# Reasoning in Description Logic Ontologies for Identity Management 

Franz Baader, Adrian Nuradiansyah

Technische Universität Dresden
March 8, 2018


## Problem 1: View-based Identity Problem



## Problem 1: View-based Identity Problem



- A view $V$ is a finite collection of queries together with their answers
- Consider subsumption \& conjunctive queries (SELECT-JOIN-PROJECT in DBs)


## Problem 1: View-based Identity Problem



- A view $V$ is a finite collection of queries together with their answers
- Consider subsumption \& conjunctive queries (SELECT-JOIN-PROJECT in DBs)


## Given an ontology $\mathfrak{O}_{\text {, }}$

At rôle $\hat{r}_{1}$

- queries through $\mathfrak{O}_{\hat{r}_{1}} \subseteq \mathfrak{O}_{1} \xrightarrow{\text { switch }} \cdots \xrightarrow{\text { switch }}$
- obtains View $V_{\hat{r}_{1}}$

Is the identity of an anonymous $x$ hidden w.r.t. $V_{\hat{r}_{1}}, \ldots, V_{\hat{r}_{k}}$ ?

## Ontologies

## Given an ontology $\mathfrak{O}_{\text {। }}$

At rôle $\hat{r}_{1}$

- queries through $\mathfrak{O}_{\hat{r}_{\mathbf{1}}} \subseteq \mathfrak{O}_{I} \xrightarrow{\text { switch }} \cdot \cdots$ switch
- obtains View $V_{\hat{r}_{\mathbf{1}}}$
At rôle $\hat{r}_{k}$
- queries through $\mathfrak{O}_{\hat{r}_{k}} \subseteq \mathfrak{O}_{\text {l }}$
- obtains View $V_{\hat{r}_{k}}$

Is the identity of an anonymous $x$ hidden w.r.t. $V_{\hat{f}_{1}}, \ldots, V_{\hat{r}_{k}}$ ?

An ontology $\mathfrak{O}$ consists of TBox $\mathcal{T}$ and ABox $\mathcal{A}$.

- A TBox $\mathcal{T}$ is a set of General Concept Inclusions (GCIs) $C \sqsubseteq D$ $\rightarrow$ background knowledge


## Ontologies

## Given an ontology $\mathfrak{O}_{\text {। }}$

At rôle $\hat{r}_{1}$

- queries through $\mathfrak{O}_{\hat{r}_{\mathbf{1}}} \subseteq \mathfrak{O}_{I} \xrightarrow{\text { switch }} \cdot \cdots$ switch
- obtains View $V_{\hat{r}_{\mathbf{1}}}$

At rôle $\hat{r}_{k}$

- queries through $\mathfrak{O}_{\hat{r}_{k}} \subseteq \mathfrak{O}_{\text {l }}$
- obtains View $V_{\hat{r}_{k}}$

Is the identity of an anonymous $x$ hidden w.r.t. $V_{\hat{f}_{1}}, \ldots, V_{\hat{r}_{k}}$ ?

An ontology $\mathfrak{O}$ consists of TBox $\mathcal{T}$ and ABox $\mathcal{A}$.

- A TBox $\mathcal{T}$ is a set of General Concept Inclusions (GCIs) $C \sqsubseteq D$ $\rightarrow$ background knowledge
- An ABox $\mathcal{A}$ is a set of concept assertions $C(a)$ and relationship assertions $r(a, b)$ $\rightarrow$ knowledge about individuals


## Queries

## Given an ontology $\mathfrak{O}_{\text {I }}$

At rôle $\hat{r}_{1}$
At rôle $\hat{r}_{k}$

- queries through $\mathfrak{O}_{\hat{r}_{1}} \subseteq \mathfrak{O}_{l} \xrightarrow{\text { switch }} \cdots \xrightarrow{\text { switch }}$
- queries through $\mathfrak{O}_{\hat{r}_{k}} \subseteq \mathfrak{O}_{l}$
- obtains View $V_{\hat{r}_{1}}$
- obtains View $V_{\hat{r}_{k}}$

Is the identity of an anonymous $x$ hidden w.r.t. $V_{\hat{r}_{1}}, \ldots, V_{\hat{r}_{k}}$ ?

## Queries

## Given an ontology $\mathfrak{O}_{\text {I }}$

At rôle $\hat{r}_{1}$

- queries through $\mathfrak{O}_{\hat{r}_{1}} \subseteq \mathfrak{O}_{l} \xrightarrow{\text { switch }} \cdots \xrightarrow{\text { switch }}$
- obtains View $V_{\hat{r}_{1}}$

At rôle $\hat{r}_{k}$

- queries through $\mathfrak{O}_{\hat{r}_{k}} \subseteq \mathfrak{O}_{l}$
- obtains View $V_{\hat{r}_{k}}$

Is the identity of an anonymous $x$ hidden w.r.t. $V_{\hat{f}_{1}}, \ldots, V_{\hat{r}_{k}}$ ?

1. Subsumption Query: $q=C \sqsubseteq D$, where $C$ and $D$ are DL concepts
2. Conjunctive Query: $q(\vec{x}) \leftarrow \exists \vec{y} \cdot \operatorname{conj}(\vec{x}, \vec{y})$, where

- $\vec{x}$ are answer variables and $\vec{y}$ are existentially quantified variables.
- $\operatorname{conj}(\vec{x}, \vec{y})$ is a conjunction of atoms $A(z)$ or $r\left(z, z^{\prime}\right)$.


## Views

## Given an ontology $\mathfrak{O}_{\text {I }}$

At rôle $\hat{r}_{1}$

- queries through $\mathfrak{D}_{\hat{1}_{1}} \subseteq \mathfrak{O}_{I} \quad \xrightarrow{\text { switch }} \cdots \xrightarrow{\text { switch }}$
- obtains View $V_{\hat{r}_{1}}$

At rôle $\hat{r}_{k}$

- queries through $\mathfrak{O}_{\hat{r}_{k}} \subseteq \mathfrak{O}_{\text {l }}$
- obtains View $V_{\hat{r}_{k}}$

Is the identity of an anonymous $x$ hidden w.r.t. $V_{\hat{r}_{1}}, \ldots, V_{\hat{r}_{k}}$ ?

## Views

## Given an ontology $\mathfrak{O}_{\text {। }}$

At rôle $\hat{r}_{1}$

- queries through $\mathfrak{O}_{\hat{r}_{\mathbf{1}}} \subseteq \mathfrak{O}_{\text {I }} \quad \xrightarrow{\text { switch }} \cdots$ switch
- obtains View $V_{\hat{r}_{1}}$

At rôle $\hat{r}_{k}$

- queries through $\mathfrak{O}_{\hat{r}_{k}} \subseteq \mathfrak{O}_{\text {, }}$
- obtains View $V_{\hat{r}_{k}}$

Is the identity of an anonymous $x$ hidden w.r.t. $V_{\hat{r}_{1}}, \ldots, V_{\hat{r}_{k}}$ ?

- Let $q=C \sqsubseteq D$ be a subsumption query. The answer for $q$ w.r.t. a rôle $\hat{r}$ is $\{$ true $\}$ if

$$
C^{\mathcal{I}} \subseteq D^{\mathcal{I}} \text { for all models } \mathcal{I} \text { of } \mathfrak{O}_{\hat{f}} .
$$

## Views

## Given an ontology $\mathfrak{O}_{\text {। }}$

At rôle $\hat{r}_{1}$

- queries through $\mathfrak{O}_{\hat{r}_{1}} \subseteq \mathfrak{O}_{I} \quad \xrightarrow{\text { switch }} \cdots \xrightarrow{\text { switch }}$
- obtains View $V_{\hat{r}_{1}}$

At rôle $\hat{r}_{k}$

- queries through $\mathfrak{O}_{\hat{r}_{k}} \subseteq \mathfrak{O}_{l}$
- obtains View $V_{\hat{r}_{k}}$

Is the identity of an anonymous $x$ hidden w.r.t. $V_{\hat{r}_{1}}, \ldots, V_{\hat{r}_{k}}$ ?

