Reasoning in Description Logic Ontologies for Identity Management

Franz Baader, Adrian Nuradiansyah

Technische Universität Dresden

March 8, 2018

Adrian Nuradiansyah

Talk in Bolzano 2018

March 8, 2018 1 / 19

Problem 1: View-based Identity Problem

Image: Image:

Problem 1: View-based Identity Problem

• Consider subsumption & conjunctive queries (SELECT-JOIN-PROJECT in DBs)

Problem 1: View-based Identity Problem

Is the identity of an anonymous x hidden w.r.t. $V_{\hat{r}_1}, \ldots, V_{\hat{r}_k}$?

Adrian Nuradiansyah

Talk in Bolzano 2018

An ontology \mathfrak{O} consists of **TBox** \mathcal{T} and **ABox** \mathcal{A} .

• A TBox \mathcal{T} is a set of General Concept Inclusions (GCIs) $C \sqsubseteq D$ \rightarrow background knowledge

An ontology \mathfrak{O} consists of **TBox** \mathcal{T} and **ABox** \mathcal{A} .

- A TBox T is a set of General Concept Inclusions (GCIs) $C \sqsubseteq D$ \rightarrow background knowledge
- An ABox A is a set of concept assertions C(a) and relationship assertions $r(a, b) \rightarrow$ knowledge about individuals

- 1. Subsumption Query: $q = C \sqsubseteq D$, where C and D are DL concepts
- 2. Conjunctive Query: $q(\vec{x}) \leftarrow \exists \vec{y}.conj(\vec{x},\vec{y})$, where
 - \vec{x} are answer variables and \vec{y} are existentially quantified variables.
 - $conj(\vec{x}, \vec{y})$ is a conjunction of atoms A(z) or r(z, z').

 $C^{\mathcal{I}} \subseteq D^{\mathcal{I}}$ for all models \mathcal{I} of $\mathfrak{O}_{\hat{r}}$.

Let q = C ⊑ D be a subsumption query. The answer for q w.r.t. a rôle r̂ is {true} if

 $C^{\mathcal{I}} \subseteq D^{\mathcal{I}}$ for all models \mathcal{I} of $\mathfrak{O}_{\hat{r}}$.

• Let q be a conjunctive query has n > 0 answer variables \vec{x} . The answer for q w.r.t. a rôle \hat{r} is a set of tuples of individuals $\vec{t} \in (N_l)^n$, where each \vec{t} replaces \vec{x} and

 $\mathcal{I} \models q(\vec{t})$ for all models \mathcal{I} of $\mathfrak{O}_{\hat{r}}$.

 Let q = C ⊑ D be a subsumption query. The answer for q w.r.t. a rôle r̂ is {true} if

 $C^{\mathcal{I}} \subseteq D^{\mathcal{I}}$ for all models \mathcal{I} of $\mathfrak{O}_{\hat{r}}$.

• Let q be a conjunctive query has n > 0 answer variables \vec{x} . The answer for q w.r.t. a rôle \hat{r} is a set of tuples of individuals $\vec{t} \in (N_l)^n$, where each \vec{t} replaces \vec{x} and

$$\mathcal{I}\models q(ec{t})$$
 for all models $\mathcal I$ of $\mathfrak{O}_{\hat{r}}.$

• A view $V_{\hat{r}}$ is a finite set of pairs of query and answers $\langle q, ans(q, \hat{r}) \rangle$

Adrian Nuradiansyah

Talk in Bolzano 2018

¹F. Baader, D. Borchmann, and A. Nuradiansyah, *Preliminary Results on the Identity Problem in Description Logic Ontologies*, DL Workshop 2017 (D + (D

• Identity Problem $(\mathfrak{O} \models a \doteq b)$

Given two individuals a, b and an ontology \mathfrak{O} , check whether

 $a^{\mathcal{I}} = b^{\mathcal{I}}$ for all models \mathcal{I} of \mathfrak{O}

Adrian Nuradiansyah

Talk in Bolzano 2018

March 8, 2018 6 / 19

¹F. Baader, D. Borchmann, and A. Nuradiansyah, *Preliminary Results on the Identity Problem in Description Logic Ontologies*, DL Workshop 2017

• Identity Problem $(\mathfrak{O} \models a \doteq b)$ Given two individuals a, b and an ontology \mathfrak{O} , check whether

 $a^{\mathcal{I}} = b^{\mathcal{I}}$ for all models \mathcal{I} of \mathfrak{O}

• **Identity to Instance**: Given two individuals a, b, and an ontology \mathfrak{O} , it holds

 $\mathfrak{O} \models a \doteq b$ iff $(\mathfrak{O} \cup A(a)) \models A(b)$, where A is fresh

Adrian Nuradiansyah

Talk in Bolzano 2018

• Identity Problem $(\mathfrak{O} \models a \doteq b)$ Given two individuals a, b and an ontology \mathfrak{O} , check whether

 $a^{\mathcal{I}} = b^{\mathcal{I}}$ for all models \mathcal{I} of \mathfrak{O}

• Identity to Instance: Given two individuals a, b, and an ontology \mathfrak{O} , it holds $\mathfrak{O} \models a \doteq b$ iff $(\mathfrak{O} \cup A(a)) \models A(b)$, where A is fresh

• Only make sense for \mathfrak{O} formulated in a **DL with equality power** (with nominals, number restrictions, or functional dependencies)

Adrian Nuradiansyah

Talk in Bolzano 2018

• $N_I = N_{KI} \cup N_{AI}$, sets of known and anonymous individuals, respectively

- $N_I = N_{KI} \cup N_{AI}$, sets of known and anonymous individuals, respectively
- The identity of $x \in N_{AI}$ w.r.t. \mathfrak{O} is

 $idn(x, \mathfrak{O}) = \{a \in N_{KI} \mid \mathfrak{O} \models x \doteq a\}$

- $N_I = N_{KI} \cup N_{AI}$, sets of known and anonymous individuals, respectively
- The identity of $x \in N_{AI}$ w.r.t. \mathfrak{O} is

$$idn(x, \mathfrak{O}) = \{a \in N_{KI} \mid \mathfrak{O} \models x \doteq a\}$$

• The identity of $x \in N_{AI}$ is hidden w.r.t. \mathfrak{O} iff $idn(x, \mathfrak{O}) = \emptyset$.

