Exercise 4.1 Show that any submonoid of a finite group is also a group.

Exercise 4.2 Let V be an M-variety. Show that $L(V)_\Sigma$ is closed under union without using Thm. 1.22 from the lecture.

Exercise 4.3 Let Σ be an alphabet. Prove or refute the following claims:

(a) Every regular language $L \subseteq \Sigma^*$ is accepted by its syntactic monoid.

(b) If $L \subseteq \Sigma^*$ is accepted by a finite group, then the syntactic monoid of L is a finite group.

(c) For every regular language $L \subseteq \Sigma^*$, the syntactic monoid M_L is the smallest monoid accepting L; i.e., for every monoid M accepting L, we have $|M_L| \leq |M|$.

(d) For a word $w = a_1 \ldots a_n$, let \overline{w} denote the mirror image of w, i.e., $\overline{w} = a_n \ldots a_1$. For a language $L \subseteq \Sigma^*$, we define $\overline{L} := \{\overline{w} \mid w \in L\}$. **Claim:** If the minimal automaton for L has n states, then the minimal automaton for \overline{L} has also n states.

Exercise 4.4 Let L_1 be the language over $\{a\}$ described by a^+, and let L_2 be the language over $\{a, b\}$ described by $(a + b)^*b(a + b)^*$.

(a) Is there a monoid that accepts both L_1 and L_2?

(b) Are the syntactic monoids of those languages isomorphic?

Exercise 4.5 Let L_1 and L_2 be two languages over the same alphabet Σ that are accepted by the same monoid $(M, \circ, 1)$. Prove or refute the following statements:

(a) M accepts $L_1 \cap L_2$.

(b) M accepts $L_1 \cup L_2$.

(c) M accepts $L_1 \cdot L_2$.

Exercise 4.6 Let V be the M-variety of all commutative finite groups. Show that there exists a language $L \subseteq \{a\}^*$ such that $L \in L(V)_{\{a\}}$ but $L \notin L(V)_{\{a,b\}}$.

1