- Let $q=C \sqsubseteq D$ be a subsumption query. The answer for $q$ w.r.t. a rôle $\hat{r}$ is $\{$ true $\}$ if

$$
C^{\mathcal{I}} \subseteq D^{\mathcal{I}} \text { for all models } \mathcal{I} \text { of } \mathfrak{O}_{\hat{r}}
$$

- Let $q$ be a conjunctive query has $n>0$ answer variables $\vec{x}$. The answer for $q$ w.r.t. a rôle $\hat{r}$ is a set of tuples of individuals $\vec{t} \in\left(N_{l}\right)^{n}$, where each $\vec{t}$ replaces $\vec{x}$ and

$$
\mathcal{I} \models q(\vec{t}) \text { for all models } \mathcal{I} \text { of } \mathfrak{O}_{\hat{r}}
$$

## Views

## Given an ontology $\mathfrak{O}_{\text {। }}$

At rôle $\hat{r}_{1}$

- queries through $\mathfrak{O}_{\hat{r}_{1}} \subseteq \mathfrak{O}_{I} \quad \xrightarrow{\text { switch }} \cdots \xrightarrow{\text { switch }}$
- obtains View $V_{\hat{r}_{1}}$

At rôle $\hat{r}_{k}$

- queries through $\mathfrak{O}_{\hat{r}_{k}} \subseteq \mathfrak{O}_{l}$
- obtains View $V_{\hat{r}_{k}}$

Is the identity of an anonymous $x$ hidden w.r.t. $V_{\hat{r}_{1}}, \ldots, V_{\hat{r}_{k}}$ ?

- Let $q=C \sqsubseteq D$ be a subsumption query. The answer for $q$ w.r.t. a rôle $\hat{r}$ is $\{t r u e\}$ if

$$
C^{\mathcal{I}} \subseteq D^{\mathcal{I}} \text { for all models } \mathcal{I} \text { of } \mathfrak{O}_{\hat{f}} .
$$

- Let $q$ be a conjunctive query has $n>0$ answer variables $\vec{x}$. The answer for $q$ w.r.t. a rôle $\hat{r}$ is a set of tuples of individuals $\vec{t} \in\left(N_{l}\right)^{n}$, where each $\vec{t}$ replaces $\vec{x}$ and

$$
\mathcal{I} \models q(\vec{t}) \text { for all models } \mathcal{I} \text { of } \mathfrak{O}_{\hat{r}} .
$$

- A view $V_{\hat{r}}$ is a finite set of pairs of query and answers $\langle q, a n s(q, \hat{r})\rangle$


## The Identity Problem ${ }^{1}$

Is the identity of an anonymous $x$ hidden w.r.t. $V_{\hat{f}_{1}}, \ldots, V_{\hat{r}_{k}}$ ?

[^0]
## The Identity Problem ${ }^{1}$

Is the identity of an anonymous $x$ hidden w.r.t. $V_{\hat{r}_{1}}, \ldots, V_{\hat{r}_{k}}$ ?

- Identity Problem $(\mathfrak{O} \models a \doteq b)$

Given two individuals $a, b$ and an ontology $\mathfrak{O}$, check whether

$$
a^{\mathcal{I}}=b^{\mathcal{I}} \text { for all models } \mathcal{I} \text { of } \mathfrak{O}
$$

[^1]
## The Identity Problem ${ }^{1}$

Is the identity of an anonymous $x$ hidden w.r.t. $V_{\hat{r}_{1}}, \ldots, V_{\hat{r}_{k}}$ ?

- Identity Problem $(\mathfrak{O} \models a \doteq b)$

Given two individuals $a, b$ and an ontology $\mathfrak{O}$, check whether

$$
a^{\mathcal{I}}=b^{\mathcal{I}} \text { for all models } \mathcal{I} \text { of } \mathfrak{O}
$$

- Identity to Instance: Given two individuals $a, b$, and an ontology $\mathfrak{O}$, it holds

$$
\mathfrak{O} \mid=a \doteq b \text { iff }(\mathfrak{O} \cup A(a)) \models A(b), \text { where } A \text { is fresh }
$$

[^2]
## The Identity Problem ${ }^{1}$

Is the identity of an anonymous $x$ hidden w.r.t. $V_{\hat{r}_{1}}, \ldots, V_{\hat{r}_{k}}$ ?

- Identity Problem $(\mathfrak{O} \models a \doteq b)$

Given two individuals $a, b$ and an ontology $\mathfrak{O}$, check whether

$$
a^{\mathcal{I}}=b^{\mathcal{I}} \text { for all models } \mathcal{I} \text { of } \mathfrak{O}
$$

- Identity to Instance: Given two individuals $a, b$, and an ontology $\mathfrak{O}$, it holds

$$
\mathfrak{O} \mid=a \doteq b \text { iff }(\mathfrak{O} \cup A(a)) \models A(b), \text { where } A \text { is fresh }
$$

- Only make sense for $\mathfrak{O}$ formulated in a DL with equality power (with nominals, number restrictions, or functional dependencies)

[^3]
## Hidden Identity

Is the identity of an anonymous $x$ hidden w.r.t. $V_{\hat{f}_{1}}, \ldots, V_{\hat{f}_{k}}$ ?

## Hidden Identity

Is the identity of an anonymous $x$ hidden w.r.t. $V_{f_{1}}, \ldots, V_{\hat{f}_{k}}$ ?

- $N_{I}=N_{K I} \cup N_{A I}$, sets of known and anonymous individuals, respectively


## Hidden Identity

Is the identity of an anonymous $x$ hidden w.r.t. $V_{\hat{f}_{1}}, \ldots, V_{\hat{f}_{k}}$ ?

- $N_{I}=N_{K I} \cup N_{A I}$, sets of known and anonymous individuals, respectively
- The identity of $x \in N_{A I}$ w.r.t. $\mathfrak{O}$ is

$$
i d n(x, \mathfrak{D})=\left\{a \in N_{K l} \mid \mathfrak{O} \models x \doteq a\right\}
$$

## Hidden Identity

Is the identity of an anonymous $x$ hidden w.r.t. $V_{\hat{f}_{1}}, \ldots, V_{\hat{r}_{k}}$ ?

- $N_{I}=N_{K I} \cup N_{A I}$, sets of known and anonymous individuals, respectively
- The identity of $x \in N_{A I}$ w.r.t. $\mathfrak{O}$ is

$$
i d n(x, \mathfrak{O})=\left\{a \in N_{K I} \mid \mathfrak{O} \models x \doteq a\right\}
$$

- The identity of $x \in N_{A \prime}$ is hidden w.r.t. $\mathfrak{O}$ iff $\operatorname{idn}(x, \mathfrak{O})=\emptyset$.


## How to solve the View-based Identity Problem?

- Construct an ontology that is compatible with all views $V_{\hat{r}_{1}}, \ldots, V_{\hat{r}_{k}}$.


## How to solve the View-based Identity Problem?

- Construct an ontology that is compatible with all views $V_{\hat{r}_{1}}, \ldots, V_{\hat{r}_{k}}$.
- However, there are still variables $\vec{y}$ in some queries $q$ in some $V_{\hat{r}_{1}}, \ldots, V_{\hat{r}_{k}}$.


## How to solve the View-based Identity Problem?

- Construct an ontology that is compatible with all views $V_{\hat{r}_{1}}, \ldots, V_{\hat{r}_{k}}$.
- However, there are still variables $\vec{y}$ in some queries $q$ in some $V_{\hat{r}_{1}}, \ldots, V_{\hat{r}_{k}}$.
- We need to remove those $\vec{y}$.


## Ground Query

Given an interpretation $\mathcal{I}$, a CQ $q$, and a tuple $\vec{t} \in\left(N_{l}\right)^{n}$ such that $\mathcal{I} \models q(\vec{t})$, a ground query $\hat{q}$ is:

- conj $(\vec{t}, \vec{u})$, where $\vec{u}$ is a tuple of individuals.
- obtained from $q$ by replacing all variables in $\vec{y}$ with fresh individuals $a_{y}$ over $\vec{u}$.


## How to solve the View-based Identity Problem?

- Construct an ontology that is compatible with all views $V_{\hat{r}_{1}}, \ldots, V_{\hat{r}_{k}}$.
- However, there are still variables $\vec{y}$ in some queries $q$ in some $V_{\hat{r}_{1}}, \ldots, V_{\hat{r}_{k}}$.
- We need to remove those $\vec{y}$.


