Problem 1: View-based Identity Problem

Obtains Views \[\text{asks queries w.r.t. } \Omega\]

Adrian Nuradiansyah
Talk in Bolzano 2018 2 / 19
Problem 1: View-based Identity Problem

- A view V is a finite collection of queries together with their answers
- Consider subsumption & conjunctive queries (SELECT-JOIN-PROJECT in DBs)
Problem 1: View-based Identity Problem

- A view V is a finite collection of queries together with their answers.
- Consider subsumption & conjunctive queries (\texttt{SELECT-JOIN-PROJECT} in DBs).

Given an ontology \mathcal{O}_I

- At rôle \hat{r}_1
 - queries through $\mathcal{O}_{\hat{r}_1} \subseteq \mathcal{O}_I$ \hspace{1cm} \textbf{switch} \hspace{1cm} \ldots \hspace{1cm} \textbf{switch}
 - obtains View $V_{\hat{r}_1}$

- At rôle \hat{r}_k
 - queries through $\mathcal{O}_{\hat{r}_k} \subseteq \mathcal{O}_I$
 - obtains View $V_{\hat{r}_k}$

Is the identity of an anonymous x hidden w.r.t. $V_{\hat{r}_1}, \ldots, V_{\hat{r}_k}$?
Ontologies

Given an ontology \mathcal{O}_I

At rôle \hat{r}_1
- queries through $\mathcal{O}_{\hat{r}_1} \subseteq \mathcal{O}_I$ \quad switch \ldots \quad switch
- obtains View $V_{\hat{r}_1}$

At rôle \hat{r}_k
- queries through $\mathcal{O}_{\hat{r}_k} \subseteq \mathcal{O}_I$
- obtains View $V_{\hat{r}_k}$

Is the identity of an anonymous x hidden w.r.t. $V_{\hat{r}_1}, \ldots, V_{\hat{r}_k}$?

An ontology \mathcal{O} consists of TBox \mathcal{T} and ABox \mathcal{A}.

- A TBox \mathcal{T} is a set of General Concept Inclusions (GCIs) $C \sqsubseteq D$
 → background knowledge
Given an **ontology** \mathcal{O}.

At rôle \hat{r}_1:
- queries through $\mathcal{O}_{\hat{r}_1} \subseteq \mathcal{O}$
- obtains View $V_{\hat{r}_1}$

At rôle \hat{r}_k:
- queries through $\mathcal{O}_{\hat{r}_k} \subseteq \mathcal{O}$
- obtains View $V_{\hat{r}_k}$

Is the identity of an anonymous x hidden w.r.t. $V_{\hat{r}_1}, \ldots, V_{\hat{r}_k}$?

An **ontology** \mathcal{O} consists of **TBox** \mathcal{T} and **ABox** \mathcal{A}.

- A TBox \mathcal{T} is a set of **General Concept Inclusions (GCIs)** $C \sqsubseteq D$ → background knowledge
- An ABox \mathcal{A} is a set of **concept assertions** $C(a)$ and **relationship assertions** $r(a, b)$ → knowledge about individuals
Given an ontology \mathcal{O}_I

At rôle \hat{r}_1
- queries through $\mathcal{O}_{\hat{r}_1} \subseteq \mathcal{O}_I$ \[\xrightarrow{\text{switch}}\] \[\xrightarrow{\text{switch}}\] \[\xrightarrow{\text{switch}}\]
- obtains View $V_{\hat{r}_1}$

At rôle \hat{r}_k
- queries through $\mathcal{O}_{\hat{r}_k} \subseteq \mathcal{O}_I$
- obtains View $V_{\hat{r}_k}$

Is the identity of an anonymous \times hidden w.r.t. $V_{\hat{r}_1}, \ldots, V_{\hat{r}_k}$?
Queries

Given an ontology \mathcal{O}_I

At rôle \hat{r}_1
- **queries** through $\mathcal{O}_{\hat{r}_1} \subseteq \mathcal{O}_I$ \(\xrightarrow{\text{switch}}\) \ldots \(\xrightarrow{\text{switch}}\)
- obtains View $V_{\hat{r}_1}$

At rôle \hat{r}_k
- **queries** through $\mathcal{O}_{\hat{r}_k} \subseteq \mathcal{O}_I$
- obtains View $V_{\hat{r}_k}$

Is the identity of an anonymous x hidden w.r.t. $V_{\hat{r}_1}, \ldots, V_{\hat{r}_k}$?

