

Faculty of Computer Science Institute of Theoretical Computer Science, Chair of Automata Theory

Automata and Logic

Winter Semester 2018/2019

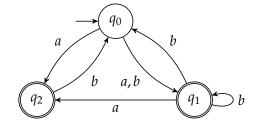
10th October 2018

Exercise Sheet 1 Regular Languages, Finite Monoids, and Logical Formulae

PD Dr.-Ing. habil. Anni-Yasmin Turhan, Dipl.-Math. Francesco Kriegel

Exercise 1.1 Fix the alphabet $\Sigma := \{a, b\}$ and let $\alpha := a^+b^* + b^+a^*$ be a regular expression over Σ . Give a regular expression β for the complement language of α , i.e., find some β describing the set of words over Σ that are not expressed by α .

Exercise 1.2 Consider the non-deterministic finite automaton $\mathcal{A} := (\{q_0, q_1, q_2\}, \{a, b\}, \{q_0\}, \Delta, \{q_1, q_2\})$ the transition relation Δ of which is graphically described below.



Apply the power-set construction to A in order to obtain a *deterministic* finite automaton that accepts the same language as A.

Exercise 1.3 For a language $L \subseteq \Sigma^*$ over some finite alphabet Σ , the *Nerode right congruence* ρ_L is defined as follows. For any $u, v \in \Sigma^*$, it holds true that

 $u \rho_L v$ if, and only if, $uw \in L \Leftrightarrow vw \in L$ for all $w \in \Sigma^*$.

We define the deterministic finite automaton $A_L := (Q_L, \Sigma, q_L, \delta_L, F_L)$ with the following components.

$$Q_L \coloneqq \{ [u]_{\rho_L} \mid u \in \Sigma^* \}$$
 where $[u]_{\rho_L} \coloneqq \{ v \in \Sigma^* \mid u \rho_L v \}$

 $q_L \coloneqq [arepsilon]_{
ho_L}$ where arepsilon denotes the empty word

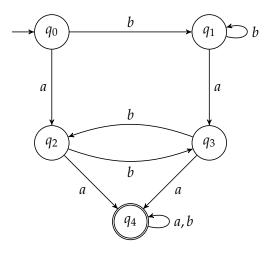
$$\delta_L([u]_{\rho_L}, a) \coloneqq [ua]_{\rho_L}$$
 for $u \in \Sigma^*$ and $a \in \Sigma$

$$F_L := \{ [u]_{\rho_L} \mid u \in L \}$$

Show that, for each regular language *L*, the following statements hold true.

- (a) \mathcal{A}_L is well-defined.
- (b) A_L is minimal (w.r.t. the number of states), i.e., for every deterministic automaton $A = (Q, \Sigma, q_0, \delta, F)$ with L(A) = L, we have $|Q_L| \le |Q|$.

Exercise 1.4 Let A be the finite automaton that accepts words over the alphabet $\Sigma := \{a, b\}$ and is graphically described as follows.



Construct a minimal automaton \mathcal{A}' such that $L(\mathcal{A}') = L(\mathcal{A})$.

Exercise 1.5 Prove the following claims by devising appropriate decision procedures.

- (a) The emptiness problem for regular languages is decidable.
- (b) The inclusion problem for regular languages is decidable.