• Construct an ontology that is compatible with all views $V_{\hat{r}_1}, \ldots, V_{\hat{r}_k}$.

- Construct an ontology that is compatible with all views $V_{\hat{r}_1}, \ldots, V_{\hat{r}_k}$.
- However, there are still variables \vec{y} in some queries q in some $V_{\hat{r}_1}, \ldots, V_{\hat{r}_k}$.

- Construct an ontology that is compatible with all views $V_{\hat{r}_1}, \ldots, V_{\hat{r}_k}$.
- However, there are still variables \vec{y} in some queries q in some $V_{\hat{r}_1}, \ldots, V_{\hat{r}_k}$.
- We need to remove those \vec{y} .

Ground Query

Given an interpretation \mathcal{I} , a CQ q, and a tuple $\vec{t} \in (N_l)^n$ such that $\mathcal{I} \models q(\vec{t})$, a ground query \hat{q} is:

- $conj(\vec{t}, \vec{u})$, where \vec{u} is a tuple of individuals.
- obtained from q by replacing all variables in \vec{y} with fresh individuals a_y over \vec{u} .

- Construct an ontology that is compatible with all views $V_{\hat{r}_1}, \ldots, V_{\hat{r}_k}$.
- However, there are still variables \vec{y} in some queries q in some $V_{\hat{r}_1}, \ldots, V_{\hat{r}_k}$.
- We need to remove those \vec{y} .

Ground Query

Given an interpretation \mathcal{I} , a CQ q, and a tuple $\vec{t} \in (N_l)^n$ such that $\mathcal{I} \models q(\vec{t})$, a ground query \hat{q} is:

- $conj(\vec{t}, \vec{u})$, where \vec{u} is a tuple of individuals.
- obtained from q by replacing all variables in \vec{y} with fresh individuals a_y over \vec{u} .

Canonical Ontology

The canonical ontology \mathcal{O}_V of $V_{\hat{r}_1}, \ldots, V_{\hat{r}_k}$ is defined as $\mathcal{O}_V := (\mathcal{T}_V, \mathcal{A}_V)$ where

$$\mathcal{T}_V := \{ C \sqsubseteq D \mid \langle C \sqsubseteq D, \{ \texttt{true} \} \rangle \in V_{\hat{r}_i} \text{ for some } i, 1 \le i \le k \}$$

 $\begin{array}{lll} \mathcal{A}_{V} & := & \{ A(a) \mid \langle q, \vec{t} \rangle \in V_{r_{i}} \land A(a) \text{ is a conjunct in } \widehat{q}, \text{ for some } i, 1 \leq i \leq k \} \cup \\ & \quad \{ r(a,b) \mid \langle q, \vec{t} \rangle \in V_{r_{i}} \land r(a,b) \text{ is a conjunct in } \widehat{q}, \text{ for some } i, 1 \leq i \leq k \}. \end{array}$

Theorem

The identity of $x \in N_{AI}$ is hidden w.r.t. $V_{\hat{r}_1}, \ldots, V_{\hat{r}_k}$ iff $idn(x, \mathcal{O}_V) = \emptyset$.

²F. Baader, D. Borchmann and A. Nuradiansyah, *The Identity Problem in Description* Logic Ontologies and Its Application to View-Based Information Hiding, JIST2017

Adrian Nuradiansyah

Talk in Bolzano 2018

March 8, 2018 9 / 19

Theorem

The identity of $x \in N_{AI}$ is hidden w.r.t. $V_{\hat{r}_1}, \ldots, V_{\hat{r}_k}$ iff $idn(x, \mathcal{O}_V) = \emptyset$.

Complexity

The view-based identity problem in the DL ${\mathcal L}$ can be solved in

- PTime if *L* is *ELO*,
- ExpTime if $\mathcal{L} \in \{\mathcal{ALCO}, \mathcal{ALCQ}\},\$
- NExpTime if \mathcal{L} is \mathcal{ALCOIQ} .

²F. Baader, D. Borchmann and A. Nuradiansyah, *The Identity Problem in Description* Logic Ontologies and Its Application to View-Based Information Hiding, JIST2017

Adrian Nuradiansyah

Talk in Bolzano 2018

- Avoiding someone to know if the identity of x belongs to {a}.
- Avoiding someone to know if the identity of x belongs to $\{a_1, \ldots, a_k\}$ \rightarrow (Sweeney, 2002).
- Such a formal protection model that is already well-investigated in DBs.

- Avoiding someone to know if the identity of x belongs to {a}.
- Avoiding someone to know if the identity of x belongs to $\{a_1, \ldots, a_k\}$ \rightarrow (Sweeney, 2002).
- Such a formal protection model that is already well-investigated in DBs.