1. **Subsumption Query**: $q = C \sqsubseteq D$, where C and D are DL concepts

2. **Conjunctive Query**: $q(x) \leftarrow \exists \bar{y}. \text{conj}(\bar{x}, \bar{y})$, where
 - \bar{x} are **answer variables** and \bar{y} are **existentially quantified variables**.
 - $\text{conj}(\bar{x}, \bar{y})$ is a **conjunction of atoms** $A(z)$ or $r(z, z')$.

Adrian Nuradiansyah
Talk in Bolzano 2018
March 8, 2018 4 / 19
Given an ontology \mathcal{O}_I

At rôles \hat{r}_1
- queries through $\mathcal{O}_{\hat{r}_1} \subseteq \mathcal{O}_I$ \[\text{switch} \quad \ldots \quad \text{switch}\]
- obtains **View** $V_{\hat{r}_1}$

At rôles \hat{r}_k
- queries through $\mathcal{O}_{\hat{r}_k} \subseteq \mathcal{O}_I$
- obtains **View** $V_{\hat{r}_k}$

Is the identity of an anonymous x hidden w.r.t. $V_{\hat{r}_1}, \ldots, V_{\hat{r}_k}$?
Given an ontology \mathcal{O}_I

At rôle \hat{r}_1
- queries through $\mathcal{O}_{\hat{r}_1} \subseteq \mathcal{O}_I$ switch \ldots switch
- obtains View $V_{\hat{r}_1}$

At rôle \hat{r}_k
- queries through $\mathcal{O}_{\hat{r}_k} \subseteq \mathcal{O}_I$
- obtains View $V_{\hat{r}_k}$

Is the identity of an anonymous x hidden w.r.t. $V_{\hat{r}_1}, \ldots, V_{\hat{r}_k}$?

Let $q = C \sqsubseteq D$ be a subsumption query. The answer for q w.r.t. a rôle \hat{r} is $\{true\}$ if

$$C^\mathcal{I} \subseteq D^\mathcal{I} \text{ for all models } \mathcal{I} \text{ of } \mathcal{O}_{\hat{r}}.$$
Given an ontology \mathcal{O}_I

At rôle \hat{r}_1
- queries through $\mathcal{O}_{\hat{r}_1} \subseteq \mathcal{O}_I$ \[\xrightarrow{\text{switch}}\ldots \xrightarrow{\text{switch}}\]
- obtains View $V_{\hat{r}_1}$

At rôle \hat{r}_k
- queries through $\mathcal{O}_{\hat{r}_k} \subseteq \mathcal{O}_I$
- obtains View $V_{\hat{r}_k}$

Is the identity of an anonymous x hidden w.r.t. $V_{\hat{r}_1}, \ldots, V_{\hat{r}_k}$?

- Let $q = C \sqsubseteq D$ be a subsumption query. The answer for q w.r.t. a rôle \hat{r} is $\{\text{true}\}$ if

 $$C^\mathcal{I} \subseteq D^\mathcal{I} \text{ for all models } \mathcal{I} \text{ of } \mathcal{O}_{\hat{r}}.$$

- Let q be a conjunctive query has $n > 0$ answer variables \vec{x}. The answer for q w.r.t. a rôle \hat{r} is a set of tuples of individuals $\vec{t} \in (N_I)^n$, where each \vec{t} replaces \vec{x} and

 $$\mathcal{I} \models q(\vec{t}) \text{ for all models } \mathcal{I} \text{ of } \mathcal{O}_{\hat{r}}.$$
Views

Given an ontology \mathcal{O}_I

At rôle \hat{r}_1
- queries through $\mathcal{O}_{\hat{r}_1} \subseteq \mathcal{O}_I$ \(\xrightarrow{\text{switch}}\) \ldots \(\xrightarrow{\text{switch}}\)
- obtains View $V_{\hat{r}_1}$

At rôle \hat{r}_k
- queries through $\mathcal{O}_{\hat{r}_k} \subseteq \mathcal{O}_I$
- obtains View $V_{\hat{r}_k}$

Is the identity of an anonymous x hidden w.r.t. $V_{\hat{r}_1}, \ldots, V_{\hat{r}_k}$?

- Let $q = C \sqsubseteq D$ be a subsumption query. The answer for q w.r.t. a rôle \hat{r} is \{true\} if
 \[C^\mathcal{I} \subseteq D^\mathcal{I} \] for all models \mathcal{I} of $\mathcal{O}_\hat{r}$.

