TECHNISCHE
UNIVERSITÄT
DRESDEN

Faculty of Computer Science Institute of Theoretical Computer Science, Chair of Automata Theory

Automata and Logic

Exercise Sheet 3

24th October 2018

Regular Languages, Finite Monoids, and Logical Formulae

PD Dr.-Ing. habil. Anni-Yasmin Turhan, Dipl.-Math. Francesco Kriegel

Exercise 3.1 Let Σ be a finite alphabet and $(M, \circ, 1)$ a monoid. Prove that every function $f: \Sigma \rightarrow M$ can be uniquely extended to a homomorphism $\phi: \Sigma^{*} \rightarrow M$.

Hint. If $f: A \rightarrow C$ and $g: B \rightarrow C$ are functions such that $A \subseteq B$, then we say that g extends f if $g(a)=f(a)$ for each $a \in A$.

Exercise 3.2 Consider the monoids $M_{i}:=\left(\{1, a, b\}, \circ_{i}, 1\right)$ for $i \in\{1,2\}$, where \circ_{1} is given by the following table:

\circ_{1}	1	a	b
1	1	a	b
a	a	a	b
b	b	a	b

and $x \circ_{2} y:=y \circ_{1} x$ for all $x, y \in\{1, a, b\}$.
For each $i \in\{1,2\}$, find a regular language $L_{i} \subseteq\{a, b\}^{*}$ such that M_{i} is the syntactic monoid of L_{i}, or prove that no such language exists.

Exercise 3.3 Let $\Sigma:=\{a, b\}, M:=\{0,1,2\}$, and let $\circ: M \times M \rightarrow M$ be defined as $x \circ y:=(x+$ $y) \bmod 3$. We define mappings $\phi, \phi^{\prime}: \Sigma^{*} \rightarrow M$ by setting $\phi(w):=|w| \bmod 3$ and $\phi^{\prime}(w):=|w|_{a} \bmod 3$, where $|w|$ denotes the length of w and $|w|_{a}$ the number of occurrences of the symbol a in w.
(a) Show that both ϕ and ϕ^{\prime} are homomorphisms from $\left(\Sigma^{*}, \cdot, \varepsilon\right)$ into $(M, 0,0)$.
(b) For each of the languages $\phi^{-1}(\{0,2\}), \phi^{-1}(\{1\})$ and $\left(\phi^{\prime}\right)^{-1}(\{1\})$ devise a finite automaton that recognises the language.

Exercise 3.4 Let Σ be a finite alphabet, $L \subseteq \Sigma^{*}$ a language, and $(M, \circ, 1)$ a monoid. Prove that L is accepted by $(M, \circ, 1)$ if, and only if, \bar{L} is also accepted by $(M, \circ, 1)$.

Exercise 3.5 Determine the syntactic monoid of the language described by $a^{*} b a^{*}$.

Exercise 3.6 Let $L \subseteq \Sigma^{*}$ for some finite alphabet Σ, and \approx be an equivalence relation on Σ^{*}. Consider the following property:

$$
\begin{equation*}
\text { For all } u, v \in \Sigma^{*} \text {, if } u \in L \text { and } u \approx v \text {, then } v \in L \text {. } \tag{*}
\end{equation*}
$$

(a) Prove that the syntactical congruence \sim_{L} has property $(*)$.

Hint. The proof of Corollary 1.13 from the lecture depends on this fact.
(b) Show that \sim_{L} is the coarsest congruence relation with property $(*)$.

Hint. An equivalence relation \approx_{2} is coarser than \approx_{1} if, for every $x, y, x \approx_{1} y$ implies $x \approx_{2} y$. (In particular, \approx_{2} has at most as many equivalence classes as \approx_{1}.)
(c) Show that the Nerode right congruence ρ_{L} is the coarsest right congruence with property $(*)$.