The Non k-Anonymity Problem

Let \mathfrak{O} be an ontology, $x \in N_{AI}$, and $a_1, \ldots, a_k \in N_{KI}$. x is **not in** k-Anonymity iff for all models \mathcal{I} of \mathfrak{O} ,

$$x^\mathcal{I} \in \{a_1^\mathcal{I}, \dots, a_k^\mathcal{I}\}$$

Non k-Anonymity to Instance

Let \mathfrak{O} be formulated in a DL \mathcal{L} with equality power, $x \in N_{AI}$, $a_1, \ldots, a_k \in N_{KI}$. It holds that for all models \mathcal{I} of \mathfrak{O} ,

$$x^{\mathcal{I}} \in \{a_1^{\mathcal{I}}, \ldots, a_k^{\mathcal{I}}\}$$
 iff $\mathfrak{O}' \models A(x)$,

where $\mathfrak{O}' := \mathfrak{O} \cup \{A(a_i) \mid 1 \le i \le k\}$ and A is fresh.

Non k-Anonymity to Identity

Let \mathfrak{O} be formulated in $\mathcal{L} \in \{\mathcal{ELO}, DL\text{-Lite}_A, \mathcal{CFD}_{nc}\}$ If $x \in N_{AI}$, $a_1, \ldots, a_k \in N_{KI}$, then for all models \mathcal{I} of \mathfrak{O} , $x^{\mathcal{I}} \in \{a_1^{\mathcal{I}}, \ldots, a_k^{\mathcal{I}}\}$ iff for all models \mathcal{I} of \mathfrak{O} , $x^{\mathcal{I}} = a_i^{\mathcal{I}}$ for some $1 \leq i \leq k$.

Adrian Nuradiansyah

Complexity of the *k*-Anonymity Problem

- PTime if $\mathcal{L} \in \{\mathcal{ELO}, DL\text{-}Lite_A, \mathcal{CFD}_{nc}\}.$
- ExpTime complete if $\mathcal{L} \in {\mathcal{ALCO}, \mathcal{ALCQ}}$,
- NExpTime-complete if \mathcal{L} is \mathcal{ALCOIQ} .

How to solve the *k*-Anonymity Problem?

Complexity of the *k*-Anonymity Problem

- PTime if $\mathcal{L} \in \{\mathcal{ELO}, DL\text{-}Lite_A, \mathcal{CFD}_{nc}\}.$
- ExpTime complete if $\mathcal{L} \in \{\mathcal{ALCO}, \mathcal{ALCQ}\}$,
- NExpTime-complete if \mathcal{L} is \mathcal{ALCOIQ} .

Are the complexities of k-anonymity and identity always the same?

• What if $\alpha = (x \doteq a)$ is not hidden in \mathfrak{O} ??

- What if $\alpha = (x \doteq a)$ is not hidden in \mathfrak{O} ??
- Anonymize \mathfrak{O} to \mathfrak{O}' such that $\mathfrak{O}' \not\models \alpha$

• What if $\alpha = (x \doteq a)$ is not hidden in \mathfrak{O} ??

• Anonymize \mathfrak{O} to \mathfrak{O}' such that $\mathfrak{O}' \not\models \alpha \rightarrow$ "Ontology Repair"!

- What if $\alpha = (x \doteq a)$ is not hidden in \mathfrak{O} ??
- Anonymize \mathfrak{O} to \mathfrak{O}' such that $\mathfrak{O}' \not\models \alpha \to \text{``Ontology Repair''!}$
- Assumption:
 - $\mathfrak{O} = \mathfrak{O}_s \cup \mathfrak{O}_r$ is the disjoint union of a static ontology \mathfrak{O}_s and a refutable ontology \mathfrak{O}_r .
 - Only the refutable part may be changed
• What if $\alpha = (x \doteq a)$ is not hidden in \mathfrak{O} ??

- Anonymize \mathfrak{O} to \mathfrak{O}' such that $\mathfrak{O}' \not\models \alpha \to \text{``Ontology Repair''!}$
- Assumption:
 - $\mathfrak{O} = \mathfrak{O}_s \cup \mathfrak{O}_r$ is the disjoint union of a static ontology \mathfrak{O}_s and a refutable ontology \mathfrak{O}_r .
 - Only the refutable part may be changed

Ontology Repair

• Let us say that our "secret" α is of the form (Identity) $x \doteq a$ (Instance) C(x) (Concept Relationship) $C \sqsubseteq D$

• What if $\alpha = (x \doteq a)$ is not hidden in \mathfrak{O} ??

- Anonymize \mathfrak{O} to \mathfrak{O}' such that $\mathfrak{O}' \not\models \alpha \to \text{``Ontology Repair''!}$
- Assumption:
 - $\mathcal{D} = \mathcal{D}_s \cup \mathcal{D}_r \text{ is the disjoint union of a static ontology } \mathcal{D}_s \text{ and a refutable ontology } \mathcal{D}_r.$
 - Only the refutable part may be changed

Ontology Repair

- Let us say that our "secret" α is of the form (Identity) x = a (Instance) C(x) (Concept Relationship) C ⊑ D
- Let $Con(\mathfrak{O}) := \{ \alpha \mid \mathfrak{O} \models \alpha \}$ be the set of all consequences of \mathfrak{O} .

< 47 ▶

< ∃ >

• What if $\alpha = (x \doteq a)$ is not hidden in \mathfrak{O} ??

- Anonymize \mathfrak{O} to \mathfrak{O}' such that $\mathfrak{O}' \not\models \alpha \to \text{``Ontology Repair''!}$
- Assumption:
 - $\mathcal{D} = \mathcal{D}_s \cup \mathcal{D}_r \text{ is the disjoint union of a static ontology } \mathcal{D}_s \text{ and a refutable ontology } \mathcal{D}_r.$
 - Only the refutable part may be changed

Ontology Repair

- Let us say that our "secret" α is of the form (Identity) x = a (Instance) C(x) (Concept Relationship) C ⊑ D
- Let $Con(\mathfrak{O}) := \{ \alpha \mid \mathfrak{O} \models \alpha \}$ be the set of all consequences of \mathfrak{O} .
- Let $\mathfrak{O} \models \alpha$ and $\mathfrak{O}_s \not\models \alpha$. The ontology \mathfrak{O}' is a repair of \mathfrak{O} w.r.t. α if

 $Con(\mathfrak{O}_s \cup \mathfrak{O}') \subseteq Con(\mathfrak{O}) \setminus \{\alpha\}$

< 47 ▶

< 3 > < 3 >

• What if $\alpha = (x \doteq a)$ is not hidden in \mathfrak{O} ??