- Let q be a conjunctive query has $n > 0$ answer variables \vec{x}.
 The answer for q w.r.t. a rôle \hat{r} is a set of tuples of individuals $\vec{t} \in (\mathcal{N}_I)^n$,
 where each \vec{t} replaces \vec{x} and
 \[\mathcal{I} \models q(\vec{t}) \] for all models \mathcal{I} of $\mathcal{O}_\hat{r}$.

- A view $V_{\hat{r}}$ is a finite set of pairs of query and answers $\langle q, \text{ans}(q, \hat{r}) \rangle$
The Identity Problem

Is the identity of an anonymous x hidden w.r.t. $V_{\hat{r}_1}, \ldots, V_{\hat{r}_k}$?
The Identity Problem

Is the identity of an anonymous x hidden w.r.t. $V_{\hat{r}_1}, \ldots, V_{\hat{r}_k}$?

Identity Problem ($\mathcal{O} \models a \equiv b$)

Given two individuals a, b and an ontology \mathcal{O}, check whether

$$a^\mathcal{I} = b^\mathcal{I} \text{ for all models } \mathcal{I} \text{ of } \mathcal{O}$$

The Identity Problem

Is the identity of an anonymous x hidden w.r.t. $V_{\hat{r}_1}, \ldots, V_{\hat{r}_k}$?

- **Identity Problem** ($\mathcal{O} \models a \equiv b$)
 Given two individuals a, b and an ontology \mathcal{O}, check whether
 $$a^\mathcal{I} = b^\mathcal{I}$$
 for all models \mathcal{I} of \mathcal{O}

- **Identity to Instance**: Given two individuals a, b, and an ontology \mathcal{O}, it holds
 $$\mathcal{O} \models a \equiv b \iff (\mathcal{O} \cup A(a)) \models A(b),$$
 where A is fresh

The Identity Problem

Is the identity of an anonymous x hidden w.r.t. $V_{\hat{r}_1}, \ldots, V_{\hat{r}_k}$?

- **Identity Problem** ($\mathcal{O} \models a \doteq b$)

 Given two individuals a, b and an ontology \mathcal{O}, check whether

 $$a^\mathcal{I} = b^\mathcal{I} \text{ for all models } \mathcal{I} \text{ of } \mathcal{O}$$

- **Identity to Instance**: Given two individuals a, b, and an ontology \mathcal{O}, it holds

 $$\mathcal{O} \models a \doteq b \text{ iff } (\mathcal{O} \cup A(a)) \models A(b), \text{ where } A \text{ is fresh}$$

- Only make sense for \mathcal{O} formulated in a **DL with equality power** (with **nominals**, **number restrictions**, or **functional dependencies**)

Is the identity of an anonymous hidden w.r.t. $V_{\hat{r}_1}, \ldots, V_{\hat{r}_k}$?
Hidden Identity

Is the identity of an anonymous x hidden w.r.t. $V_{\hat{r}_1}, \ldots, V_{\hat{r}_k}$?

- $N_I = N_{KI} \cup N_{AI}$, sets of known and anonymous individuals, respectively
Is the identity of an anonymous \(x \) hidden w.r.t. \(V_{\hat{r}_1}, \ldots, V_{\hat{r}_k} \)?

- \(N_I = N_{KI} \cup N_{AI} \), sets of known and anonymous individuals, respectively
- The identity of \(x \in N_{AI} \) w.r.t. \(\mathcal{D} \) is

\[
\text{idn}(x, \mathcal{D}) = \{ a \in N_{KI} \mid \mathcal{D} \models x = a \}
\]
Is the identity of an anonymous x hidden w.r.t. $V_{\hat{r}_1}, \ldots, V_{\hat{r}_k}$?

- $N_I = N_{KI} \cup N_{AI}$, sets of known and anonymous individuals, respectively
- The identity of $x \in N_{AI}$ w.r.t. \mathcal{D} is

 $$idn(x, \mathcal{D}) = \{a \in N_{KI} \mid \mathcal{D} \models x = a\}$$

- The identity of $x \in N_{AI}$ is hidden w.r.t. \mathcal{D} iff $idn(x, \mathcal{D}) = \emptyset$.
How to solve the View-based Identity Problem?

- Construct an ontology that is compatible with all views V_{r_1}, \ldots, V_{r_k}.
How to solve the View-based Identity Problem?

- Construct an ontology that is compatible with all views $V_{\hat{r}_1}, \ldots, V_{\hat{r}_k}$.
- However, there are still variables \vec{y} in some queries q in some $V_{\hat{r}_1}, \ldots, V_{\hat{r}_k}$.
How to solve the View-based Identity Problem?

