

Faculty of Computer Science Institute of Theoretical Computer Science, Chair of Automata Theory

Automata and Logic

Winter Semester 2018/2019 7th November 2018

Exercise Sheet 4 Regular Languages, Finite Monoids, and Logical Formulae

PD Dr.-Ing. habil. Anni-Yasmin Turhan, Dipl.-Math. Francesco Kriegel

Exercise 4.1 Show that any submonoid of a finite group is also a group.

Exercise 4.2 Let *V* be an M-variety. Show that $L(V)_{\Sigma}$ is closed under union *without* using Proposition 1.22.

Exercise 4.3 Let Σ be a finite alphabet. Prove or refute the following claims.

- (a) Every regular language $L \subseteq \Sigma^*$ is accepted by its syntactic monoid.
- (b) If $L \subseteq \Sigma^*$ is accepted by a finite group, then the syntactic monoid of L is a finite group.
- (c) For every regular language $L \subseteq \Sigma^*$, the syntactic monoid M_L is the smallest monoid accepting L, i.e., for every monoid M accepting L, we have $|M_L| \leq |M|$.
- (d) For a word $w = a_1 \dots a_n$, let \overleftarrow{w} denote the mirror image of w, i.e., $\overleftarrow{w} := a_n \dots a_1$. For a language $L \subseteq \Sigma^*$, we define $\overleftarrow{L} := {\overleftarrow{w} \mid w \in L}$. **Claim:** If the minimal automaton for L has n states, then the minimal automaton for \overleftarrow{L} has also n states.

Exercise 4.4 Let L_1 be the language over $\{a\}$ described by a^+ , and let L_2 be the language over $\{a, b\}$ described by $(a + b)^*b(a + b)^*$.

- (a) Is there a monoid that accepts both L_1 and L_2 ?
- (b) Are the syntactic monoids of those languages isomorphic?

Exercise 4.5 Let L_1 and L_2 be two languages over the same finite alphabet Σ that are accepted by the same monoid $(M, \circ, 1)$. Prove or refute the following statements.

- (a) M accepts $L_1 \cap L_2$.
- (b) M accepts $L_1 \cup L_2$.
- (c) M accepts $L_1 \cdot L_2$.

Exercise 4.6 Let *V* be the M-variety of all commutative finite groups. Show that there exists a language $L \subseteq \{a\}^*$ such that $L \in L(V)_{\{a\}}$ but $L \notin L(V)_{\{a,b\}}$.