## Ground Query

Given an interpretation $\mathcal{I}$, a CQ $q$, and a tuple $\vec{t} \in\left(N_{l}\right)^{n}$ such that $\mathcal{I} \models q(\vec{t})$, a ground query $\widehat{q}$ is:

- conj $(\vec{t}, \vec{u})$, where $\vec{u}$ is a tuple of individuals.
- obtained from $q$ by replacing all variables in $\vec{y}$ with fresh individuals $a_{y}$ over $\vec{u}$.


## Canonical Ontology

The canonical ontology $\mathcal{O}_{v}$ of $V_{\hat{r}_{1}}, \ldots, V_{\hat{r}_{k}}$ is defined as $\mathcal{O}_{v}:=\left(\mathcal{T}_{v}, \mathcal{A} v\right)$ where

$$
\begin{aligned}
\mathcal{T}_{V}:= & \left\{C \sqsubseteq D \mid\langle C \sqsubseteq D,\{\text { true }\}\rangle \in V_{\hat{r}_{i}} \text { for some } i, 1 \leq i \leq k\right\} \\
\mathcal{A}_{V}:= & \left\{A(a) \mid\langle q, \vec{t}\rangle \in V_{r_{i}} \wedge A(a) \text { is a conjunct in } \widehat{q}, \text { for some } i, 1 \leq i \leq k\right\} \cup \\
& \left\{r(a, b) \mid\langle q, \vec{t}\rangle \in V_{r_{i}} \wedge r(a, b) \text { is a conjunct in } \widehat{q}, \text { for some } i, 1 \leq i \leq k\right\}
\end{aligned}
$$

## How to solve the View-based Identity Problem? ${ }^{2}$

## Theorem

The identity of $x \in N_{A l}$ is hidden w.r.t. $V_{\hat{r}_{1}}, \ldots, V_{\hat{r}_{k}}$ iff $\operatorname{idn}\left(x, \mathcal{O}_{V}\right)=\emptyset$.
${ }^{2}$ F. Baader, D. Borchmann and A. Nuradiansyah, The Identity Problem in Description Logic Ontologies and Its Application to View-Based Information Hiding, JIS干2017

## How to solve the View-based Identity Problem? ${ }^{2}$

## Theorem

The identity of $x \in N_{A I}$ is hidden w.r.t. $V_{\hat{r}_{1}}, \ldots, V_{\hat{r}_{k}}$ iff $i d n\left(x, \mathcal{O}_{V}\right)=\emptyset$.

## Complexity

The view-based identity problem in the DL $\mathcal{L}$ can be solved in

- PTime if $\mathcal{L}$ is $\mathcal{E} \mathcal{L} \mathcal{O}$,
- ExpTime if $\mathcal{L} \in\{\mathcal{A} \mathcal{L C O}, \mathcal{A L C} \mathcal{Q}\}$,
- NExpTime if $\mathcal{L}$ is $\mathcal{A L C O} \mathcal{I}$.
${ }^{2}$ F. Baader, D. Borchmann and A. Nuradiansyah, The Identity Problem in Description Logic Ontologies and Its Application to View-Based Information Hiding, JIS干2017


## Problem 2: k-Anonymity

- Avoiding someone to know if the identity of $x$ belongs to $\{a\}$.
- Avoiding someone to know if the identity of $x$ belongs to $\left\{a_{1}, \ldots, a_{k}\right\}$ $\rightarrow$ (Sweeney, 2002).
- Such a formal protection model that is already well-investigated in DBs.


## Problem 2: $k$-Anonymity

- Avoiding someone to know if the identity of $x$ belongs to $\{a\}$.
- Avoiding someone to know if the identity of $x$ belongs to $\left\{a_{1}, \ldots, a_{k}\right\}$
$\rightarrow$ (Sweeney, 2002).
- Such a formal protection model that is already well-investigated in DBs.


## The Non $k$-Anonymity Problem

Let $\mathfrak{O}$ be an ontology, $x \in N_{A I}$, and $a_{1}, \ldots, a_{k} \in N_{K I}$. $x$ is not in $k$-Anonymity iff for all models $\mathcal{I}$ of $\mathfrak{D}$,

$$
x^{\mathcal{I}} \in\left\{a_{1}^{\mathcal{I}}, \ldots, a_{k}^{\mathcal{I}}\right\}
$$

## How to solve the $k$-Anonymity Problem?

| problem | $\xrightarrow{\text { reduced }}$ | the instance problem | reduced | the non k -anonymity problem |
| :---: | :---: | :---: | :---: | :---: |

## Non k-Anonymity to Instance

Let $\mathfrak{O}$ be formulated in a $\operatorname{DL} \mathcal{L}$ with equality power, $x \in N_{A I}, a_{1}, \ldots, a_{k} \in N_{K I}$. It holds that for all models $\mathcal{I}$ of $\mathfrak{O}$,

$$
x^{\mathcal{I}} \in\left\{a_{1}^{\mathcal{I}}, \ldots, a_{k}^{\mathcal{I}}\right\} \text { iff } \mathfrak{O}^{\prime} \models A(x)
$$

where $\mathfrak{O}^{\prime}:=\mathfrak{D} \cup\left\{A\left(a_{i}\right) \mid 1 \leq i \leq k\right\}$ and $A$ is fresh.

## How to solve the $k$-Anonymity Problem?



## Non $k$-Anonymity to Identity

Let $\mathfrak{O}$ be formulated in $\mathcal{L} \in\left\{\mathcal{E} \mathcal{L} \mathcal{O}, D\right.$ L-Lite $\left._{A}, \mathcal{C} \mathcal{F} \mathcal{D}_{n c}\right\}$
If $x \in N_{A I}, a_{1}, \ldots, a_{k} \in N_{K I}$, then
for all models $\mathcal{I}$ of $\mathfrak{O}, x^{\mathcal{I}} \in\left\{a_{1}^{\mathcal{I}}, \ldots, a_{k}^{\mathcal{I}}\right\}$ iff for all models $\mathcal{I}$ of $\mathfrak{O}, x^{\mathcal{I}}=a_{i}^{\mathcal{I}}$ for some $1 \leq i \leq k$.

## How to solve the $k$-Anonymity Problem?



## Complexity of the $k$-Anonymity Problem

- PTime if $\mathcal{L} \in\left\{\mathcal{E} \mathcal{L O}\right.$, DL- $_{\text {- ite }}^{A}$, $\left.\mathcal{C F} \mathcal{D}_{n c}\right\}$.
- ExpTime complete if $\mathcal{L} \in\{\mathcal{A} \mathcal{L C O}, \mathcal{A} \mathcal{L C}\}$,
- NExpTime-complete if $\mathcal{L}$ is $\mathcal{A L C O} \mathcal{I}$.


## How to solve the $k$-Anonymity Problem?



## Complexity of the $k$-Anonymity Problem

- PTime if $\mathcal{L} \in\left\{\mathcal{E} \mathcal{L} \mathcal{O}, D\right.$ L-Lite $\left._{A}, \mathcal{C F} \mathcal{D}_{n c}\right\}$.
- ExpTime complete if $\mathcal{L} \in\{\mathcal{A} \mathcal{L C O}, \mathcal{A} \mathcal{L C} \mathcal{Q}\}$,
- NExpTime-complete if $\mathcal{L}$ is $\mathcal{A L C O} \mathcal{I}$.

Are the complexities of $k$-anonymity and identity always the same?

## Problem 3: Ontology Anonymization

- What if $\alpha=(x \doteq a)$ is not hidden in $\mathfrak{D}$ ??


## Problem 3: Ontology Anonymization

- What if $\alpha=(x \doteq a)$ is not hidden in $\mathfrak{D}$ ??
- Anonymize $\mathfrak{O}$ to $\mathfrak{O}$ ' such that $\mathfrak{O}^{\prime} \not \vDash \alpha$


## Problem 3: Ontology Anonymization

- What if $\alpha=(x \doteq a)$ is not hidden in $\mathfrak{O}$ ??
- Anonymize $\mathfrak{O}$ to $\mathfrak{O}$ ' such that $\mathfrak{O}^{\prime} \mid \vDash \alpha \rightarrow$ "Ontology Repair"!


