

Faculty of Computer Science Institute of Theoretical Computer Science, Chair of Automata Theory

Automata and Logic

Exercise Sheet 7

Winter Semester 2018/2019 29th November 2018

Star-Free Languages

PD Dr.-Ing. habil. Anni-Yasmin Turhan, Dipl.-Math. Francesco Kriegel

Exercise 7.1 Let $\Sigma := \{a\}$. Recall from Definition 3.10 that $L_{k,n}$ denotes the set of all first-order formulae over the signature $\{=, <, Q_a\}$ containing k free variables and having quantifier depth at most n. For the following combinations of k and n, determine a *finite* set $\Gamma_{k,n}$ such that, for every formula $\phi \in L_{k,n}$, there is a formula $\psi \in \Gamma_{k,n}$ with $\phi \equiv \psi$. Determine also the equivalence classes of $\equiv_{k,n}$.

- (a) k = 1, n = 0
- (b) k = 2, n = 0
- (c) k = 0, n = 1
- (d) k = 1, n = 1

For each of the following formulae, find an equivalent finite disjunction of suitable formulae ϕ_W where W is some equivalence class of $\equiv_{2,0}$.

(i) true

(ii)
$$\neg (x < y) \lor x = y$$

(iii) false

Exercise 7.2 Consider the Ehrenfeucht-Fraïssé games on the following words.

- (a) *ab* and *ba*
- (b) aaabaaa and aabaaa

For each case, determine the smallest number k such that Player I has a winning strategy in k moves.

Exercise 7.3 Consider the Ehrenfeucht-Fraïssé games on the words a^i and a^j with i < j.

- (a) Describe an optimal winning strategy for Player I, i.e., a strategy such that Player I wins with a minimal number of moves.
- (b) Prove that Player I has a winning strategy on a^i and a^j in *m* moves if $i < 2^m 1$.