

Faculty of Computer Science Institute of Theoretical Computer Science, Chair of Automata Theory

Automata and Logic

Winter Semester 2018/2019

14th November 2018

Exercise Sheet 5 Regular Languages, Finite Monoids, and Logical Formulae

PD Dr.-Ing. habil. Anni-Yasmin Turhan, Dipl.-Math. Francesco Kriegel

Exercise 5.1 Prove or refute the following claim. There is a language $L \subseteq \{a, b\}^*$ such that its syntactic semigroup S_L and its syntactic monoid M_L are isomorphic.

Exercise 5.2 (a) For each of the following words over the alphabet $\{0,1\}^k$, give a corresponding interpretation over the predicate symbols P_1, \ldots, P_k as discussed in the lecture.

$$k = 2: \quad (1,1), (1,1), (0,1), (1,0)$$

$$k = 3: \quad (0,0,0), (1,0,0), (0,1,0), (0,0,1)$$

$$k = 3: \quad (1,1,0), (1,0,1), (1,1,1), (1,1,0)$$

(b) Describe all interpretations that correspond to words of the language

$$L(((0,1)\cdot(1,0))^+) \subseteq (\{0,1\}^2)^+.$$

Exercise 5.3 Let $\Sigma := \{a, b\}$. For each of the following regular expressions r_i , give a first-order formula ϕ_i such that $L(r_i) \setminus \{\varepsilon\} = L(\phi_i)$.

(a) $r_1 \coloneqq \Sigma^*$

(b)
$$r_2 \coloneqq \varepsilon$$

- (c) $r_3 \coloneqq (abb^*)^*$
- (d) $r_4 := a^*b^* + b^*a^*$
- (e) $r_5 \coloneqq (aaa \cdot \Sigma^*) + b^*$

Exercise 5.4 Let (S, \circ) be a finite semigroup, $m \in S$, and $i, k, \ell \in \mathbb{N} \setminus \{0\}$ defined as in the proof of Proposition 2.4. Show that if k is minimal with respect to the property described in the proof, then

$$(\{m^{i},...,m^{i+k-1}\},\circ,m^{\ell})$$

is a group. Is it still a group if k is not minimal?

Exercise 5.5 Let $\Sigma := \{a, b\}$ and L_1, L_2 be the languages accepted by the automata displayed below.

Use the proof of Corollary 2.10 to show that $L_1 \notin (B_0)_{\Sigma}$ and $L_2 \in (B_0)_{\Sigma}$. Moreover, represent L_2 as a Boolean combination of languages from the set

$$\{u\Sigma^* \mid u \in \Sigma^*\} \cup \{\Sigma^*u \mid u \in \Sigma^*\}.$$

Exercise 5.6 Prove or refute the following claims.

- (a) For every finite alphabet Σ and any word $w \in \Sigma^*$, we have $\{w\} \in (B_0)_{\Sigma}$.
- (b) For every two finite alphabets Σ and Σ' with $\Sigma \subseteq \Sigma'$, and every language $L \subseteq \Sigma^*$, we have: if $L \in (B_0)_{\Sigma}$, then $L \in (B_0)_{\Sigma'}$.
- (c) Let $(M, \circ, 1)$ be a monoid, where 1 is the only idempotent element of M. Then $(M, \circ, 1)$ is a group.
- (d) Let (S, \circ) be a semigroup with $e \in S$ being idempotent. Then (eSe, \circ, e) is the largest submonoid of *S* with *e* as unit element.
- (e) Let $(S, \circ) \in \widehat{\mathbb{D}}$. If there exists an element $s \in S$ such that (S, \circ, s) is a monoid, then |S| = 1.