

Faculty of Computer Science Institute of Theoretical Computer Science, Chair of Automata Theory

## **Automata and Logic**

Winter Semester 2018 / 2019

**Exercise Sheet 6** 

22nd November 2018

## **Generalized-Definite Languages and Quantifier-Free Formulae, Star-Free Languages**

PD Dr.-Ing. habil. Anni-Yasmin Turhan, Dipl.-Math. Francesco Kriegel

**Exercise 6.1** Let V be the class of all finite semigroups S such that, for any idempotent element  $e \in S$ , we have Se = e. Show that V is an S-variety ultimately defined by

$$(yx^n=x^n)_{n\geq 1}.$$

**Exercise 6.2** Let  $\Sigma := \{a, b, c, d\}$ .

(a) For  $L \subseteq \Sigma^*$  with

 $L \coloneqq \{ w \mid w \in \Sigma^* \text{ and } w \text{ starts with } a \text{ or } b \}$  $\cap \{ w \mid w \in \Sigma^*, \ |w| \ge 3, \text{ and } w \text{ starts and ends with the same symbol } \},$ 

give a quantifier-free formula  $\phi$  using the signature  $\{Q_a,Q_b,Q_c,Q_d,<,\min,\max,s,p\}$  such that  $L(\phi)=L$ .

(b) Let

$$\phi \coloneqq \neg(\neg Q_a(s(s(p(s(\min))))) \lor (s(\min) < p(p(\max)))).$$

Use the method described in the proof of Proposition 2.11 to describe  $L(\phi)$  as a Boolean combination of languages from the set  $\{u\Sigma^*, \Sigma^*u \mid u \in \Sigma^*\}$ .

**Exercise 6.3** Let  $\Sigma$  be a finite alphabet. A language  $L \subseteq \Sigma^*$  is called *definite* for  $\Sigma$  if there exists an  $n \in \mathbb{N}$  such that we have for all  $w \in L$ :

if 
$$w = uv$$
 with  $|u| = n$ , then  $u\Sigma^* \subseteq L$ .

Show that  $L \subseteq \Sigma^*$  is definite for  $\Sigma$  if, and only if, L is a Boolean combination of languages of the form  $\{ w\Sigma^* \mid w \in \Sigma^* \}$ .

**Exercise 6.4** Let  $\Sigma := \{0,1\}^k$ . Show that the following statements are equivalent.

- L is definite for  $\Sigma$ .
- There exists a quantifier-free closed first-order formula  $\phi$  over the signature  $\{P_1, \dots, P_k, <, \min, s\}$  with  $L(\phi) = L \setminus \{\varepsilon\}$ .

**Exercise 6.5** Let  $\Sigma$ ,  $\Gamma$  be two finite alphabets, and let  $L \subseteq \Sigma^*$ . Prove or refute the following claims.

- (a)  $L \in \mathsf{SF}_\Sigma \Rightarrow L \in \mathsf{SF}_{\Sigma \cup \Gamma}$
- (b)  $L \in \mathsf{SF}_{\Sigma \cup \Gamma} \Rightarrow L \in \mathsf{SF}_{\Sigma}$

**Exercise 6.6** For  $\Sigma := \{a, b\}$ , check whether the following languages are star-free.

- (a)  $L_1 := (ab)^*$
- (b)  $L_2 := \{ w \mid |w|_a = 3k \text{ for some } k \in \mathbb{N} \}$
- (c)  $L_3 := a(aba)^*b$

For each  $L_i$ , use Proposition 3.6 or give a star-free description of the language.