## Problem 3: Ontology Anonymization

- What if $\alpha=(x \doteq a)$ is not hidden in $\mathfrak{O}$ ??
- Anonymize $\mathfrak{O}$ to $\mathfrak{O}$ ' such that $\mathfrak{O}^{\prime} \mid \vDash \alpha \rightarrow$ "Ontology Repair"!
- Assumption:
- $\mathfrak{O}=\mathfrak{O}_{s} \cup \mathfrak{O}_{r}$ is the disjoint union of a static ontology $\mathfrak{O}_{s}$ and a refutable ontology $\mathfrak{O}_{r}$.
- Only the refutable part may be changed


## Problem 3: Ontology Anonymization

- What if $\alpha=(x \doteq a)$ is not hidden in $\mathfrak{O}$ ??
- Anonymize $\mathfrak{O}$ to $\mathfrak{O}$ ' such that $\mathfrak{O}^{\prime} \not \vDash \alpha \rightarrow$ "Ontology Repair"!
- Assumption:
- $\mathfrak{O}=\mathfrak{O}_{s} \cup \mathfrak{O}_{r}$ is the disjoint union of a static ontology $\mathfrak{O}_{s}$ and a refutable ontology $\mathfrak{O}_{r}$.
- Only the refutable part may be changed


## Ontology Repair

- Let us say that our "secret" $\alpha$ is of the form
(Identity) $x \doteq a$
(Instance) $C(x)$
(Concept Relationship) $C \sqsubseteq D$


## Problem 3: Ontology Anonymization

- What if $\alpha=(x \doteq a)$ is not hidden in $\mathfrak{O}$ ??
- Anonymize $\mathfrak{O}$ to $\mathfrak{O}$ ' such that $\mathfrak{O}^{\prime} \not \vDash \alpha \rightarrow$ "Ontology Repair"!
- Assumption:
- $\mathfrak{O}=\mathfrak{O}_{s} \cup \mathfrak{O}_{r}$ is the disjoint union of a static ontology $\mathfrak{O}_{s}$ and a refutable ontology $\mathfrak{O}_{r}$.
- Only the refutable part may be changed


## Ontology Repair

- Let us say that our "secret" $\alpha$ is of the form (Identity) $x \doteq a \quad$ (Instance) $C(x) \quad$ (Concept Relationship) $C \sqsubseteq D$
- Let $\operatorname{Con}(\mathfrak{D}):=\{\alpha|\mathfrak{O}|=\alpha\}$ be the set of all consequences of $\mathfrak{O}$.


## Problem 3: Ontology Anonymization

- What if $\alpha=(x \doteq a)$ is not hidden in $\mathfrak{O}$ ??
- Anonymize $\mathfrak{O}$ to $\mathfrak{O}$ ' such that $\mathfrak{O}^{\prime} \not \vDash \alpha \rightarrow$ "Ontology Repair"!
- Assumption:
- $\mathfrak{O}=\mathfrak{O}_{s} \cup \mathfrak{O}_{r}$ is the disjoint union of a static ontology $\mathfrak{O}_{s}$ and a refutable ontology $\mathfrak{O}_{r}$.
- Only the refutable part may be changed


## Ontology Repair

- Let us say that our "secret" $\alpha$ is of the form
(Identity) $x \doteq a$
(Instance) $C(x)$
(Concept Relationship) $C \sqsubseteq D$
- Let $\operatorname{Con}(\mathfrak{O}):=\{\alpha|\mathfrak{O}|=\alpha\}$ be the set of all consequences of $\mathfrak{O}$.
- Let $\mathfrak{O} \models \alpha$ and $\mathfrak{O}_{s} \not \models \alpha$. The ontology $\mathfrak{V}^{\prime}$ is a repair of $\mathfrak{D}$ w.r.t. $\alpha$ if

$$
\operatorname{Con}\left(\mathfrak{O}_{s} \cup \mathfrak{O}^{\prime}\right) \subseteq \operatorname{Con}(\mathfrak{O}) \backslash\{\alpha\}
$$

## Problem 3: Ontology Anonymization

- What if $\alpha=(x \doteq a)$ is not hidden in $\mathfrak{O}$ ??
- Anonymize $\mathfrak{O}$ to $\mathfrak{O}$ ' such that $\mathfrak{O}^{\prime} \not \vDash \alpha \rightarrow$ "Ontology Repair"!
- Assumption:
- $\mathfrak{O}=\mathfrak{O}_{s} \cup \mathfrak{O}_{r}$ is the disjoint union of a static ontology $\mathfrak{O}_{s}$ and a refutable ontology $\mathfrak{O}_{r}$.
- Only the refutable part may be changed


## Ontology Repair

- Let us say that our "secret" $\alpha$ is of the form
(Identity) $x \doteq a$
(Instance) $C(x)$
(Concept Relationship) $C \sqsubseteq D$
- Let $\operatorname{Con}(\mathfrak{O}):=\{\alpha|\mathfrak{O}|=\alpha\}$ be the set of all consequences of $\mathfrak{O}$.
- Let $\mathfrak{O} \models \alpha$ and $\mathfrak{O}_{s} \not \vDash \alpha$. The ontology $\mathfrak{D}^{\prime}$ is a repair of $\mathfrak{O}$ w.r.t. $\alpha$ if

$$
\operatorname{Con}\left(\mathfrak{O}_{s} \cup \mathfrak{O}^{\prime}\right) \subseteq \operatorname{Con}(\mathfrak{O}) \backslash\{\alpha\}
$$

- The repair $\mathfrak{D}^{\prime}$ is an optimal repair of $\mathfrak{O}$ w.r.t. $\alpha$ if there is no repair $\mathfrak{V}^{\prime \prime}$ of $\mathfrak{O}$ w.r.t. $\alpha$ s.t. $\operatorname{Con}\left(\mathfrak{D}_{s} \cup \mathfrak{V}^{\prime}\right) \subset \operatorname{Con}\left(\mathfrak{O}_{s} \cup \mathfrak{O}^{\prime \prime}\right)$.


## Optimal Repairs Need not Exist!

- Let $\mathfrak{O}=(\mathcal{T}, \mathcal{A})$ be formulated in $\mathcal{E L}$, where

$$
\begin{aligned}
\mathcal{T} & :=\{A \sqsubseteq \exists r \cdot A, \exists r \cdot A \sqsubseteq A\} \\
\mathcal{A} & :=\{A(a)\}
\end{aligned}
$$

- $\mathfrak{O}_{s}=\mathcal{T}, \mathfrak{O}_{r}=\mathcal{A}$, and the unwanted consequence $\alpha=A(a)$.


## Optimal Repairs Need not Exist!

- Let $\mathfrak{O}=(\mathcal{T}, \mathcal{A})$ be formulated in $\mathcal{E L}$, where

$$
\begin{aligned}
\mathcal{T} & :=\{A \sqsubseteq \exists r \cdot A, \exists r \cdot A \sqsubseteq A\} \\
\mathcal{A} & :=\{A(a)\}
\end{aligned}
$$

- $\mathfrak{O}_{s}=\mathcal{T}, \mathfrak{O}_{r}=\mathcal{A}$, and the unwanted consequence $\alpha=A(a)$.
- Let $\mathfrak{O}^{\prime}$ be a repair. Obviously $\mathfrak{O}^{\prime}$ only contains concept assertions $C$ (a). s.t.
- $C$ does not contain $A$
- $C$ is in the form of $(\exists r .)^{n} T(a)$, for $n>0$.


## Optimal Repairs Need not Exist!

- Let $\mathfrak{O}=(\mathcal{T}, \mathcal{A})$ be formulated in $\mathcal{E L}$, where

$$
\begin{aligned}
\mathcal{T} & :=\{A \sqsubseteq \exists r . A, \exists r \cdot A \sqsubseteq A\} \\
\mathcal{A} & :=\{A(a)\}
\end{aligned}
$$

- $\mathfrak{O}_{s}=\mathcal{T}, \mathfrak{O}_{r}=\mathcal{A}$, and the unwanted consequence $\alpha=A(a)$.
- Let $\mathfrak{O}^{\prime}$ be a repair. Obviously $\mathfrak{O}^{\prime}$ only contains concept assertions $C$ (a). s.t.
- $C$ does not contain $A$
- $C$ is in the form of $(\exists r .)^{n} \top(a)$, for $n>0$.
- Since $\mathfrak{V}^{\prime}$ is finite, there is a maximal $n_{0}$ s.t. $\left((\exists r .)^{n_{0}} \top\right)(a) \in \mathfrak{O}^{\prime}$, but $\left((\exists r .)^{n} T\right)(a) \notin \mathfrak{O}^{\prime}$, for all $n>n_{0}$.


