 ≤ i ≤ n},
then we have T |= M ∪{A} ⊑ {B} for all (exponentially many) sets ∅ ≠
M ⊆ {A1, . . . , An}. However, due to the restriction on the applicability
of rule i.CR1, none of these T -i.sequents is actually generated by the
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