- Anonymize \mathfrak{O} to \mathfrak{O}' such that $\mathfrak{O}' \not\models \alpha \rightarrow$ "Ontology Repair"!
- Assumption:
 - $\mathcal{D} = \mathcal{D}_s \cup \mathcal{D}_r \text{ is the disjoint union of a static ontology } \mathcal{D}_s \text{ and a refutable ontology } \mathcal{D}_r.$
 - Only the refutable part may be changed

Ontology Repair

- Let us say that our "secret" α is of the form (Identity) x = a (Instance) C(x) (Concept Relationship) C ⊑ D
- Let $Con(\mathfrak{O}) := \{ \alpha \mid \mathfrak{O} \models \alpha \}$ be the set of all consequences of \mathfrak{O} .
- Let $\mathfrak{O} \models \alpha$ and $\mathfrak{O}_s \not\models \alpha$. The ontology \mathfrak{O}' is a repair of \mathfrak{O} w.r.t. α if

 $Con(\mathfrak{O}_s \cup \mathfrak{O}') \subseteq Con(\mathfrak{O}) \setminus \{\alpha\}$

 The repair D' is an optimal repair of D w.r.t. α if there is no repair D" of D w.r.t. α s.t. Con(D_s ∪ D') ⊂ Con(D_s ∪ D").

< □ > < 同 > < 回 > < 回 > < 回 >

• Let $\mathfrak{O} = (\mathcal{T}, \mathcal{A})$ be formulated in \mathcal{EL} , where

$$\begin{aligned} \mathcal{T} &:= \{A \sqsubseteq \exists r.A, \exists r.A \sqsubseteq A\} \\ \mathcal{A} &:= \{A(a)\} \end{aligned}$$

• Let $\mathfrak{O} = (\mathcal{T}, \mathcal{A})$ be formulated in \mathcal{EL} , where

$$\begin{aligned} \mathcal{T} &:= & \{A \sqsubseteq \exists r.A, \exists r.A \sqsubseteq A\} \\ \mathcal{A} &:= & \{A(a)\} \end{aligned}$$

- Let \mathfrak{O}' be a repair. Obviously \mathfrak{O}' only contains concept assertions C(a). s.t.
 - C does not contain A
 - C is in the form of $(\exists r.)^n \top (a)$, for n > 0.

• Let $\mathfrak{O} = (\mathcal{T}, \mathcal{A})$ be formulated in \mathcal{EL} , where

$$\begin{aligned} \mathcal{T} &:= & \{A \sqsubseteq \exists r.A, \exists r.A \sqsubseteq A\} \\ \mathcal{A} &:= & \{A(a)\} \end{aligned}$$

• $\mathfrak{O}_s = \mathcal{T}, \mathfrak{O}_r = \mathcal{A}$, and the unwanted consequence $\alpha = \mathcal{A}(a)$.

• Let \mathfrak{O}' be a repair. Obviously \mathfrak{O}' only contains concept assertions C(a). s.t.

- C does not contain A
- C is in the form of $(\exists r.)^n \top (a)$, for n > 0.
- Since \mathfrak{O}' is finite, there is a maximal n_0 s.t. $((\exists r.)^{n_0} \top)(a) \in \mathfrak{O}'$, but $((\exists r.)^n \top)(a) \notin \mathfrak{O}'$, for all $n > n_0$.

• Let $\mathfrak{O} = (\mathcal{T}, \mathcal{A})$ be formulated in \mathcal{EL} , where

$$\begin{aligned} \mathcal{T} &:= & \{A \sqsubseteq \exists r.A, \exists r.A \sqsubseteq A\} \\ \mathcal{A} &:= & \{A(a)\} \end{aligned}$$

- Let \mathfrak{O}' be a repair. Obviously \mathfrak{O}' only contains concept assertions C(a). s.t.
 - C does not contain A
 - C is in the form of $(\exists r.)^n \top (a)$, for n > 0.
- Since D' is finite, there is a maximal n₀ s.t. ((∃r.)ⁿ₀ ⊤)(a) ∈ D', but ((∃r.)ⁿ⊤)(a) ∉ D', for all n > n₀.
- Claim: If $\mathfrak{G}' = \{((\exists r.)^{n_0} \top)(a)\}$, then $((\exists r.)^n \top)(a) \notin Con(\mathcal{T} \cup \mathfrak{G}')$, for all $n > n_0$.

• Let $\mathfrak{O} = (\mathcal{T}, \mathcal{A})$ be formulated in \mathcal{EL} , where

$$\begin{aligned} \mathcal{T} &:= & \{A \sqsubseteq \exists r.A, \exists r.A \sqsubseteq A\} \\ \mathcal{A} &:= & \{A(a)\} \end{aligned}$$

- Let \mathfrak{O}' be a repair. Obviously \mathfrak{O}' only contains concept assertions C(a). s.t.
 - C does not contain A
 - C is in the form of $(\exists r.)^n \top (a)$, for n > 0.
- Since D' is finite, there is a maximal n₀ s.t. ((∃r.)ⁿ₀ ⊤)(a) ∈ D', but ((∃r.)ⁿ⊤)(a) ∉ D', for all n > n₀.
- Claim: If $\mathfrak{G}' = \{((\exists r.)^{n_0} \top)(a)\}$, then $((\exists r.)^n \top)(a) \notin Con(\mathcal{T} \cup \mathfrak{G}')$, for all $n > n_0$.
- Let $n > n_0$. Then $\mathfrak{O}'' = \{((\exists r.)^n \top)(a)\}$ is also a repair.