## Optimal Repairs Need not Exist!

- Let $\mathfrak{O}=(\mathcal{T}, \mathcal{A})$ be formulated in $\mathcal{E} \mathcal{L}$, where

$$
\begin{aligned}
\mathcal{T} & :=\{A \sqsubseteq \exists r \cdot A, \exists r \cdot A \sqsubseteq A\} \\
\mathcal{A} & :=\{A(a)\}
\end{aligned}
$$

- $\mathfrak{O}_{s}=\mathcal{T}, \mathfrak{O}_{r}=\mathcal{A}$, and the unwanted consequence $\alpha=A(a)$.
- Let $\mathfrak{O}^{\prime}$ be a repair. Obviously $\mathfrak{O}^{\prime}$ only contains concept assertions $C(a)$. s.t.
- $C$ does not contain $A$
- $C$ is in the form of $(\exists r .)^{n} T(a)$, for $n>0$.
- Since $\mathfrak{O}^{\prime}$ is finite, there is a maximal $n_{0}$ s.t. $\left((\exists r .)^{n_{0}} \top\right)(a) \in \mathfrak{O}^{\prime}$, but $\left((\exists r .)^{n} \top\right)(a) \notin \mathfrak{O}^{\prime}$, for all $n>n_{0}$.
- Claim: If $\mathfrak{O}^{\prime}=\left\{\left((\exists r .)^{n_{0}} \top\right)(a)\right\}$, then $\left((\exists r .)^{n} \top\right)(a) \notin \operatorname{Con}\left(\mathcal{T} \cup \mathfrak{O}^{\prime}\right)$, for all $n>n_{0}$.


## Optimal Repairs Need not Exist!

- Let $\mathfrak{O}=(\mathcal{T}, \mathcal{A})$ be formulated in $\mathcal{E L}$, where

$$
\begin{aligned}
\mathcal{T} & :=\{A \sqsubseteq \exists r . A, \exists r \cdot A \sqsubseteq A\} \\
\mathcal{A} & :=\{A(a)\}
\end{aligned}
$$

- $\mathfrak{O}_{s}=\mathcal{T}, \mathfrak{O}_{r}=\mathcal{A}$, and the unwanted consequence $\alpha=A(a)$.
- Let $\mathfrak{O}^{\prime}$ be a repair. Obviously $\mathfrak{O}^{\prime}$ only contains concept assertions $C$ (a). s.t.
- $C$ does not contain $A$
- $C$ is in the form of $(\exists r .)^{n} \top(a)$, for $n>0$.
- Since $\mathfrak{O}^{\prime}$ is finite, there is a maximal $n_{0}$ s.t. $\left((\exists r .)^{n_{0}} \top\right)(a) \in \mathfrak{O}^{\prime}$, but $\left((\exists r .)^{n} T\right)(a) \notin \mathfrak{O}^{\prime}$, for all $n>n_{0}$.
- Claim: If $\mathfrak{O}^{\prime}=\left\{\left((\exists r .)^{n_{0}} \top\right)(a)\right\}$, then $\left((\exists r .)^{n} T\right)(a) \notin \operatorname{Con}\left(\mathcal{T} \cup \mathfrak{O}^{\prime}\right)$, for all $n>n_{0}$.
- Let $n>n_{0}$. Then $\mathfrak{D}^{\prime \prime}=\left\{\left((\exists r .)^{n} T\right)(a)\right\}$ is also a repair.


## Optimal Repairs Need not Exist!

- Let $\mathfrak{O}=(\mathcal{T}, \mathcal{A})$ be formulated in $\mathcal{E L}$, where

$$
\begin{aligned}
\mathcal{T} & :=\{A \sqsubseteq \exists r . A, \exists r \cdot A \sqsubseteq A\} \\
\mathcal{A} & :=\{A(a)\}
\end{aligned}
$$

- $\mathfrak{O}_{s}=\mathcal{T}, \mathfrak{O}_{r}=\mathcal{A}$, and the unwanted consequence $\alpha=A(a)$.
- Let $\mathfrak{O}^{\prime}$ be a repair. Obviously $\mathfrak{O}^{\prime}$ only contains concept assertions $C$ (a). s.t.
- $C$ does not contain $A$
- $C$ is in the form of $(\exists r .)^{n} \top(a)$, for $n>0$.
- Since $\mathfrak{O}^{\prime}$ is finite, there is a maximal $n_{0}$ s.t. $\left((\exists r .)^{n_{0}} \top\right)(a) \in \mathfrak{O}^{\prime}$, but $\left((\exists r .)^{n} T\right)(a) \notin \mathfrak{O}^{\prime}$, for all $n>n_{0}$.
- Claim: If $\mathfrak{O}^{\prime}=\left\{\left((\exists r .)^{n_{0}} T\right)(a)\right\}$, then $\left((\exists r .)^{n} T\right)(a) \notin \operatorname{Con}\left(\mathcal{T} \cup \mathfrak{O}^{\prime}\right)$, for all $n>n_{0}$.
- Let $n>n_{0}$. Then $\mathfrak{V}^{\prime \prime}=\left\{\left((\exists r .)^{n} T\right)(a)\right\}$ is also a repair.
- In addition, $\operatorname{Con}\left(\mathcal{T} \cup \mathfrak{O}^{\prime}\right) \subset \operatorname{Con}\left(\mathcal{T} \cup \mathfrak{O}^{\prime \prime}\right)$ and thus $\mathfrak{V}^{\prime}$ is not optimal.


## Optimal Repairs Need not Exist!

- Let $\mathfrak{O}=(\mathcal{T}, \mathcal{A})$ be formulated in $\mathcal{E L}$, where

$$
\begin{aligned}
\mathcal{T} & :=\{A \sqsubseteq \exists r . A, \exists r . A \sqsubseteq A\} \\
\mathcal{A} & :=\{A(a)\}
\end{aligned}
$$

- $\mathfrak{O}_{s}=\mathcal{T}, \mathfrak{O}_{r}=\mathcal{A}$, and the unwanted consequence $\alpha=A(a)$.
- Let $\mathfrak{O}^{\prime}$ be a repair. Obviously $\mathfrak{O}^{\prime}$ only contains concept assertions $C$ (a). s.t.
- $C$ does not contain $A$
- $C$ is in the form of $(\exists r .)^{n} T(a)$, for $n>0$.
- Since $\mathfrak{O}^{\prime}$ is finite, there is a maximal $n_{0}$ s.t. $\left((\exists r .)^{n_{0}} T\right)(a) \in \mathfrak{V}^{\prime}$, but $\left((\exists r .)^{n} T\right)(a) \notin \mathfrak{O}^{\prime}$, for all $n>n_{0}$.
- Claim: If $\mathfrak{O}^{\prime}=\left\{\left((\exists r .)^{n_{0}} T\right)(a)\right\}$, then $\left((\exists r .)^{n} T\right)(a) \notin \operatorname{Con}\left(\mathcal{T} \cup \mathfrak{O}^{\prime}\right)$, for all $n>n_{0}$.
- Let $n>n_{0}$. Then $\mathfrak{D}^{\prime \prime}=\left\{\left((\exists r .)^{n} T\right)(a)\right\}$ is also a repair.
- In addition, $\operatorname{Con}\left(\mathcal{T} \cup \mathfrak{O}^{\prime}\right) \subset \operatorname{Con}\left(\mathcal{T} \cup \mathfrak{O}^{\prime \prime}\right)$ and thus $\mathfrak{V}^{\prime}$ is not optimal.
- Since $\mathfrak{V}^{\prime}$ is chosen arbitrarily, this shows there cannot be an optimal repair!


## Optimal Classical Repair

## Optimal Classical Repair

- The repair $\mathfrak{O}^{\prime}$ is a classical repair of $\mathfrak{O}$ w.r.t. $\alpha$ if $\mathfrak{V}^{\prime} \subset \mathfrak{D}_{r}$.
- It is an optimal classical repair $\mathfrak{O}^{\prime}$ of $\mathfrak{O}$ w.r.t. $\alpha$ if there is no classical repair $\mathfrak{O}^{\prime \prime}$ of $\mathfrak{O}$ w.r.t. $\alpha$ such that $\mathfrak{O}^{\prime} \subset \mathfrak{O}^{\prime \prime}$.


