Exercise 3.1 Let Σ be an alphabet and $(M, \circ, 1)$ a monoid. Prove that every function $f : \Sigma \to M$ can be uniquely extended to a homomorphism $\phi : \Sigma^* \to M$.

Hint. If $f : A \to C$ and $g : B \to C$ are functions such that $A \subseteq B$, then we say that g extends f if $g(a) = f(a)$ for each $a \in A$.

Exercise 3.2 Consider the monoids $M_i := (\{1, a, b\}, \circ_i, 1)$ for $i \in \{1, 2\}$, where \circ_1 is given by the following table:

<table>
<thead>
<tr>
<th>\circ_1</th>
<th>1</th>
<th>a</th>
<th>b</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1</td>
<td>a</td>
<td>b</td>
</tr>
<tr>
<td>a</td>
<td>a</td>
<td>a</td>
<td>b</td>
</tr>
<tr>
<td>b</td>
<td>b</td>
<td>a</td>
<td>b</td>
</tr>
</tbody>
</table>

and $x \circ_2 y := y \circ_1 x$ for all $x, y \in \{1, a, b\}$.

For each $i \in \{1, 2\}$, find a regular language $L_i \subseteq \{a, b\}^*$ such that M_i is the syntactic monoid of L_i, or prove that no such language exists.

Exercise 3.3 Let $\Sigma := \{a, b\}$, $M := \{0, 1, 2\}$, and let $\circ : M \times M \to M$ be defined as $x \circ y := (x + y) \mod 3$. We define mappings $\phi, \phi' : \Sigma^* \to M$ by setting $\phi(w) := |w| \mod 3$ and $\phi'(w) := |w|_a \mod 3$, where $|w|$ denotes the length of w and $|w|_a$ the number of occurrences of the symbol a in w.

(a) Show that both ϕ and ϕ' are homomorphisms from $(\Sigma^*, \cdot, \varepsilon)$ into $(M, \circ, 0)$.

(b) For each of the languages $\phi^{-1}(\{0, 2\}), \phi'^{-1}(\{1\})$ and $(\phi')^{-1}(\{1\})$ devise a finite automaton that recognises the language.

Exercise 3.4 Let Σ be an alphabet, $L \subseteq \Sigma^*$ a language, and $(M, \circ, 1)$ a monoid. Prove that L is accepted by $(M, \circ, 1)$ if, and only if, \overline{L} is also accepted by $(M, \circ, 1)$.

Exercise 3.5 Determine the syntactic monoid of the language described by a^*ba^*.
Exercise 3.6 Let \(L \subseteq \Sigma^* \), and \(\approx \) be an equivalence relation on \(\Sigma^* \). Consider the following property:

For all \(u, v \in \Sigma^* \), if \(u \in L \) and \(u \approx v \), then \(v \in L \). \((\ast)\)

(a) Prove that the syntactical congruence \(\sim_L \) has property \((\ast)\).

Hint. The proof of Corollary 1.13 from the lecture depends on this fact.

(b) Show that \(\sim_L \) is the coarsest congruence relation with property \((\ast)\).

Hint. An equivalence relation \(\approx_2 \) is *coarser* than \(\approx_1 \) if, for every \(x, y \), \(x \approx_1 y \) implies \(x \approx_2 y \). (In particular, \(\approx_2 \) has at most as many equivalence classes as \(\approx_1 \).)

(c) Show that the Nerode right congruence \(\rho_L \) is the coarsest right congruence with property \((\ast)\).