Exercise 9.1 (a) Show that the construction used in the proof of Statement 1 in Lemma 4.7 does not work for automata in which the initial state is reachable from another state.

(b) Complete the proof of Lemma 4.7 by showing that \(L_1 \cup L_2 \) is Büchi-recognizable if \(L_1, L_2 \subseteq \Sigma^\omega \) are Büchi-recognizable.

Exercise 9.2 Consider the alphabet \(\Sigma := \{a, b\} \), and let \(L \subseteq \Sigma^\omega \) be the \(\omega \)-language recognized by the following Büchi-automaton.

![Büchi-Automaton Diagram]

Find a number \(n \geq 1 \) and regular languages \(U_1, V_1, \ldots, U_n, V_n \subseteq \Sigma^* \) such that

\[
\bigcup_{i=1}^{n} U_i \cdot V_i^\omega = L.
\]
Exercise 9.3 Consider Büchi-automata with the following transition relation.

Check whether the recognized ω-language is empty for the following sets of final states.

(a) $\{q_0, q_1\}$
(b) $\{q_2, q_3\}$
(c) $\{q_1, q_3\}$

Exercise 9.4 Fix some finite alphabet Σ. Prove that, for every ω-regular language L over Σ, there is a Büchi-automaton \mathcal{A} such that $L_{\omega}(\mathcal{A}) = L$ holds true and, for each state q of \mathcal{A} and for each symbol $a \in \Sigma$, there are at most two transitions of \mathcal{A} that start in q and read a.