## Optimal Classical Repair

## Optimal Classical Repair

- The repair $\mathfrak{O}^{\prime}$ is a classical repair of $\mathfrak{O}$ w.r.t. $\alpha$ if $\mathfrak{D}^{\prime} \subset \mathfrak{D}_{r}$.
- It is an optimal classical repair $\mathfrak{O}^{\prime}$ of $\mathfrak{O}$ w.r.t. $\alpha$ if there is no classical repair $\mathfrak{O}^{\prime \prime}$ of $\mathfrak{O}$ w.r.t. $\alpha$ such that $\mathfrak{O}^{\prime} \subset \mathfrak{O}^{\prime \prime}$.
- Optimal classical repairs always exist $\rightarrow$ Justification and Hitting Set. (Horridge, 2011)
- Let $\mathfrak{O} \models \alpha$. A justification $J$ is a minimal subset of $\mathfrak{O}_{r}$ such that $\mathfrak{O}_{s} \cup J \vDash \alpha$.
- Let $J_{1}, \ldots, J_{k}$ be the justifications of $\mathfrak{O}$ w.r.t. $\alpha$.

A hitting set $\mathcal{H}$ of these justifications is a set of axioms such that $\mathcal{H} \cap J_{i} \neq \emptyset$ for $i=1, \ldots, k$.

## Optimal Classical Repair

## Optimal Classical Repair

- The repair $\mathfrak{D}^{\prime}$ is a classical repair of $\mathfrak{O}$ w.r.t. $\alpha$ if $\mathfrak{D}^{\prime} \subset \mathfrak{O}_{r}$.
- It is an optimal classical repair $\mathfrak{O}^{\prime}$ of $\mathfrak{O}$ w.r.t. $\alpha$ if there is no classical repair $\mathfrak{O}^{\prime \prime}$ of $\mathfrak{O}$ w.r.t. $\alpha$ such that $\mathfrak{O}^{\prime} \subset \mathfrak{O}^{\prime \prime}$.
- Optimal classical repairs always exist $\rightarrow$ Justification and Hitting Set. (Horridge, 2011)
- Let $\mathfrak{O} \models \alpha$. A justification $J$ is a minimal subset of $\mathfrak{O}_{r}$ such that $\mathfrak{O}_{s} \cup J \models \alpha$.
- Let $J_{1}, \ldots, J_{k}$ be the justifications of $\mathfrak{O}$ w.r.t. $\alpha$.

A hitting set $\mathcal{H}$ of these justifications is a set of axioms such that $\mathcal{H} \cap J_{i} \neq \emptyset$ for $i=1, \ldots, k$.

- A hitting set $\mathcal{H}_{\text {min }}$ is minimal if there is no $\mathcal{H}^{\prime}$ of $J_{1}, \ldots, J_{k}$ such that $\mathcal{H}^{\prime} \subset \mathcal{H}_{\text {min }}$.


## Optimal Classical Repair

## Optimal Classical Repair

- The repair $\mathfrak{D}^{\prime}$ is a classical repair of $\mathfrak{O}$ w.r.t. $\alpha$ if $\mathfrak{D}^{\prime} \subset \mathfrak{O}_{r}$.
- It is an optimal classical repair $\mathfrak{O}^{\prime}$ of $\mathfrak{O}$ w.r.t. $\alpha$ if there is no classical repair $\mathfrak{O}^{\prime \prime}$ of $\mathfrak{O}$ w.r.t. $\alpha$ such that $\mathfrak{O}^{\prime} \subset \mathfrak{O}^{\prime \prime}$.
- Optimal classical repairs always exist $\rightarrow$ Justification and Hitting Set. (Horridge, 2011)
- Let $\mathfrak{O} \models \alpha$. A justification $J$ is a minimal subset of $\mathfrak{O}_{r}$ such that $\mathfrak{O}_{s} \cup J \models \alpha$.
- Let $J_{1}, \ldots, J_{k}$ be the justifications of $\mathfrak{O}$ w.r.t. $\alpha$.

A hitting set $\mathcal{H}$ of these justifications is a set of axioms such that $\mathcal{H} \cap J_{i} \neq \emptyset$ for $i=1, \ldots, k$.

- A hitting set $\mathcal{H}_{\text {min }}$ is minimal if there is no $\mathcal{H}^{\prime}$ of $J_{1}, \ldots, J_{k}$ such that $\mathcal{H}^{\prime} \subset \mathcal{H}_{\text {min }}$.
- $\mathfrak{D}^{\prime}:=\mathfrak{O}_{r} \backslash \mathcal{H}_{\text {min }}$ is an optimal classical repair of $\mathfrak{O}$ w.r.t. $\alpha$ such that

$$
\mathfrak{O}_{s} \cup \mathfrak{O}^{\prime} \not \vDash \alpha
$$

## Gentle Repair

- Obtaining Classical Repairs $\rightarrow$ removing axioms from $\mathfrak{D}$.
- Instead, we want to weaken axioms in $\mathcal{H}_{\text {min }}$ !
- Given axioms $\beta, \gamma$, an axiom $\gamma$ is weaker than $\beta$ if $\operatorname{Con}(\{\gamma\}) \subset \operatorname{Con}(\{\beta\})$


## Gentle Repair

- Obtaining Classical Repairs $\rightarrow$ removing axioms from $\mathfrak{D}$.
- Instead, we want to weaken axioms in $\mathcal{H}_{\text {min }}$ !
- Given axioms $\beta, \gamma$, an axiom $\gamma$ is weaker than $\beta$ if $\operatorname{Con}(\{\gamma\}) \subset \operatorname{Con}(\{\beta\})$
- Algorithm 1 : For each $\beta \in \mathcal{H}_{\text {min }}$ and all $J_{1}, \ldots, J_{k}$ containing $\beta$,


## Gentle Repair

- Obtaining Classical Repairs $\rightarrow$ removing axioms from $\mathfrak{O}$.
- Instead, we want to weaken axioms in $\mathcal{H}_{\text {min }}$ !
- Given axioms $\beta, \gamma$, an axiom $\gamma$ is weaker than $\beta$ if $\operatorname{Con}(\{\gamma\}) \subset \operatorname{Con}(\{\beta\})$
- Algorithm 1:

For each $\beta \in \mathcal{H}_{\text {min }}$ and all $J_{1}, \ldots, J_{k}$ containing $\beta$, replace $\beta$ with exactly one $\gamma$, where $\gamma \prec \beta$ and

## Gentle Repair

- Obtaining Classical Repairs $\rightarrow$ removing axioms from $\mathfrak{O}$.
- Instead, we want to weaken axioms in $\mathcal{H}_{\text {min }}$ !
- Given axioms $\beta, \gamma$, an axiom $\gamma$ is weaker than $\beta$ if $\operatorname{Con}(\{\gamma\}) \subset \operatorname{Con}(\{\beta\})$
- Algorithm 1:

For each $\beta \in \mathcal{H}_{\text {min }}$ and all $J_{1}, \ldots, J_{k}$ containing $\beta$, replace $\beta$ with exactly one $\gamma$, where $\gamma \prec \beta$ and

$$
\mathfrak{O}_{s} \cup\left(J_{i} \backslash\{\beta\}\right) \cup\{\gamma\} \mid \vDash \alpha \text { for } i=1, \ldots, k .
$$

## Gentle Repair

- Obtaining Classical Repairs $\rightarrow$ removing axioms from $\mathfrak{O}$.
- Instead, we want to weaken axioms in $\mathcal{H}_{\text {min }}$ !
- Given axioms $\beta, \gamma$, an axiom $\gamma$ is weaker than $\beta$ if $\operatorname{Con}(\{\gamma\}) \subset \operatorname{Con}(\{\beta\})$
- Algorithm 1:

For each $\beta \in \mathcal{H}_{\text {min }}$ and all $J_{1}, \ldots, J_{k}$ containing $\beta$, replace $\beta$ with exactly one $\gamma$, where $\gamma \prec \beta$ and

$$
\mathfrak{O}_{s} \cup\left(J_{i} \backslash\{\beta\}\right) \cup\{\gamma\} \mid \vDash \alpha \text { for } i=1, \ldots, k .
$$

Construct $\mathfrak{O}^{\prime}$ obtained from $\mathfrak{O}_{r}$ by removing $\mathcal{H}_{\text {min }}$ and replace each $\beta \in \mathcal{H}_{\text {min }}$ with the weaker $\gamma$.