• Let $\mathfrak{O} = (\mathcal{T}, \mathcal{A})$ be formulated in \mathcal{EL} , where

$$\begin{aligned} \mathcal{T} &:= & \{A \sqsubseteq \exists r.A, \exists r.A \sqsubseteq A\} \\ \mathcal{A} &:= & \{A(a)\} \end{aligned}$$

- Let \mathfrak{O}' be a repair. Obviously \mathfrak{O}' only contains concept assertions C(a). s.t.
 - C does not contain A
 - C is in the form of $(\exists r.)^n \top (a)$, for n > 0.
- Since D' is finite, there is a maximal n₀ s.t. ((∃r.)ⁿ₀ ⊤)(a) ∈ D', but ((∃r.)ⁿ⊤)(a) ∉ D', for all n > n₀.
- Claim: If $\mathfrak{G}' = \{((\exists r.)^{n_0} \top)(a)\}$, then $((\exists r.)^n \top)(a) \notin Con(\mathcal{T} \cup \mathfrak{G}')$, for all $n > n_0$.
- Let $n > n_0$. Then $\mathfrak{O}'' = \{((\exists r.)^n \top)(a)\}$ is also a repair.
- In addition, $Con(\mathcal{T} \cup \mathfrak{O}') \subset Con(\mathcal{T} \cup \mathfrak{O}'')$ and thus \mathfrak{O}' is **not optimal**.

• Let $\mathfrak{O} = (\mathcal{T}, \mathcal{A})$ be formulated in \mathcal{EL} , where

$$\begin{aligned} \mathcal{T} &:= & \{A \sqsubseteq \exists r.A, \exists r.A \sqsubseteq A\} \\ \mathcal{A} &:= & \{A(a)\} \end{aligned}$$

- Let \mathfrak{O}' be a repair. Obviously \mathfrak{O}' only contains concept assertions C(a). s.t.
 - C does not contain A
 - C is in the form of $(\exists r.)^n \top (a)$, for n > 0.
- Since D' is finite, there is a maximal n₀ s.t. ((∃r.)ⁿ₀ ⊤)(a) ∈ D', but ((∃r.)ⁿ⊤)(a) ∉ D', for all n > n₀.
- Claim: If $\mathfrak{G}' = \{((\exists r.)^{n_0} \top)(a)\}$, then $((\exists r.)^n \top)(a) \notin Con(\mathcal{T} \cup \mathfrak{G}')$, for all $n > n_0$.
- Let $n > n_0$. Then $\mathfrak{O}'' = \{((\exists r.)^n \top)(a)\}$ is also a repair.
- In addition, $Con(\mathcal{T} \cup \mathfrak{G}') \subset Con(\mathcal{T} \cup \mathfrak{G}'')$ and thus \mathfrak{G}' is **not optimal**.
- Since D' is chosen arbitrarily, this shows there cannot be an optimal repair!

Optimal Classical Repair

- The repair \mathfrak{O}' is a classical repair of \mathfrak{O} w.r.t. α if $\mathfrak{O}' \subset \mathfrak{O}_r$.
- It is an optimal classical repair D' of D w.r.t. α if there is no classical repair D" of D w.r.t. α such that D' ⊂ D".

Optimal Classical Repair

- The repair \mathfrak{O}' is a classical repair of \mathfrak{O} w.r.t. α if $\mathfrak{O}' \subset \mathfrak{O}_r$.
- It is an optimal classical repair D' of D w.r.t. α if there is no classical repair D" of D w.r.t. α such that D' ⊂ D".
- Optimal classical repairs always exist → Justification and Hitting Set. (Horridge, 2011)
- Let $\mathfrak{O} \models \alpha$. A justification J is a minimal subset of \mathfrak{O}_r such that $\mathfrak{O}_s \cup J \models \alpha$.
- Let J_1, \ldots, J_k be the justifications of \mathfrak{O} w.r.t. α . A hitting set \mathcal{H} of these justifications is a set of axioms such that $\mathcal{H} \cap J_i \neq \emptyset$ for $i = 1, \ldots, k$.

Optimal Classical Repair

- The repair \mathfrak{O}' is a classical repair of \mathfrak{O} w.r.t. α if $\mathfrak{O}' \subset \mathfrak{O}_r$.
- It is an optimal classical repair D' of D w.r.t. α if there is no classical repair D" of D w.r.t. α such that D' ⊂ D".
- Optimal classical repairs always exist → Justification and Hitting Set. (Horridge, 2011)
- Let $\mathfrak{O} \models \alpha$. A justification J is a minimal subset of \mathfrak{O}_r such that $\mathfrak{O}_s \cup J \models \alpha$.
- Let J_1, \ldots, J_k be the justifications of \mathfrak{O} w.r.t. α . A hitting set \mathcal{H} of these justifications is a set of axioms such that $\mathcal{H} \cap J_i \neq \emptyset$ for $i = 1, \ldots, k$.
- A hitting set \mathcal{H}_{min} is minimal if there is no \mathcal{H}' of J_1, \ldots, J_k such that $\mathcal{H}' \subset \mathcal{H}_{min}$.

