

Faculty of Computer Science Institute of Theoretical Computer Science, Chair of Automata Theory

Automata and Logic

Winter Semester 2018/2019

17th October 2018

Exercise Sheet 2 Regular Languages, Finite Monoids, and Logical Formulae

PD Dr.-Ing. habil. Anni-Yasmin Turhan, Dipl.-Math. Francesco Kriegel

Exercise 2.1 Prove that the language $L := \{a^n b^n \mid n \ge 0\}$ is *not* regular using Nerode's Theorem.

Exercise 2.2 Let $\mathcal{A} = (Q, \Sigma, q_0, \delta, F)$ be a deterministic finite automaton. In the lecture, we defined the relations $\sim_{\mathcal{A}}, \sim_0, \sim_1, \ldots \subseteq Q \times Q$ as follows:

•
$$q \sim_{\mathcal{A}} q'$$
 iff $L(\mathcal{A}_q) = L(\mathcal{A}_{q'})$;

- $q \sim_0 q'$ iff $\{q,q'\} \subseteq F$ or $\{q,q'\} \cap F = \emptyset$;
- $q \sim_{i+1} q'$ iff $q \sim_i q'$ and $\delta(q, a) \sim_i \delta(q', a)$ for all $a \in \Sigma$.

Prove that there exists an $n \in \mathbb{N}$ such that $\sim_n = \sim_{\mathcal{A}}$.

Exercise 2.3 Let $M := \{1, m\}$ with $1 \neq m$. Determine all operations \circ such that $(M, \circ, 1)$ is a monoid.

Exercise 2.4 Consider the monoid $(\mathbb{Z}, +, 0)$ and the following relations on \mathbb{Z} , where $3 \mid z$ denotes that z is divided by 3 without remainder.

- $z_1R_1z_2$ iff $3 \mid (z_1 z_2)$;
- $z_1R_2z_2$ iff $3 | z_1$ and $3 | z_2$, or $3 \nmid z_1$ and $3 \nmid z_2$.

For each $z \in \mathbb{Z}$, $[z]_i$ denotes the equivalence class of z w.r.t. the relation R_i . We now define the monoids $(M_i, \circ_i, 1_i)$ for $i \in \{1, 2\}$ as follows:

- $M_i \coloneqq \{ [z]_i \mid z \in \mathbb{Z} \}$
- $[z]_i \circ_i [z']_i := [z+z']_i$
- $1_i \coloneqq [0]_i$

Prove the following:

- (a) R_1 and R_2 are both equivalence relations.
- (b) R_1 is a congruence relation, but R_2 is not.
- (c) $(M_1, \circ_1, 1_1)$ is well-defined, but $(M_2, \circ_2, 1_2)$ is not.