TECHNISCHE
UNIVERSITÄT

Automata and Logic

Winter Semester 2018/2019

Exercise Sheet 9

Infinite Words and Büchi-Automata
PD Dr.-Ing. habil. Anni-Yasmin Turhan, Dipl.-Math. Francesco Kriegel

Exercise 9.1 (a) Show that the construction used in the proof of Statement 1 in Lemma 4.7 does not work for automata in which the initial state is reachable from another state.
(b) Complete the proof of Lemma 4.7 by showing that $L_{1} \cup L_{2}$ is Büchi-recognizable if $L_{1}, L_{2} \subseteq \Sigma^{\omega}$ are Büchi-recognizable.

Exercise 9.2 Consider the alphabet $\Sigma:=\{a, b\}$, and let $L \subseteq \Sigma^{\omega}$ be the ω-language recognized by the following Büchi-automaton.

Find a number $n \geq 1$ and regular languages $U_{1}, V_{1}, \ldots, U_{n}, V_{n} \subseteq \Sigma^{*}$ such that

$$
\bigcup_{i=1}^{n} U_{i} \cdot V_{i}^{\omega}=L
$$

Exercise 9.3 Consider Büchi-automata with the following transition relation.

Check whether the recognized ω-language is empty for the following sets of final states.
(a) $\left\{q_{0}, q_{1}\right\}$
(b) $\left\{q_{2}, q_{3}\right\}$
(c) $\left\{q_{1}, q_{3}\right\}$

Exercise 9.4 Fix some finite alphabet Σ. Prove that, for every ω-regular language L over Σ, there is a Büchi-automaton \mathcal{A} such that $L_{\omega}(\mathcal{A})=L$ holds true and, for each state q of \mathcal{A} and for each symbol $a \in \Sigma$, there are at most two transitions of \mathcal{A} that start in q and read a.

