

Faculty of Computer Science Institute of Theoretical Computer Science, Chair of Automata Theory

Automata and Logic

Winter Semester 2018/2019

Exercise Sheet 11 Infinite Words and Logical Formulae

16th January 2019

PD Dr.-Ing. habil. Anni-Yasmin Turhan, Dipl.-Math. Francesco Kriegel

Exercise 11.1 For each of the following languages L_i , give an S1S-formula ϕ_i such that $L_{\omega}(\phi_i) = L_i$ holds true.

- (a) $L_1 \coloneqq (abb^*)^{\omega}$
- (b) $L_2 := ((aa)^+ (bb)^+)^{\omega}$
- (c) $L_3 \coloneqq (aaa)^+ b(a \cup b)^{\omega}$

Exercise 11.2 Transform the S1S-formula $P(\underline{0})$ into an equivalent S1S₀-formula.

Exercise 11.3 Fix the ω -language $L := (a^+b)^\omega \cup (b^+a)^\omega$. Use the proof of Proposition 5.4 to construct a closed S1S-formula ϕ that satisfies $L_\omega(\phi) = L$.

Exercise 11.4 A *Rabin-automaton* is a tuple $\mathcal{A} \coloneqq (Q, \Sigma, I, \Delta, \Omega)$ where Q, Σ, I , and Δ are defined as for non-deterministic Büchi-automata, and

$$\Omega \coloneqq \{(F_1, G_1), \ldots, (F_n, G_n)\}$$

is a finite set of pairs (F_i, G_i) such that $F_i, G_i \subseteq Q$.

For a word α , let $\text{path}_{\mathcal{A}}(\alpha)$ denote the set of all paths in \mathcal{A} labeled with α . For a path $p \in \text{path}_{\mathcal{A}}(\alpha)$, let $\inf(p)$ denote the set of all states that are visited infinitely often. The ω -language $L_{\omega}(\mathcal{A})$ recognized by \mathcal{A} is defined as

$$L_{\omega}(\mathcal{A}) := \{ \alpha \in \Sigma^{\omega} \mid \exists i \in \{1, \dots, n\} \exists p \in \mathsf{path}_{\mathcal{A}}(\alpha) \colon \mathsf{inf}(p) \cap F_i \neq \emptyset \text{ and } \mathsf{inf}(p) \cap G_i = \emptyset \}.$$

Show that every language recognized by a Rabin-automaton is also recognized by a Büchi-automaton.

 $L_{\omega}(\mathcal{A}).$ Hiur Fix some arbitrary Rabin-automaton \mathcal{A} and construct an S1S-formula $\phi_{\mathcal{A}}$ defining the language