- Construct an ontology that is compatible with all views \(V_{\hat{r}_1}, \ldots, V_{\hat{r}_k} \).
- However, there are still variables \(\vec{y} \) in some queries \(q \) in some \(V_{\hat{r}_1}, \ldots, V_{\hat{r}_k} \).
- We need to remove those \(\vec{y} \).

Ground Query

Given an interpretation \(\mathcal{I} \), a CQ \(q \), and a tuple \(\vec{t} \in (N_r)^n \) such that \(\mathcal{I} \models q(\vec{t}) \), a ground query \(\hat{q} \) is:

- \(\text{conj}(\vec{t}, \vec{u}) \), where \(\vec{u} \) is a tuple of individuals.
- obtained from \(q \) by replacing all variables in \(\vec{y} \) with fresh individuals \(a_y \) over \(\vec{u} \).
How to solve the View-based Identity Problem?

- Construct an ontology that is compatible with all views $V_{\hat{r}_1}, \ldots, V_{\hat{r}_k}$.
- However, there are still variables \vec{y} in some queries q in some $V_{\hat{r}_1}, \ldots, V_{\hat{r}_k}$.
- We need to remove those \vec{y}.

Ground Query

Given an interpretation \mathcal{I}, a CQ q, and a tuple $\vec{t} \in (N_I)^n$ such that $\mathcal{I} \models q(\vec{t})$, a ground query \hat{q} is:

- $\text{conj}(\vec{t}, \vec{u})$, where \vec{u} is a tuple of individuals.
- obtained from q by replacing all variables in \vec{y} with fresh individuals a_y over \vec{u}.

Canonical Ontology

The canonical ontology O_V of $V_{\hat{r}_1}, \ldots, V_{\hat{r}_k}$ is defined as $O_V := (\mathcal{T}_V, \mathcal{A}_V)$ where

\[
\mathcal{T}_V := \{ C \sqsubseteq D \mid \langle C \sqsubseteq D, \{ \text{true} \} \rangle \in V_{\hat{r}_i}, \text{ for some } i, 1 \leq i \leq k \} \\
\mathcal{A}_V := \{ A(a) \mid \langle q, \vec{t} \rangle \in V_{r_i} \land A(a) \text{ is a conjunct in } \hat{q}, \text{ for some } i, 1 \leq i \leq k \} \cup \\
\{ r(a, b) \mid \langle q, \vec{t} \rangle \in V_{r_i} \land r(a, b) \text{ is a conjunct in } \hat{q}, \text{ for some } i, 1 \leq i \leq k \}.
\]
How to solve the View-based Identity Problem? \(^2\)

Theorem

The identity of \(x \in N_{AI}\) is **hidden** w.r.t. \(V_{\hat{r}_1}, \ldots, V_{\hat{r}_k}\) iff \(\text{idn}(x, O_V) = \emptyset\).

The identity of $x \in N_{AI}$ is hidden w.r.t. $V\hat{r}_1, \ldots, V\hat{r}_k$ iff $idn(x, O_V) = \emptyset$.

The view-based identity problem in the DL \mathcal{L} can be solved in
- PTime if \mathcal{L} is ELO,
- ExpTime if $\mathcal{L} \in \{ALCO, ALCQ\}$,
- NExpTime if \mathcal{L} is $ALCOIQ$.

Problem 2: k-Anonymity

- Avoiding someone to know if the identity of x belongs to \{a\}.
- Avoiding someone to know if the identity of x belongs to \{a_1, \ldots, a_k\} → (Sweeney, 2002).
- Such a formal protection model that is already well-investigated in DBs.
Problem 2: \(k \)-Anonymity

- Avoiding someone to know if the identity of \(x \) belongs to \(\{a\} \).
- Avoiding someone to know if the identity of \(x \) belongs to \(\{a_1, \ldots, a_k\} \) → (Sweeney, 2002).
- Such a formal protection model that is already well-investigated in DBs.

The Non \(k \)-Anonymity Problem

Let \(\mathcal{O} \) be an ontology, \(x \in N_{AI} \), and \(a_1, \ldots, a_k \in N_{KI} \).
\(x \) is not in \(k \)-Anonymity iff for all models \(\mathcal{I} \) of \(\mathcal{O} \),

\[
x^\mathcal{I} \in \{a_1^\mathcal{I}, \ldots, a_k^\mathcal{I}\}
\]
How to solve the k-Anonymity Problem?

