Faculty of Computer Science Institute of Theoretical Computer Science, Chair of Automata Theory

Automata and Logic

Winter Semester 2018/2019

Exercise Sheet 8

5th December 2018
Infinite Words and Büchi-Automata
PD Dr.-Ing. habil. Anni-Yasmin Turhan, Dipl.-Math. Francesco Kriegel

Exercise 8.1 Fix the alphabet $\Sigma:=\{a, b\}$, and let the language $L \subseteq \Sigma^{*}$ be defined by the regular expression $\left(a^{*} b b^{*}\right)^{*}$. Show that the following equation holds true.

$$
\lim L=\left\{\alpha \in \Sigma^{\omega} \mid \text { if } \alpha(i)=a \text {, then there is some } j>i \text { with } \alpha(j)=b\right\}
$$

Exercise 8.2 For each of the following ω-regular languages over the alphabet $\Sigma:=\{a, b, c\}$, check whether it is ω-regular and if so, devise a Büchi-automaton that recognizes it.
(a) $L_{1}:=\left\{\alpha \in \Sigma^{\omega} \mid \exists i \in \mathbb{N}: \alpha(i, i+2)=a b c\right\}$
(b) $L_{2}:=\left\{\alpha \in \Sigma^{\omega} \mid\{i \in \mathbb{N} \mid \alpha(i, i+2)=a b c\}\right.$ is infinite $\}$
(c) $L_{3}:=\left(a^{+} b^{+} c^{+}\right)^{\omega}$

Exercise 8.3 Let Σ be a finite alphabet, and consider languages $L, L_{1}, L_{2} \subseteq \Sigma^{*}$. Prove or refute each of the following claims.
(a) $\left(L_{1} \cup L_{2}\right)^{\omega} \subseteq L_{1}^{\omega} \cup L_{2}^{\omega}$
(b) $\left(L_{1} \cup L_{2}\right)^{\omega} \supseteq L_{1}^{\omega} \cup L_{2}^{\omega}$
(c) $\lim \left(L_{1} \cup L_{2}\right) \subseteq \lim L_{1} \cup \lim L_{2}$
(d) $\lim \left(L_{1} \cup L_{2}\right) \supseteq \lim L_{1} \cup \lim L_{2}$
(e) $L^{\omega} \subseteq \lim L^{+}$
(f) $L^{\omega} \supseteq \lim L^{+}$
(g) $\lim \left(L_{1} \cdot L_{2}\right) \subseteq L_{1} \cdot L_{2}^{\omega}$
(h) $\lim \left(L_{1} \cdot L_{2}\right) \supseteq L_{1} \cdot L_{2}^{\omega}$

Exercise 8.4 Prove the following statements.
(a) If $L \subseteq \Sigma^{+}$is regular for some finite alphabet Σ, then there exists a non-deterministic finite automaton \mathcal{A} with only one final state such that $L=L(\mathcal{A})$.
(b) If $L \subseteq \Sigma^{*}$ is regular for some finite alphabet Σ, then there exists a non-deterministic finite automaton \mathcal{A} with at most two final states such that $L=L(\mathcal{A})$.
(c) There is no $k \geq 1$ such that, if $L \subseteq \Sigma^{\omega}$ is ω-regular for some finite alphabet Σ, then there exists a Büchi-automaton \mathcal{A} with at most k final states such that $L=L_{\omega}(\mathcal{A})$.

Exercise 8.5 For each finite non-deterministic automaton \mathcal{A}, let $\mathcal{A}_{\text {det }}$ denote the minimal deterministic finite automaton such that $L(\mathcal{A})=L\left(\mathcal{A}_{\text {det }}\right)$. Prove or refute the following claims.
(a) $\lim L(\mathcal{A}) \subseteq L_{\omega}\left(\mathcal{A}_{\text {det }}\right)$
(b) $\lim L(\mathcal{A}) \supseteq L_{\omega}\left(\mathcal{A}_{\text {det }}\right)$
(c) $L_{\omega}(\mathcal{A}) \subseteq L_{\omega}\left(\mathcal{A}_{\text {det }}\right)$
(d) $L_{\omega}(\mathcal{A}) \supseteq L_{\omega}\left(\mathcal{A}_{\text {det }}\right)$