Optimal Classical Repair

- The repair \mathfrak{O}' is a classical repair of \mathfrak{O} w.r.t. α if $\mathfrak{O}' \subset \mathfrak{O}_r$.
- It is an optimal classical repair D' of D w.r.t. α if there is no classical repair D" of D w.r.t. α such that D' ⊂ D".
- Optimal classical repairs always exist → Justification and Hitting Set. (Horridge, 2011)
- Let $\mathfrak{O} \models \alpha$. A justification J is a minimal subset of \mathfrak{O}_r such that $\mathfrak{O}_s \cup J \models \alpha$.
- Let J_1, \ldots, J_k be the justifications of \mathfrak{O} w.r.t. α . A hitting set \mathcal{H} of these justifications is a set of axioms such that $\mathcal{H} \cap J_i \neq \emptyset$ for $i = 1, \ldots, k$.
- A hitting set \mathcal{H}_{min} is minimal if there is no \mathcal{H}' of J_1, \ldots, J_k such that $\mathcal{H}' \subset \mathcal{H}_{min}$.
- $\mathfrak{O}' := \mathfrak{O}_r \setminus \mathcal{H}_{min}$ is an optimal classical repair of \mathfrak{O} w.r.t. α such that

 $\mathfrak{O}_{\mathfrak{s}} \cup \mathfrak{O}' \not\models \alpha$

Adrian Nuradiansyah

(a)

- Obtaining Classical Repairs \rightarrow removing axioms from \mathfrak{O} .
- Instead, we want to weaken axioms in \mathcal{H}_{min} !
- Given axioms β, γ , an axiom γ is weaker than β if $Con(\{\gamma\}) \subset Con(\{\beta\})$

- Obtaining Classical Repairs \rightarrow removing axioms from \mathfrak{O} .
- Instead, we want to weaken axioms in \mathcal{H}_{min} !
- Given axioms β, γ , an axiom γ is weaker than β if $Con(\{\gamma\}) \subset Con(\{\beta\})$
- Algorithm 1: For each $\beta \in \mathcal{H}_{min}$ and all J_1, \ldots, J_k containing β ,

- Obtaining Classical Repairs \rightarrow removing axioms from \mathfrak{O} .
- Instead, we want to weaken axioms in \mathcal{H}_{min} !
- Given axioms β , γ , an axiom γ is weaker than β if $Con(\{\gamma\}) \subset Con(\{\beta\})$

• Algorithm 1: For each $\beta \in \mathcal{H}_{min}$ and all J_1, \ldots, J_k containing β , replace β with exactly one γ , where $\gamma \prec \beta$ and

- Obtaining Classical Repairs \rightarrow removing axioms from \mathfrak{O} .
- Instead, we want to weaken axioms in \mathcal{H}_{min} !
- Given axioms β , γ , an axiom γ is weaker than β if $Con(\{\gamma\}) \subset Con(\{\beta\})$
- Algorithm 1: For each β ∈ H_{min} and all J₁,..., J_k containing β, replace β with exactly one γ, where γ ≺ β and

$$\mathfrak{O}_s \cup (J_i \setminus \{\beta\}) \cup \{\gamma\} \not\models \alpha \text{ for } i = 1, \dots, k.$$

- Obtaining Classical Repairs \rightarrow removing axioms from \mathfrak{O} .
- Instead, we want to weaken axioms in \mathcal{H}_{min} !
- Given axioms β, γ , an axiom γ is weaker than β if $Con(\{\gamma\}) \subset Con(\{\beta\})$
- Algorithm 1: For each $\beta \in \mathcal{H}_{min}$ and all J_1, \ldots, J_k containing β , replace β with exactly one γ , where $\gamma \prec \beta$ and

 $\mathfrak{O}_s \cup (J_i \setminus \{\beta\}) \cup \{\gamma\} \not\models \alpha \text{ for } i = 1, \dots, k.$

Construct \mathfrak{O}' obtained from \mathfrak{O}_r by removing \mathcal{H}_{min} and replace each $\beta \in \mathcal{H}_{min}$ with the weaker γ .

- Obtaining Classical Repairs \rightarrow removing axioms from \mathfrak{O} .
- Instead, we want to weaken axioms in \mathcal{H}_{min} !
- Given axioms β, γ , an axiom γ is weaker than β if $Con(\{\gamma\}) \subset Con(\{\beta\})$
- Algorithm 1: For each β ∈ H_{min} and all J₁,..., J_k containing β, replace β with exactly one γ, where γ ≺ β and

 $\mathfrak{O}_s \cup (J_i \setminus \{\beta\}) \cup \{\gamma\} \not\models \alpha \text{ for } i = 1, \dots, k.$

Construct \mathfrak{O}' obtained from \mathfrak{O}_r by removing \mathcal{H}_{min} and replace each $\beta \in \mathcal{H}_{min}$ with the weaker γ .

Check whether α is a consequence of $\mathfrak{O}_s \cup \mathfrak{O}'$.

• Using Algorithm 1, α still can be a consequence of $\mathfrak{O}_s \cup \mathfrak{O}'$.

• Using Algorithm 1, α still can be a consequence of $\mathfrak{O}_s \cup \mathfrak{O}'$.

Example $\mathfrak{D}_s = \emptyset$ and $\mathfrak{D}_r = (\mathcal{T}, \mathcal{A})$ $\mathcal{T} := \{B \sqsubseteq C\}$ $\mathcal{A} := \{(C \sqcap B)(a)\}$ $\alpha = C(a)$ $(\mathcal{T} \cup \mathcal{A}) \models \alpha$.

3

→

- b

< 4[™] > <

• Using Algorithm 1, α still can be a consequence of $\mathfrak{O}_s \cup \mathfrak{O}'$.

Example $\mathfrak{O}_s = \emptyset$ and $\mathfrak{O}_r = (\mathcal{T}, \mathcal{A})$ $\mathcal{T} := \{B \sqsubseteq C\}$ $\mathcal{A} := \{(C \sqcap B)(a)\}$ $\alpha = C(a)$ $(\mathcal{T} \cup \mathcal{A}) \models \alpha.$ $J := \{(C \sqcap B)(a)\}$ $\mathcal{H}_{min} := \{(C \sqcap B)(a)\}$

3

I ⇒

< 4[™] > <

• Using Algorithm 1, α still can be a consequence of $\mathfrak{O}_{\mathfrak{s}} \cup \mathfrak{O}'$.