The identity problem \text{reduced} \rightarrow \text{the instance problem} \text{reduced} \rightarrow \text{the non } k\text{-anonymity problem}

Non k-Anonymity to Instance

Let \mathcal{O} be formulated in a DL \mathcal{L} with equality power, $x \in N_{AI}$, $a_1, \ldots, a_k \in N_{KI}$. It holds that for all models \mathcal{I} of \mathcal{O},

$$x^\mathcal{I} \in \{a_1^\mathcal{I}, \ldots, a_k^\mathcal{I}\} \text{ iff } \mathcal{O}' \models A(x),$$

where $\mathcal{O}' := \mathcal{O} \cup \{A(a_i) \mid 1 \leq i \leq k\}$ and A is fresh.
How to solve the k-Anonymity Problem?

the identity problem \rightarrow the instance problem \rightarrow the non k-anonymity problem

reduced (only for convex DLs)

Non k-Anonymity to Identity

Let \mathcal{O} be formulated in $\mathcal{L} \in \{\mathcal{ELO}, DL-Lite_A, CFD_{nc}\}$

If $x \in N_{AI}$, $a_1, \ldots, a_k \in N_{KI}$, then

for all models \mathcal{I} of \mathcal{O}, $x^\mathcal{I} \in \{a_1^\mathcal{I}, \ldots, a_k^\mathcal{I}\}$ iff

for all models \mathcal{I} of \mathcal{O}, $x^\mathcal{I} = a_i^\mathcal{I}$ for some $1 \leq i \leq k$.
How to solve the k-Anonymity Problem?

- the identity problem
- the instance problem
- the non k-anonymity problem

reduced (only for convex DLs)

Complexity of the k-Anonymity Problem

- PTime if $\mathcal{L} \in \{\mathcal{ELo}, \mathcal{DL-Lite}_A, \mathcal{CFD}_{nc}\}$.
- ExpTime complete if $\mathcal{L} \in \{\mathcal{ALCO}, \mathcal{ALCQ}\}$.
- NExpTime-complete if \mathcal{L} is \mathcal{ALCQI}.
How to solve the k-Anonymity Problem?

- the identity problem
- the instance problem
- the non k-anonymity problem

Complexity of the k-Anonymity Problem

- PTime if $\mathcal{L} \in \{\mathcal{ELO}, DL-Lite_A, CFD_{nc}\}$.
- ExpTime complete if $\mathcal{L} \in \{\mathcal{ALCO}, ALCQ\}$.
- NExpTime-complete if \mathcal{L} is \mathcal{ALCOT}.

Are the complexities of k-anonymity and identity always the same?
Problem 3: Ontology Anonymization

What if \(\alpha = (x \doteq a) \) is not hidden in \(\mathcal{O} \)?

- Assume:
 - \(\mathcal{O} = \mathcal{O}_s \cup \mathcal{O}_r \) is the disjoint union of a static ontology \(\mathcal{O}_s \) and a refutable ontology \(\mathcal{O}_r \).
 - Only the refutable part may be changed.

Ontology Repair

Let our “secret” \(\alpha \) be of the form

- (Identity) \(x \doteq a \)
- (Instance) \(C(x) \)
- (Concept Relationship) \(C \sqsubseteq D \)

Let \(\text{Con}(\mathcal{O}) := \{ \alpha \mid \mathcal{O} \models \alpha \} \) be the set of all consequences of \(\mathcal{O} \).

Let \(\mathcal{O} \models \alpha \) and \(\mathcal{O}_s \not\models \alpha \). The ontology \(\mathcal{O}' \) is a repair of \(\mathcal{O} \) w.r.t. \(\alpha \) if

\[
\text{Con}(\mathcal{O}_s \cup \mathcal{O}') \subseteq \text{Con}(\mathcal{O}) \setminus \{ \alpha \}.
\]

The repair \(\mathcal{O}' \) is an optimal repair of \(\mathcal{O} \) w.r.t. \(\alpha \) if there is no repair \(\mathcal{O}'' \) of \(\mathcal{O} \) w.r.t. \(\alpha \) such that

\[
\text{Con}(\mathcal{O}_s \cup \mathcal{O}') \subset \text{Con}(\mathcal{O}_s \cup \mathcal{O}'')
\]
Problem 3: Ontology Anonymization

- What if $\alpha = (x = a)$ is not hidden in \mathcal{O}?
- **Anonymize** \mathcal{O} to \mathcal{O}' such that $\mathcal{O}' \nvdash \alpha$
Problem 3: Ontology Anonymization

- What if \(\alpha = (x \equiv a) \) is not hidden in \(\mathcal{O} \)?
- **Anonymize** \(\mathcal{O} \) to \(\mathcal{O}' \) such that \(\mathcal{O}' \not\models \alpha \rightarrow \text{“Ontology Repair”}! \)
Problem 3: Ontology Anonymization

What if $\alpha = (x \models a)$ is not hidden in \mathcal{O}?

