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Problem 1: View-based Identity Problem

asks queries w.r.t. OObtains Views

A view V is a finite collection of queries together with their answers

Consider subsumption & conjunctive queries (SELECT-JOIN-PROJECT in DBs)

At rôle r̂1
- queries through Or̂1 ⊆ OI

- obtains View Vr̂1

switch−−→ . . . switch−−→

Given an ontology OI

At rôle r̂k
- queries through Or̂k ⊆ OI

- obtains View Vr̂k

Is the identity of an anonymous x hidden w.r.t. Vr̂1 , . . . ,Vr̂k ?
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Ontologies

At rôle r̂1
- queries through Or̂1 ⊆ OI

- obtains View Vr̂1

switch−−→ . . . switch−−→

Given an ontology OI

At rôle r̂k
- queries through Or̂k ⊆ OI

- obtains View Vr̂k

Is the identity of an anonymous x hidden w.r.t. Vr̂1 , . . . ,Vr̂k ?

An ontology O consists of TBox T and ABox A.
A TBox T is a set of General Concept Inclusions (GCIs) C v D
→ background knowledge

An ABox A is a set of concept assertions C(a) and relationship assertions r(a, b)
→ knowledge about individuals
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Queries

At rôle r̂1
- queries through Or̂1 ⊆ OI

- obtains View Vr̂1

switch−−→ . . . switch−−→

Given an ontology OI

At rôle r̂k
- queries through Or̂k ⊆ OI

- obtains View Vr̂k

Is the identity of an anonymous x hidden w.r.t. Vr̂1 , . . . ,Vr̂k ?

1. Subsumption Query: q = C v D, where C and D are DL concepts

2. Conjunctive Query: q(~x)← ∃~y .conj(~x , ~y), where
~x are answer variables and ~y are existentially quantified variables.
conj(~x , ~y) is a conjunction of atoms A(z) or r(z , z ′).
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Views

At rôle r̂1
- queries through Or̂1 ⊆ OI

- obtains View Vr̂1

switch−−→ . . . switch−−→

Given an ontology OI

At rôle r̂k
- queries through Or̂k ⊆ OI

- obtains View Vr̂k

Is the identity of an anonymous x hidden w.r.t. Vr̂1 , . . . ,Vr̂k ?

Let q = C v D be a subsumption query. The answer for
q w.r.t. a rôle r̂ is {true} if

CI ⊆ DI for all models I of Or̂ .

Let q be a conjunctive query has n > 0 answer variables ~x .
The answer for q w.r.t. a rôle r̂ is a set of tuples of individuals ~t ∈ (NI )

n,
where each ~t replaces ~x and

I |= q(~t) for all models I of Or̂ .

A view Vr̂ is a finite set of pairs of query and answers 〈q, ans(q, r̂)〉
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The Identity Problem 1

Is the identity of an anonymous x hidden w.r.t. Vr̂1 , . . . ,Vr̂k ?

Identity Problem (O |= a =̇ b)

Given two individuals a, b and an ontology O, check whether

aI = bI for all models I of O

Identity to Instance: Given two individuals a, b, and an ontology O, it holds

O |= a =̇ b iff (O ∪ A(a)) |= A(b), where A is fresh

Only make sense for O formulated in a DL with equality power (with nominals,
number restrictions, or functional dependencies)

1F. Baader, D. Borchmann, and A. Nuradiansyah, Preliminary Results on the Identity
Problem in Description Logic Ontologies, DL Workshop 2017
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Hidden Identity

Is the identity of an anonymous x hidden w.r.t. Vr̂1 , . . . ,Vr̂k ?

NI = NKI ∪ NAI , sets of known and anonymous individuals, respectively

The identity of x ∈ NAI w.r.t. O is

idn(x ,O) = {a ∈ NKI | O |= x=̇a}

The identity of x ∈ NAI is hidden w.r.t. O iff idn(x ,O) = ∅.
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How to solve the View-based Identity Problem?

Construct an ontology that is compatible with all views Vr̂1 , . . . ,Vr̂k .

However, there are still variables ~y in some queries q in some Vr̂1 , . . . ,Vr̂k .

We need to remove those ~y .

Ground Query
Given an interpretation I, a CQ q, and a tuple ~t ∈ (NI )

n such that I |= q(~t),
a ground query q̂ is:

conj(~t, ~u), where ~u is a tuple of individuals.

obtained from q by replacing all variables in ~y with fresh individuals ay over ~u.