Example

$$\begin{split} \mathfrak{O}_s &= \emptyset \text{ and } \mathfrak{O}_r = (\mathcal{T}, \mathcal{A}) \\ \mathcal{T} &:= \{B \sqsubseteq C\} \qquad \mathcal{A} := \{(C \sqcap B)(a)\} \qquad \alpha = C(a) \qquad (\mathcal{T} \cup \mathcal{A}) \models \alpha. \\ J &:= \{(C \sqcap B)(a)\} \qquad \mathcal{H}_{min} := \{(C \sqcap B)(a)\} \\ \text{Take } (C \sqcap B)(a) \in \mathcal{H}_{min}, \text{ weaken it to } B(a) \end{split}$$

• Using Algorithm 1, α still can be a consequence of $\mathfrak{O}_{\mathfrak{s}} \cup \mathfrak{O}'$.

Example

$$\begin{split} \mathfrak{O}_s &= \emptyset \text{ and } \mathfrak{O}_r = (\mathcal{T}, \mathcal{A}) \\ \mathcal{T} &:= \{B \sqsubseteq C\} \qquad \mathcal{A} := \{(C \sqcap B)(a)\} \qquad \alpha = C(a) \qquad (\mathcal{T} \cup \mathcal{A}) \models \alpha. \\ J &:= \{(C \sqcap B)(a)\} \qquad \mathcal{H}_{min} := \{(C \sqcap B)(a)\} \\ \text{Take } (C \sqcap B)(a) \in \mathcal{H}_{min}, \text{ weaken it to } B(a) \\ \text{It implies } J \setminus \{(C \sqcap B)(a)\} \cup \{B(a)\} \not\models \alpha \end{split}$$

• Using Algorithm 1, α still can be a consequence of $\mathfrak{O}_s \cup \mathfrak{O}'$.

Example

$$\begin{split} \mathfrak{O}_s &= \emptyset \text{ and } \mathfrak{O}_r = (\mathcal{T}, \mathcal{A}) \\ \mathcal{T} &:= \{B \sqsubseteq C\} \qquad \mathcal{A} := \{(C \sqcap B)(a)\} \qquad \alpha = C(a) \qquad (\mathcal{T} \cup \mathcal{A}) \models \alpha. \\ J &:= \{(C \sqcap B)(a)\} \qquad \mathcal{H}_{min} := \{(C \sqcap B)(a)\} \\ \text{Take } (C \sqcap B)(a) \in \mathcal{H}_{min}, \text{ weaken it to } B(a) \\ \text{It implies } J \setminus \{(C \sqcap B)(a)\} \cup \{B(a)\} \not\models \alpha \\ \text{But then, } \mathfrak{O}' &:= \mathfrak{O} \setminus \{(C \sqcap B)(a)\} \cup \{B(a)\} \models \alpha. \end{split}$$

- ∢ ∃ >

• Using Algorithm 1, α still can be a consequence of $\mathfrak{O}_s \cup \mathfrak{O}'$.

Example

$$\begin{split} \mathfrak{O}_s &= \emptyset \text{ and } \mathfrak{O}_r = (\mathcal{T}, \mathcal{A}) \\ \mathcal{T} &:= \{B \sqsubseteq C\} \qquad \mathcal{A} := \{(C \sqcap B)(a)\} \qquad \alpha = C(a) \qquad (\mathcal{T} \cup \mathcal{A}) \models \alpha. \\ J &:= \{(C \sqcap B)(a)\} \qquad \mathcal{H}_{min} := \{(C \sqcap B)(a)\} \\ \text{Take } (C \sqcap B)(a) \in \mathcal{H}_{min}, \text{ weaken it to } B(a) \\ \text{It implies } J \setminus \{(C \sqcap B)(a)\} \cup \{B(a)\} \not\models \alpha \\ \text{But then, } \mathfrak{O}' &:= \mathfrak{O} \setminus \{(C \sqcap B)(a)\} \cup \{B(a)\} \models \alpha. \end{split}$$

• Solution: Just iterate Algorithm 1 until $\mathfrak{O}_s \cup \mathfrak{O}' \not\models \alpha$.

• Using Algorithm 1, α still can be a consequence of $\mathfrak{O}_{\mathfrak{s}} \cup \mathfrak{O}'$.

Example

$$\begin{split} \mathfrak{O}_s &= \emptyset \text{ and } \mathfrak{O}_r = (\mathcal{T}, \mathcal{A}) \\ \mathcal{T} &:= \{B \sqsubseteq C\} \qquad \mathcal{A} := \{(C \sqcap B)(a)\} \qquad \alpha = C(a) \qquad (\mathcal{T} \cup \mathcal{A}) \models \alpha. \\ J &:= \{(C \sqcap B)(a)\} \qquad \mathcal{H}_{min} := \{(C \sqcap B)(a)\} \\ \text{Take } (C \sqcap B)(a) \in \mathcal{H}_{min}, \text{ weaken it to } B(a) \\ \text{It implies } J \setminus \{(C \sqcap B)(a)\} \cup \{B(a)\} \not\models \alpha \\ \text{But then, } \mathfrak{O}' &:= \mathfrak{O} \setminus \{(C \sqcap B)(a)\} \cup \{B(a)\} \models \alpha. \end{split}$$

• Solution: Just iterate Algorithm 1 until $\mathfrak{O}_s \cup \mathfrak{O}' \not\models \alpha$.

 Does it terminate? Yes, The iterative algorithm yields an exponential upper bound on the number of iterations.

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

How do we formally weaken the axioms during the iteration?

