TECHNISCHE
UNIVERSITÄT
DRESDEN

Faculty of Computer Science Institute of Theoretical Computer Science, Chair of Automata Theory

Automata and Logic

Winter Semester 2018/2019

Exercise Sheet 10

Infinite Words and Büchi-Automata
PD Dr.-Ing. habil. Anni-Yasmin Turhan, Dipl.-Math. Francesco Kriegel

Exercise 10.1 Show that, for each sequence $\left(r_{n}\right)_{n \geq 0}$ of real numbers, there exists some infinite subsequence that is either strictly increasing, strictly decreasing, or constant.

Exercise 10.2 Define $\Sigma:=\{a, b\}$, and let $L \subseteq \Sigma^{\omega}$ be the ω-language recognized by the following Büchi-automaton.

Use the method from Corollary 4.22 to construct a Büchi-automaton that recognizes the complement language $\Sigma^{\omega} \backslash L$.

Exercise 10.3 Let $\Sigma:=\{a, b, c\}$ and consider the following transition system.

We derive four Muller automata $\mathcal{A}_{1}, \mathcal{A}_{2}, \mathcal{A}_{3}$, and \mathcal{A}_{4} by selecting corresponding sets of final states \mathcal{F}_{1}, $\mathcal{F}_{2}, \mathcal{F}_{3}$, and \mathcal{F}_{4}, respectively, as follows.
(a) $\mathcal{F}_{1}:=\left\{\left\{q_{0}, q_{3}\right\},\left\{q_{3}\right\}\right\}$
(b) $\mathcal{F}_{2}:=\left\{\left\{q_{0}, q_{1}\right\},\left\{q_{2}\right\}\right\}$
(c) $\mathcal{F}_{3}:=\left\{\left\{q_{0}, q_{1}, q_{2}\right\}\right\}$
(d) $\mathcal{F}_{4}:=\left\{\left\{q_{0}\right\},\left\{q_{0}, q_{1}\right\},\left\{q_{2}\right\},\left\{q_{0}, q_{1}, q_{2}\right\}\right\}$

For each index $i \in\{1, \ldots, 4\}$, determine the ω-language $L_{\omega}\left(\mathcal{A}_{i}\right)$.