Canonical Ontology
The canonical ontology OV of Vr̂1 , . . . ,Vr̂k is defined as OV := (TV ,AV ) where

TV := {C v D | 〈C v D, {true}〉 ∈ Vr̂i for some i , 1 ≤ i ≤ k}

AV := {A(a) | 〈q, ~t〉 ∈ Vri ∧ A(a) is a conjunct in q̂, for some i , 1 ≤ i ≤ k} ∪

{r(a, b) | 〈q, ~t〉 ∈ Vri ∧ r(a, b) is a conjunct in q̂, for some i , 1 ≤ i ≤ k}.
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How to solve the View-based Identity Problem? 2

Theorem
The identity of x ∈ NAI is hidden w.r.t. Vr̂1 , . . . ,Vr̂k iff idn(x ,OV ) = ∅.

Complexity
The view-based identity problem in the DL L can be solved in

PTime if L is ELO,
ExpTime if L ∈ {ALCO,ALCQ},
NExpTime if L is ALCOIQ.

2F. Baader, D. Borchmann and A. Nuradiansyah, The Identity Problem in Description
Logic Ontologies and Its Application to View-Based Information Hiding, JIST2017
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Problem 2: k-Anonymity

Avoiding someone to know if the identity of x belongs to {a}.
Avoiding someone to know if the identity of x belongs to {a1, . . . , ak}
→ (Sweeney, 2002).

Such a formal protection model that is already well-investigated in DBs.

The Non k-Anonymity Problem
Let O be an ontology, x ∈ NAI , and a1, . . . , ak ∈ NKI .
x is not in k-Anonymity iff for all models I of O,

xI ∈ {aI1 , . . . , aIk }
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How to solve the k-Anonymity Problem?

the identity
problem

the instance
problem

the non k-anonymity
problem

reduced reduced

reduced (only for convex DLs)

Non k-Anonymity to Instance
Let O be formulated in a DL L with equality power, x ∈ NAI , a1, . . . , ak ∈ NKI .
It holds that for all models I of O,

xI ∈ {aI1 , . . . , aIk } iff O′ |= A(x),

where O′ := O ∪ {A(ai ) | 1 ≤ i ≤ k} and A is fresh.
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How to solve the k-Anonymity Problem?

the identity
problem

the instance
problem

the non k-anonymity
problem

reduced reduced

reduced (only for convex DLs)

Non k-Anonymity to Identity
Let O be formulated in L ∈ {ELO,DL-LiteA, CFDnc}
If x ∈ NAI , a1, . . . , ak ∈ NKI , then
for all models I of O, xI ∈ {aI1 , . . . , aIk } iff
for all models I of O, xI = aIi for some 1 ≤ i ≤ k.
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How to solve the k-Anonymity Problem?

the identity
problem

the instance
problem

the non k-anonymity
problem

reduced reduced

reduced (only for convex DLs)

Complexity of the k-Anonymity Problem
PTime if L ∈ {ELO,DL-LiteA, CFDnc}.
ExpTime complete if L ∈ {ALCO,ALCQ},
NExpTime-complete if L is ALCOIQ.
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the identity
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reduced reduced

reduced (only for convex DLs)

Complexity of the k-Anonymity Problem
PTime if L ∈ {ELO,DL-LiteA, CFDnc}.
ExpTime complete if L ∈ {ALCO,ALCQ},
NExpTime-complete if L is ALCOIQ.

Are the complexities of k-anonymity and identity always the same?
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Problem 3: Ontology Anonymization

What if α = (x =̇ a) is not hidden in O??

Anonymize O to O’ such that O′ 6|= α → “Ontology Repair”!

Assumption:

– O = Os ∪Or is the disjoint union of a static ontology Os and a refutable
ontology Or .

– Only the refutable part may be changed

Ontology Repair
Let us say that our “secret” α is of the form
(Identity) x =̇ a (Instance) C(x) (Concept Relationship) C v D

Let Con(O) := {α | O |= α} be the set of all consequences of O.

Let O |= α and Os 6|= α. The ontology O’ is a repair of O w.r.t. α if

Con(Os ∪O′) ⊆ Con(O) \ {α}

The repair O’ is an optimal repair of O w.r.t. α if there is
no repair O” of O w.r.t. α s.t. Con(Os ∪O′) ⊂ Con(Os ∪O′′).
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Optimal Repairs Need not Exist!

Let O = (T ,A) be formulated in EL, where

T := {A v ∃r .A, ∃r .A v A}
A := {A(a)}

Os = T ,Or = A, and the unwanted consequence α = A(a).