Anonymize \mathcal{O} to \mathcal{O}' such that $\mathcal{O}' \not\models \alpha \rightarrow "$Ontology Repair"$!

Assumption:

- $\mathcal{O} = \mathcal{O}_s \cup \mathcal{O}_r$ is the disjoint union of a static ontology \mathcal{O}_s and a refutable ontology \mathcal{O}_r.
- Only the refutable part may be changed
Problem 3: Ontology Anonymization

- What if $\alpha = (x \doteq a)$ is not hidden in \mathcal{O}??
- **Anonymize** \mathcal{O} to \mathcal{O}' such that $\mathcal{O}' \not\models \alpha \rightarrow \text{“Ontology Repair”}!$

Assumption:
- $\mathcal{O} = \mathcal{O}_s \cup \mathcal{O}_r$ is the disjoint union of a **static ontology** \mathcal{O}_s and a **refutable ontology** \mathcal{O}_r.
- Only the refutable part may be changed

Ontology Repair

- Let us say that our “secret” α is of the form
 (Identity) $x \doteq a$ (Instance) $C(x)$ (Concept Relationship) $C \sqsubseteq D$
Problem 3: Ontology Anonymization

- What if $\alpha = (x \equiv a)$ is not hidden in \mathcal{O}?
- **Anonymize** \mathcal{O} to \mathcal{O}' such that $\mathcal{O}' \not\models \alpha \rightarrow \text{"Ontology Repair"}!$
- **Assumption:**
 - $\mathcal{O} = \mathcal{O}_s \cup \mathcal{O}_r$ is the disjoint union of a **static ontology** \mathcal{O}_s and a **refutable ontology** \mathcal{O}_r.
 - Only the refutable part may be changed

Ontology Repair

- Let us say that our “secret” α is of the form
 (Identity) $x \equiv a$ (Instance) $C(x)$ (Concept Relationship) $C \sqsubseteq D$
- Let $Con(\mathcal{O}) := \{\alpha \mid \mathcal{O} \models \alpha\}$ be the set of all **consequences** of \mathcal{O}.

Adrian Nuradiansyah
Talk in Bolzano 2018
March 8, 2018 12 / 19
Problem 3: Ontology Anonymization

- What if \(\alpha = (x \doteq a) \) is not hidden in \(\mathcal{O} \)??
- **Anonymize** \(\mathcal{O} \) to \(\mathcal{O}' \) such that \(\mathcal{O}' \not\models \alpha \rightarrow \text{“Ontology Repair”} \!

Assumption:
- \(\mathcal{O} = \mathcal{O}_s \cup \mathcal{O}_r \) is the disjoint union of a **static ontology** \(\mathcal{O}_s \) and a **refutable ontology** \(\mathcal{O}_r \).
- Only the refutable part may be changed

Ontology Repair

- Let us say that our “secret” \(\alpha \) is of the form
 - (Identity) \(x \doteq a \)
 - (Instance) \(C(x) \)
 - (Concept Relationship) \(C \sqsubseteq D \)
- Let \(Con(\mathcal{O}) := \{ \alpha \mid \mathcal{O} \models \alpha \} \) be the set of all **consequences** of \(\mathcal{O} \).
- Let \(\mathcal{O} \models \alpha \) and \(\mathcal{O}_s \not\models \alpha \). The ontology \(\mathcal{O}' \) is a **repair** of \(\mathcal{O} \) w.r.t. \(\alpha \) if
 \[
 Con(\mathcal{O}_s \cup \mathcal{O}') \subseteq Con(\mathcal{O}) \setminus \{ \alpha \}
 \]
Problem 3: Ontology Anonymization

- What if $\alpha = (x \doteq a)$ is not hidden in \mathcal{O}??
- **Anonymize** \mathcal{O} to \mathcal{O}' such that $\mathcal{O}' \not\models \alpha \rightarrow \text{“Ontology Repair”}!$
- **Assumption:**
 - $\mathcal{O} = \mathcal{O}_s \cup \mathcal{O}_r$ is the disjoint union of a **static ontology** \mathcal{O}_s and a **refutable ontology** \mathcal{O}_r.
 - Only the refutable part may be changed

