

Faculty of Computer Science Institute of Theoretical Computer Science, Chair of Automata Theory

Automata and Logic

Winter Semester 2018 / 2019

Exercise Sheet 8 Infinite Words and Büchi-Automata

5th December 2018

PD Dr.-Ing. habil. Anni-Yasmin Turhan, Dipl.-Math. Francesco Kriegel

Exercise 8.1 Fix the alphabet $\Sigma := \{a, b\}$, and let the language $L \subseteq \Sigma^*$ be defined by the regular expression $(a^*bb^*)^*$. Show that the following equation holds true.

 $\lim L = \{ \alpha \in \Sigma^{\omega} \mid \text{if } \alpha(i) = a, \text{ then there is some } j > i \text{ with } \alpha(j) = b \}$

Exercise 8.2 For each of the following ω -regular languages over the alphabet $\Sigma := \{a, b, c\}$, check whether it is ω -regular and if so, devise a Büchi-automaton that recognizes it.

- (a) $L_1 \coloneqq \{ \alpha \in \Sigma^{\omega} \mid \exists i \in \mathbb{N} \colon \alpha(i, i+2) = abc \}$
- (b) $L_2 := \{ \alpha \in \Sigma^{\omega} \mid \{ i \in \mathbb{N} \mid \alpha(i, i+2) = abc \} \text{ is infinite } \}$
- (c) $L_3 := (a^+b^+c^+)^{\omega}$

Exercise 8.3 Let Σ be a finite alphabet, and consider languages $L, L_1, L_2 \subseteq \Sigma^*$. Prove or refute each of the following claims.

- (a) $(L_1 \cup L_2)^{\omega} \subseteq L_1^{\omega} \cup L_2^{\omega}$
- (b) $(L_1 \cup L_2)^{\omega} \supseteq L_1^{\omega} \cup L_2^{\omega}$
- (c) $\lim(L_1 \cup L_2) \subseteq \lim L_1 \cup \lim L_2$
- (d) $\lim(L_1 \cup L_2) \supseteq \lim L_1 \cup \lim L_2$
- (e) $L^{\omega} \subseteq \lim L^+$
- (f) $L^{\omega} \supseteq \lim L^+$
- (g) $\lim(L_1 \cdot L_2) \subseteq L_1 \cdot L_2^{\omega}$
- (h) $\lim(L_1 \cdot L_2) \supseteq L_1 \cdot L_2^{\omega}$

Exercise 8.4 Prove the following statements.

- (a) If $L \subseteq \Sigma^+$ is regular for some finite alphabet Σ , then there exists a non-deterministic finite automaton \mathcal{A} with only *one* final state such that $L = L(\mathcal{A})$.
- (b) If $L \subseteq \Sigma^*$ is regular for some finite alphabet Σ , then there exists a non-deterministic finite automaton \mathcal{A} with at most *two* final states such that $L = L(\mathcal{A})$.
- (c) There is *no* $k \ge 1$ such that, if $L \subseteq \Sigma^{\omega}$ is ω -regular for some finite alphabet Σ , then there exists a Büchi-automaton \mathcal{A} with at most k final states such that $L = L_{\omega}(\mathcal{A})$.

Hiut Consider the languages $a^{\omega} \cup b^{\omega}$, $a^{\omega} \cup b^{\omega} \cup c^{\omega}$,

Exercise 8.5 For each finite non-deterministic automaton A, let A_{det} denote the minimal deterministic finite automaton such that $L(A) = L(A_{det})$. Prove or refute the following claims.

- (a) $\lim L(\mathcal{A}) \subseteq L_{\omega}(\mathcal{A}_{det})$
- (b) $\lim L(\mathcal{A}) \supseteq L_{\omega}(\mathcal{A}_{det})$
- (c) $L_{\omega}(\mathcal{A}) \subseteq L_{\omega}(\mathcal{A}_{det})$
- (d) $L_{\omega}(\mathcal{A}) \supseteq L_{\omega}(\mathcal{A}_{det})$