< A

3

How do we formally weaken the axioms during the iteration?

Weakening Relation

The binary relation \succ on axioms is

• a weakening relation if $\beta \succ \gamma$ implies that γ is weaker than β ;

How do we formally weaken the axioms during the iteration?

Weakening Relation

- a weakening relation if $\beta \succ \gamma$ implies that γ is weaker than β ;
- well-founded if there is no infinite \succ -chain $\beta_1 \succ \beta_2 \succ \beta_3 \succ \ldots$;

How do we formally weaken the axioms during the iteration?

Weakening Relation

- a weakening relation if $\beta \succ \gamma$ implies that γ is weaker than β ;
- well-founded if there is no infinite \succ -chain $\beta_1 \succ \beta_2 \succ \beta_3 \succ \ldots$;
- complete if for any axiom β that is not a tautology, there is a tautology γ such that β ≻ γ.

How do we formally weaken the axioms during the iteration?

Weakening Relation

- a weakening relation if $\beta \succ \gamma$ implies that γ is weaker than β ;
- well-founded if there is no infinite \succ -chain $\beta_1 \succ \beta_2 \succ \beta_3 \succ \ldots$;
- complete if for any axiom β that is not a tautology, there is a tautology γ such that $\beta \succ \gamma$.
- linear (polynomial) if for every axiom β, the length of the longest chain ≻generated from β is linearly (polynomially) bounded by the size of β;

How do we formally weaken the axioms during the iteration?

Weakening Relation

- a weakening relation if $\beta \succ \gamma$ implies that γ is weaker than β ;
- well-founded if there is no infinite \succ -chain $\beta_1 \succ \beta_2 \succ \beta_3 \succ \ldots$;
- complete if for any axiom β that is not a tautology, there is a tautology γ such that $\beta \succ \gamma$.
- linear (polynomial) if for every axiom β, the length of the longest chain ≻generated from β is linearly (polynomially) bounded by the size of β;
- A linear (polynomial) weakening relation shows that the iterative algorithm can terminate after a linear (polynomial) number of iterations.

How do we formally weaken the axioms during the iteration?

Weakening Relation

The binary relation \succ on axioms is

- a weakening relation if $\beta \succ \gamma$ implies that γ is weaker than β ;
- well-founded if there is no infinite \succ -chain $\beta_1 \succ \beta_2 \succ \beta_3 \succ \ldots$;
- complete if for any axiom β that is not a tautology, there is a tautology γ such that $\beta \succ \gamma$.
- linear (polynomial) if for every axiom β, the length of the longest chain ≻generated from β is linearly (polynomially) bounded by the size of β;
- A linear (polynomial) weakening relation shows that the iterative algorithm can terminate after a linear (polynomial) number of iterations.
- In the context of Description Logics,
 - If α = C ⊑ D, then the idea for weakening α is to generalize D or to specialize C.

3

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >
Weakening Relation

How do we formally weaken the axioms during the iteration?

Weakening Relation

The binary relation \succ on axioms is

- a weakening relation if $\beta \succ \gamma$ implies that γ is weaker than β ;
- well-founded if there is no infinite \succ -chain $\beta_1 \succ \beta_2 \succ \beta_3 \succ \ldots$;
- complete if for any axiom β that is not a tautology, there is a tautology γ such that $\beta \succ \gamma$.
- linear (polynomial) if for every axiom β, the length of the longest chain ≻generated from β is linearly (polynomially) bounded by the size of β;
- A linear (polynomial) weakening relation shows that the iterative algorithm can terminate after a linear (polynomial) number of iterations.
- In the context of Description Logics,
 - If α = C ⊑ D, then the idea for weakening α is to generalize D or to specialize C.
 - If $\alpha = C(a)$, then the idea for weakening α is to generalize C.

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

• Investigating weakening relations in some DLs

3

< □ ▶ < 凸 ▶

- Investigating weakening relations in some DLs
- To make repairs as gentle as possible, the following problem is encountered: Given a concept *D*, a concept *F* is an **upper neighbor** (UN) of *D* iff
 - *D* ⊂ *F*
 - there is no *E* such that $D \sqsubset E \sqsubset F$

- Investigating weakening relations in some DLs
- To make repairs as gentle as possible, the following problem is encountered: Given a concept *D*, a concept *F* is an **upper neighbor** (UN) of *D* iff

- there is no *E* such that $D \sqsubset E \sqsubset F$
- Given $J \models \alpha$ and $C \sqsubseteq D \in J$, find D' without "searching blindly" s.t.

$$- D \sqsubset D'$$

$$- \mathfrak{O}_{s} \cup (J \setminus \{C \sqsubseteq D\}) \cup \{C \sqsubseteq D'\} \models \alpha$$

-D' is as specific as possible

- Investigating weakening relations in some DLs
- To make repairs as gentle as possible, the following problem is encountered: Given a concept *D*, a concept *F* is an **upper neighbor** (UN) of *D* iff

- there is no *E* such that $D \sqsubset E \sqsubset F$
- Given $J \models \alpha$ and $C \sqsubseteq D \in J$, find D' without "searching blindly" s.t.

$$- D \sqsubseteq D' - \mathfrak{I}_{s} \cup (J \setminus \{C \sqsubseteq D\}) \cup \{C \sqsubseteq D'\} \models \alpha$$

- D' is as specific as possible
- Whatever how you repair/anonymize \mathfrak{O} to \mathfrak{O}' , please show

for all
$$\mathfrak{O}''$$
 s.t. $\mathfrak{O}'' \not\models \alpha$, we have $(\mathfrak{O}' \cup \mathfrak{O}'') \not\models \alpha$.

Thank You

Adrian Nuradiansyah

Talk in Bolzano 2018

э. March 8, 2018 19/19

3

Image: A matrix