Ontology Repair

- Let us say that our “secret” α is of the form
 - (Identity) $x \doteq a$
 - (Instance) $C(x)$
 - (Concept Relationship) $C \sqsubseteq D$
- Let $Con(\mathcal{O}) := \{\alpha \mid \mathcal{O} \models \alpha\}$ be the set of all **consequences** of \mathcal{O}.
- Let $\mathcal{O} \models \alpha$ and $\mathcal{O}_s \not\models \alpha$. The ontology \mathcal{O}' is a **repair** of \mathcal{O} w.r.t. α if
 $$Con(\mathcal{O}_s \cup \mathcal{O}') \subseteq Con(\mathcal{O}) \setminus \{\alpha\}$$
- The repair \mathcal{O}' is an **optimal repair** of \mathcal{O} w.r.t. α if there is no repair \mathcal{O}'' of \mathcal{O} w.r.t. α s.t. $Con(\mathcal{O}_s \cup \mathcal{O}') \subset Con(\mathcal{O}_s \cup \mathcal{O}'')$.
Let $\mathcal{D} = (\mathcal{T}, \mathcal{A})$ be formulated in \mathcal{EL}, where
\[
\mathcal{T} := \{ \exists r. A, \exists r. A \sqsubseteq A \}
\]
\[
\mathcal{A} := \{ A(a) \}
\]
Optimal Repairs Need not Exist!

Let $\mathcal{O} = (\mathcal{T}, \mathcal{A})$ be formulated in \mathcal{EL}, where

$$
\mathcal{T} := \{A \sqsubseteq \exists r.A, \exists r.A \sqsubseteq A\}
$$

$$
\mathcal{A} := \{A(a)\}
$$

$\mathcal{O}_s = \mathcal{T}, \mathcal{O}_r = \mathcal{A}$, and the unwanted consequence $\alpha = A(a)$.

Let \mathcal{O}' be a repair. Obviously \mathcal{O}' only contains concept assertions $C(a)$. s.t.

- C does not contain A
- C is in the form of $(\exists r.)^n \top (a)$, for $n > 0$.

Let $\mathcal{O}'' = \{((\exists r.)^n \top (a))\}$ be also a repair.

In addition, $\text{Con}(\mathcal{T} \cup \mathcal{O}') \subset \text{Con}(\mathcal{T} \cup \mathcal{O}'')$ and thus \mathcal{O}' is not optimal.

Since \mathcal{O}' is chosen arbitrarily, this shows there cannot be an optimal repair!
Let $\mathcal{O} = (T, A)$ be formulated in \mathcal{EL}, where

$$
T := \{ A \sqsubseteq \exists r. A, \exists r. A \sqsubseteq A \} \\
A := \{ A(a) \}
$$

$\mathcal{O}_s = T, \mathcal{O}_r = A$, and the unwanted consequence $\alpha = A(a)$.

Let \mathcal{O}' be a repair. Obviously \mathcal{O}' only contains concept assertions $C(a)$. s.t.

- C does not contain A
- C is in the form of $(\exists r.)^n \top(a)$, for $n > 0$.

Since \mathcal{O}' is finite, there is a maximal n_0 s.t. $((\exists r.)^{n_0} \top)(a) \in \mathcal{O}'$, but $((\exists r.)^n \top)(a) \not\in \mathcal{O}'$, for all $n > n_0$.
Let $\mathcal{O} = (\mathcal{T}, \mathcal{A})$ be formulated in EL, where

$$
\mathcal{T} := \{ A \subseteq \exists r. A, \exists r. A \subseteq A \}
$$

$$
\mathcal{A} := \{ A(a) \}
$$

$\mathcal{O}_s = \mathcal{T}, \mathcal{O}_r = \mathcal{A}$, and the unwanted consequence $\alpha = A(a)$.

Let \mathcal{O}' be a repair. Obviously \mathcal{O}' only contains concept assertions $C(a)$ s.t.

- C does not contain A
- C is in the form of $(\exists r.)^n_T(a)$, for $n > 0$.

Since \mathcal{O}' is finite, there is a maximal n_0 s.t. $(\exists r.)^{n_0}_T(a) \in \mathcal{O}'$, but $(\exists r.)^n_T(a) \notin \mathcal{O}'$, for all $n > n_0$.