## Gentle Repair

- Obtaining Classical Repairs $\rightarrow$ removing axioms from $\mathfrak{O}$.
- Instead, we want to weaken axioms in $\mathcal{H}_{\text {min }}$ !
- Given axioms $\beta$, $\gamma$, an axiom $\gamma$ is weaker than $\beta$ if $\operatorname{Con}(\{\gamma\}) \subset \operatorname{Con}(\{\beta\})$
- Algorithm 1:

For each $\beta \in \mathcal{H}_{\text {min }}$ and all $J_{1}, \ldots, J_{k}$ containing $\beta$, replace $\beta$ with exactly one $\gamma$, where $\gamma \prec \beta$ and

$$
\mathfrak{O}_{s} \cup\left(J_{i} \backslash\{\beta\}\right) \cup\{\gamma\} \not \vDash \alpha \text { for } i=1, \ldots, k
$$

Construct $\mathfrak{O}^{\prime}$ obtained from $\mathfrak{O}_{r}$ by removing $\mathcal{H}_{\text {min }}$ and replace each $\beta \in \mathcal{H}_{\text {min }}$ with the weaker $\gamma$.
Check whether $\alpha$ is a consequence of $\mathfrak{O}_{s} \cup \mathfrak{O}^{\prime}$.

## Algorithm 1 is still not enough!

- Using Algorithm 1, $\alpha$ still can be a consequence of $\mathfrak{O}_{s} \cup \mathfrak{O}^{\prime}$.


## Algorithm 1 is still not enough!

- Using Algorithm 1, $\alpha$ still can be a consequence of $\mathfrak{O}_{s} \cup \mathfrak{O}^{\prime}$.

$$
\begin{aligned}
& \text { Example } \\
& \mathfrak{O}_{s}=\emptyset \text { and } \mathfrak{D}_{r}=(\mathcal{T}, \mathcal{A}) \\
& \mathcal{T}:=\{B \sqsubseteq C\} \quad \mathcal{A}:=\{(C \sqcap B)(a)\} \quad \alpha=C(a) \quad(\mathcal{T} \cup \mathcal{A}) \models \alpha .
\end{aligned}
$$

## Algorithm 1 is still not enough!

- Using Algorithm 1, $\alpha$ still can be a consequence of $\mathfrak{O}_{s} \cup \mathfrak{O}^{\prime}$.

$$
\begin{aligned}
& \text { Example } \\
& \mathfrak{O}_{s}=\emptyset \text { and } \mathfrak{O}_{r}=(\mathcal{T}, \mathcal{A}) \\
& \mathcal{T}:=\{B \sqsubseteq C\} \\
& \mathcal{A}:=\{(C \sqcap B)(a)\} \quad \alpha=C(a) \\
& (\mathcal{T} \cup \mathcal{A}) \models \alpha . \\
& J:=\{(C \sqcap B)(a)\} \quad \mathcal{H}_{\text {min }}:=\{(C \sqcap B)(a)\}
\end{aligned}
$$

## Algorithm 1 is still not enough!

- Using Algorithm 1, $\alpha$ still can be a consequence of $\mathfrak{O}_{s} \cup \mathfrak{O}^{\prime}$.

> Example
> $\mathfrak{O}_{s}=\emptyset$ and $\mathfrak{O}_{r}=(\mathcal{T}, \mathcal{A})$
> $\mathcal{T}:=\{B \sqsubseteq C\}$
> $J:=\{(C \sqcap B)(a)\}$
> $\mathcal{A}:=\{(C \sqcap B)(a)\}$
> $\mathcal{H}_{\text {min }}:=\{(C \sqcap B)(a)\}$

Take $(C \sqcap B)(a) \in \mathcal{H}_{\text {min }}$, weaken it to $B(a)$

## Algorithm 1 is still not enough!

- Using Algorithm 1, $\alpha$ still can be a consequence of $\mathfrak{O}_{s} \cup \mathfrak{O}^{\prime}$.

> Example
> $\mathfrak{O}_{s}=\emptyset$ and $\mathfrak{O}_{r}=(\mathcal{T}, \mathcal{A})$
> $\mathcal{T}:=\{B \sqsubseteq C\}$
> $J:=\{(C \sqcap B)(a)\} \quad \mathcal{A}:=\{(C \sqcap B)(a)\}$
> $\mathcal{H}$
> min $:=\{(C \sqcap B)(a)\}$

Take $(C \sqcap B)(a) \in \mathcal{H}_{\text {min }}$, weaken it to $B(a)$
It implies $J \backslash\{(C \sqcap B)(a)\} \cup\{B(a)\} \not \vDash \alpha$

## Algorithm 1 is still not enough!

- Using Algorithm 1, $\alpha$ still can be a consequence of $\mathfrak{O}_{s} \cup \mathfrak{O}^{\prime}$.


## Example

$\mathfrak{O}_{s}=\emptyset$ and $\mathfrak{O}_{r}=(\mathcal{T}, \mathcal{A})$
$\mathcal{T}:=\{B \sqsubseteq C\}$
$\mathcal{A}:=\{(C \sqcap B)(a)\} \quad \alpha=C(a)$
$(\mathcal{T} \cup \mathcal{A}) \models \alpha$.
$J:=\{(C \sqcap B)(a)\} \quad \mathcal{H}_{\text {min }}:=\{(C \sqcap B)(a)\}$
Take $(C \sqcap B)(a) \in \mathcal{H}_{\text {min }}$, weaken it to $B(a)$
It implies $J \backslash\{(C \sqcap B)(a)\} \cup\{B(a)\} \not \vDash \alpha$
But then, $\mathfrak{D}^{\prime}:=\mathfrak{D} \backslash\{(C \sqcap B)(a)\} \cup\{B(a)\} \vDash \alpha$.

## Algorithm 1 is still not enough!

- Using Algorithm 1, $\alpha$ still can be a consequence of $\mathfrak{O}_{s} \cup \mathfrak{O}^{\prime}$.


## Example

$\mathfrak{D}_{s}=\emptyset$ and $\mathfrak{O}_{r}=(\mathcal{T}, \mathcal{A})$
$\mathcal{T}:=\{B \sqsubseteq C\}$
$\mathcal{A}:=\{(C \sqcap B)(a)\} \quad \alpha=C(a)$
$(\mathcal{T} \cup \mathcal{A}) \models \alpha$.
$J:=\{(C \sqcap B)(a)\} \quad \mathcal{H}_{\text {min }}:=\{(C \sqcap B)(a)\}$
Take $(C \sqcap B)(a) \in \mathcal{H}_{\text {min }}$, weaken it to $B(a)$
It implies $J \backslash\{(C \sqcap B)(a)\} \cup\{B(a)\} \not \vDash \alpha$
But then, $\mathfrak{D}^{\prime}:=\mathfrak{D} \backslash\{(C \sqcap B)(a)\} \cup\{B(a)\} \models \alpha$.

- Solution: Just iterate Algorithm 1 until $\mathfrak{O}_{s} \cup \mathfrak{O}^{\prime} \not \vDash \alpha$.


## Algorithm 1 is still not enough!

- Using Algorithm 1, $\alpha$ still can be a consequence of $\mathfrak{O}_{s} \cup \mathfrak{O}^{\prime}$.


## Example

$\mathfrak{O}_{s}=\emptyset$ and $\mathfrak{O}_{r}=(\mathcal{T}, \mathcal{A})$
$\mathcal{T}:=\{B \sqsubseteq C\}$
$\mathcal{A}:=\{(C \sqcap B)(a)\} \quad \alpha=C(a)$
$(\mathcal{T} \cup \mathcal{A}) \models \alpha$.
$J:=\{(C \sqcap B)(a)\} \quad \mathcal{H}_{\text {min }}:=\{(C \sqcap B)(a)\}$
Take $(C \sqcap B)(a) \in \mathcal{H}_{\text {min }}$, weaken it to $B(a)$
It implies $J \backslash\{(C \sqcap B)(a)\} \cup\{B(a)\} \not \vDash \alpha$
But then, $\mathfrak{D}^{\prime}:=\mathfrak{D} \backslash\{(C \sqcap B)(a)\} \cup\{B(a)\} \vDash \alpha$.