Let O′ be a repair. Obviously O’ only contains concept assertions C(a). s.t.

C does not contain A
C is in the form of (∃r .)n>(a), for n > 0.

Since O′ is finite, there is a maximal n0 s.t. ((∃r .)n0>)(a) ∈ O′, but
((∃r .)n>)(a) 6∈ O′, for all n > n0.

Claim: If O′ = {((∃r .)n0>)(a)}, then ((∃r .)n>)(a) 6∈ Con(T ∪O′), for all n > n0.

Let n > n0. Then O′′ = {((∃r .)n>)(a)} is also a repair.

In addition, Con(T ∪O′) ⊂ Con(T ∪O′′) and thus O′ is not optimal.

Since O′ is chosen arbitrarily, this shows
there cannot be an optimal repair!
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Optimal Classical Repair

Optimal Classical Repair
The repair O′ is a classical repair of O w.r.t. α if O′ ⊂ Or .

It is an optimal classical repair O′ of O w.r.t. α if there is no
classical repair O′′ of O w.r.t. α such that O′ ⊂ O′′.

Optimal classical repairs always exist → Justification and Hitting Set.
(Horridge, 2011)

Let O |= α. A justification J is a minimal subset of Or such that Os ∪ J |= α.

Let J1, . . . , Jk be the justifications of O w.r.t. α.
A hitting set H of these justifications is a set of axioms such that H ∩ Ji 6= ∅ for
i = 1, . . . , k.

A hitting set Hmin is minimal if there is no H′ of J1, . . . , Jk such that H′ ⊂ Hmin.

O′ := Or \ Hmin is an optimal classical repair of O w.r.t. α such that

Os ∪O′ 6|= α
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Gentle Repair

Obtaining Classical Repairs → removing axioms from O.

Instead, we want to weaken axioms in Hmin!

Given axioms β, γ, an axiom γ is weaker than β if Con({γ}) ⊂ Con({β})

Algorithm 1:
For each β ∈ Hmin and all J1, . . . , Jk containing β,
replace β with exactly one γ, where γ ≺ β and

Os ∪ (Ji \ {β}) ∪ {γ} 6|= α for i = 1, . . . , k.

Construct O’ obtained from Or by removing Hmin and replace each β ∈ Hmin with
the weaker γ.

Check whether α is a consequence of Os ∪O′.
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Algorithm 1 is still not enough!

Using Algorithm 1, α still can be a consequence of Os ∪O′.

Example
Os = ∅ and Or = (T ,A)

T := {B v C} A := {(C u B)(a)} α = C(a) (T ∪ A) |= α.

J := {(C u B)(a)} Hmin := {(C u B)(a)}

Take (C u B)(a) ∈ Hmin, weaken it to B(a)

It implies J \ {(C u B)(a)} ∪ {B(a)} 6|= α

But then, O′ := O \ {(C u B)(a)} ∪ {B(a)} |= α.

Solution: Just iterate Algorithm 1 until Os ∪O′ 6|= α.

Does it terminate? Yes,
The iterative algorithm yields an exponential upper bound on the number of
iterations.
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Weakening Relation

How do we formally weaken the axioms during the iteration?

Weakening Relation
The binary relation � on axioms is

a weakening relation if β � γ implies that γ is weaker than β;

well-founded if there is no infinite �-chain β1 � β2 � β3 � . . .;
complete if for any axiom β that is not a tautology, there is a tautology γ such
that β � γ.
linear (polynomial) if for every axiom β, the length of the longest chain �-
generated from β is linearly (polynomially) bounded by the size of β;

A linear (polynomial) weakening relation shows that the iterative algorithm can
terminate after a linear (polynomial) number of iterations.

In the context of Description Logics,

If α = C v D, then the idea for weakening α is
to generalize D or to specialize C .
If α = C(a), then the idea for weakening α is to generalize C .
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Future Work

Investigating weakening relations in some DLs

To make repairs as gentle as possible, the following problem is encountered:
Given a concept D, a concept F is an upper neighbor (UN) of D iff

D @ F
there is no E such that D @ E @ F

Given J |= α and C v D ∈ J, find D ′ without “searching blindly” s.t.

– D @ D ′

– Os ∪ (J \ {C v D}) ∪ {C v D ′} |= α
– D ′ is as specific as possible

Whatever how you repair/anonymize O to O′, please show

for all O′′ s.t. O′′ 6|= α, we have (O′ ∪O′′) 6|= α.
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Thank You
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