- Solution: Just iterate Algorithm 1 until $\mathfrak{O}_{s} \cup \mathfrak{O}^{\prime} \not \vDash \alpha$.
- Does it terminate? Yes,

The iterative algorithm yields an exponential upper bound on the number of iterations.

## Weakening Relation

How do we formally weaken the axioms during the iteration?

## Weakening Relation

How do we formally weaken the axioms during the iteration?

## Weakening Relation

The binary relation $\succ$ on axioms is

- a weakening relation if $\beta \succ \gamma$ implies that $\gamma$ is weaker than $\beta$;


## Weakening Relation

How do we formally weaken the axioms during the iteration?

## Weakening Relation

The binary relation $\succ$ on axioms is

- a weakening relation if $\beta \succ \gamma$ implies that $\gamma$ is weaker than $\beta$;
- well-founded if there is no infinite $\succ$-chain $\beta_{1} \succ \beta_{2} \succ \beta_{3} \succ \ldots$;


## Weakening Relation

How do we formally weaken the axioms during the iteration?

## Weakening Relation

The binary relation $\succ$ on axioms is

- a weakening relation if $\beta \succ \gamma$ implies that $\gamma$ is weaker than $\beta$;
- well-founded if there is no infinite $\succ$-chain $\beta_{1} \succ \beta_{2} \succ \beta_{3} \succ \ldots$;
- complete if for any axiom $\beta$ that is not a tautology, there is a tautology $\gamma$ such that $\beta \succ \gamma$.


## Weakening Relation

How do we formally weaken the axioms during the iteration?

## Weakening Relation

The binary relation $\succ$ on axioms is

- a weakening relation if $\beta \succ \gamma$ implies that $\gamma$ is weaker than $\beta$;
- well-founded if there is no infinite $\succ$-chain $\beta_{1} \succ \beta_{2} \succ \beta_{3} \succ \ldots$;
- complete if for any axiom $\beta$ that is not a tautology, there is a tautology $\gamma$ such that $\beta \succ \gamma$.
- linear (polynomial) if for every axiom $\beta$, the length of the longest chain $\succ$ generated from $\beta$ is linearly (polynomially) bounded by the size of $\beta$;


## Weakening Relation

How do we formally weaken the axioms during the iteration?

## Weakening Relation

The binary relation $\succ$ on axioms is

- a weakening relation if $\beta \succ \gamma$ implies that $\gamma$ is weaker than $\beta$;
- well-founded if there is no infinite $\succ$-chain $\beta_{1} \succ \beta_{2} \succ \beta_{3} \succ \ldots$;
- complete if for any axiom $\beta$ that is not a tautology, there is a tautology $\gamma$ such that $\beta \succ \gamma$.
- linear (polynomial) if for every axiom $\beta$, the length of the longest chain $\succ$ generated from $\beta$ is linearly (polynomially) bounded by the size of $\beta$;
- A linear (polynomial) weakening relation shows that the iterative algorithm can terminate after a linear (polynomial) number of iterations.


## Weakening Relation

How do we formally weaken the axioms during the iteration?

## Weakening Relation

The binary relation $\succ$ on axioms is

- a weakening relation if $\beta \succ \gamma$ implies that $\gamma$ is weaker than $\beta$;
- well-founded if there is no infinite $\succ$-chain $\beta_{1} \succ \beta_{2} \succ \beta_{3} \succ \ldots$;
- complete if for any axiom $\beta$ that is not a tautology, there is a tautology $\gamma$ such that $\beta \succ \gamma$.
- linear (polynomial) if for every axiom $\beta$, the length of the longest chain $\succ$ generated from $\beta$ is linearly (polynomially) bounded by the size of $\beta$;
- A linear (polynomial) weakening relation shows that the iterative algorithm can terminate after a linear (polynomial) number of iterations.
- In the context of Description Logics,
- If $\alpha=C \sqsubseteq D$, then the idea for weakening $\alpha$ is to generalize $D$ or to specialize $C$.


## Weakening Relation

How do we formally weaken the axioms during the iteration?

## Weakening Relation

The binary relation $\succ$ on axioms is

- a weakening relation if $\beta \succ \gamma$ implies that $\gamma$ is weaker than $\beta$;
- well-founded if there is no infinite $\succ$-chain $\beta_{1} \succ \beta_{2} \succ \beta_{3} \succ \ldots$;
- complete if for any axiom $\beta$ that is not a tautology, there is a tautology $\gamma$ such that $\beta \succ \gamma$.
- linear (polynomial) if for every axiom $\beta$, the length of the longest chain $\succ$ generated from $\beta$ is linearly (polynomially) bounded by the size of $\beta$;
- A linear (polynomial) weakening relation shows that the iterative algorithm can terminate after a linear (polynomial) number of iterations.
- In the context of Description Logics,
- If $\alpha=C \sqsubseteq D$, then the idea for weakening $\alpha$ is to generalize $D$ or to specialize $C$.
- If $\alpha=C(a)$, then the idea for weakening $\alpha$ is to generalize $C$.


## Future Work

- Investigating weakening relations in some DLs


## Future Work

- Investigating weakening relations in some DLs
- To make repairs as gentle as possible, the following problem is encountered: Given a concept $D$, a concept $F$ is an upper neighbor (UN) of $D$ iff
- $D \sqsubset F$
- there is no $E$ such that $D \sqsubset E \sqsubset F$


## Future Work

- Investigating weakening relations in some DLs
- To make repairs as gentle as possible, the following problem is encountered: Given a concept $D$, a concept $F$ is an upper neighbor (UN) of $D$ iff
- $D \sqsubset F$
- there is no $E$ such that $D \sqsubset E \sqsubset F$
- Given $J \models \alpha$ and $C \sqsubseteq D \in J$, find $D^{\prime}$ without "searching blindly" s.t.
$-D \sqsubset D^{\prime}$
$-\mathfrak{O}_{s} \cup(J \backslash\{C \sqsubseteq D\}) \cup\left\{C \sqsubseteq D^{\prime}\right\} \vDash \alpha$
- $D^{\prime}$ is as specific as possible


## Future Work

- Investigating weakening relations in some DLs
- To make repairs as gentle as possible, the following problem is encountered: Given a concept $D$, a concept $F$ is an upper neighbor (UN) of $D$ iff
- $D \sqsubset F$
- there is no $E$ such that $D \sqsubset E \sqsubset F$
- Given $J \models \alpha$ and $C \sqsubseteq D \in J$, find $D^{\prime}$ without "searching blindly" s.t.
$-D \sqsubset D^{\prime}$
$-\mathfrak{O}_{s} \cup(J \backslash\{C \sqsubseteq D\}) \cup\left\{C \sqsubseteq D^{\prime}\right\} \vDash \alpha$
- $D^{\prime}$ is as specific as possible
- Whatever how you repair/anonymize $\mathfrak{O}$ to $\mathfrak{O}^{\prime}$, please show for all $\mathfrak{O}^{\prime \prime}$ s.t. $\mathfrak{V}^{\prime \prime} \mid \vDash \alpha$, we have $\left(\mathfrak{V}^{\prime} \cup \mathfrak{O}^{\prime \prime}\right) \not \vDash \alpha$.


## Thank You




[^0]:    ${ }^{1}$ F. Baader, D. Borchmann, and A. Nuradiansyah, Preliminary Results on the Identity Problem in Description Logic Ontologies, DL Workshop 2017

[^1]:    ${ }^{1}$ F. Baader, D. Borchmann, and A. Nuradiansyah, Preliminary Results on the Identity Problem in Description Logic Ontologies, DL Workshop 2017

[^2]:    ${ }^{1}$ F. Baader, D. Borchmann, and A. Nuradiansyah, Preliminary Results on the Identity Problem in Description Logic Ontologies, DL Workshop 2017

[^3]:    ${ }^{1}$ F. Baader, D. Borchmann, and A. Nuradiansyah, Preliminary Results on the Identity Problem in Description Logic Ontologies, DL Workshop 2017