Claim: If $\mathcal{O}' = \{(\exists r.)^{n_0}_T(a)\}$, then $(\exists r.)^n_T(a) \notin Con(\mathcal{T} \cup \mathcal{O}')$, for all $n > n_0$.

Adrian Nuradiansyah
Talk in Bolzano 2018
March 8, 2018 13 / 19
Optimal Repairs Need not Exist!

- Let $\mathcal{O} = (\mathcal{T}, \mathcal{A})$ be formulated in \mathcal{EL}, where
 $$
 \mathcal{T} := \{ A \sqsubseteq \exists r.A, \exists r.A \sqsubseteq A \}
 $$
 $$
 \mathcal{A} := \{ A(a) \}
 $$

- $\mathcal{O}_s = \mathcal{T}, \mathcal{O}_r = \mathcal{A}$, and the unwanted consequence $\alpha = A(a)$.
- Let \mathcal{O}' be a repair. Obviously \mathcal{O}' only contains concept assertions $C(a)$. s.t.
 - C does not contain A
 - C is in the form of $(\exists r.)^n \top(a)$, for $n > 0$.
- Since \mathcal{O}' is finite, there is a maximal n_0 s.t. $(\exists r.)^{n_0} \top(a) \in \mathcal{O}'$, but
 $(\exists r.)^n \top(a) \not\in \mathcal{O}'$, for all $n > n_0$.
- **Claim:** If $\mathcal{O}' = \{(\exists r.)^{n_0} \top(a)\}$, then $(\exists r.)^n \top(a) \not\in \text{Con}(\mathcal{T} \cup \mathcal{O}')$, for all $n > n_0$.
- Let $n > n_0$. Then $\mathcal{O}'' = \{(\exists r.)^n \top(a)\}$ is also a repair.
Let $\mathcal{O} = (T, A)$ be formulated in \mathcal{EL}, where

$T := \{A \sqsubseteq \exists r.A, \exists r.A \sqsubseteq A\}$

$A := \{A(a)\}$

$\mathcal{O}_s = T, \mathcal{O}_r = A$, and the unwanted consequence $\alpha = A(a)$.

Let \mathcal{O}' be a repair. Obviously \mathcal{O}' only contains concept assertions $C(a)$ s.t.

1. C does not contain A
2. C is in the form of $(\exists r.)^n \top(a)$, for $n > 0$.

Since \mathcal{O}' is finite, there is a maximal n_0 s.t. $(\exists r.)^{n_0} \top(a) \in \mathcal{O}'$, but $(\exists r.)^n \top(a) \notin \mathcal{O}'$, for all $n > n_0$.

Claim: If $\mathcal{O}' = \{((\exists r.)^{n_0} \top)(a)\}$, then $(\exists r.)^n \top(a) \notin Con(T \cup \mathcal{O}')$, for all $n > n_0$.

Let $n > n_0$. Then $\mathcal{O}'' = \{((\exists r.)^n \top)(a)\}$ is also a repair.

In addition, $Con(T \cup \mathcal{O}') \subset Con(T \cup \mathcal{O}'')$ and thus \mathcal{O}' is not optimal.
Let $\mathcal{O} = (\mathcal{T}, \mathcal{A})$ be formulated in \mathcal{EL}, where

$$
\mathcal{T} := \{A \sqsubseteq \exists r.A, \exists r.A \sqsubseteq A\}
$$

$$
\mathcal{A} := \{A(a)\}
$$

$\mathcal{O}_s = \mathcal{T}, \mathcal{O}_r = \mathcal{A}$, and the unwanted consequence $\alpha = A(a)$.

Let \mathcal{O}' be a repair. Obviously \mathcal{O}' only contains concept assertions $C(a)$ s.t.

- C does not contain A
- C is in the form of $(\exists r.)^n \top(a)$, for $n > 0$.

Since \mathcal{O}' is finite, there is a maximal n_0 s.t. $(\exists r.)^{n_0} \top(a) \in \mathcal{O}'$, but $(\exists r.)^n \top(a) \notin \mathcal{O}'$, for all $n > n_0$.

Claim: If $\mathcal{O}' = \{(\exists r.)^{n_0} \top(a)\}$, then $(\exists r.)^n \top(a) \notin \text{Con}(\mathcal{T} \cup \mathcal{O}')$, for all $n > n_0$.

Let $n > n_0$. Then $\mathcal{O}'' = \{(\exists r.)^n \top(a)\}$ is also a repair.

In addition, $\text{Con}(\mathcal{T} \cup \mathcal{O}') \subset \text{Con}(\mathcal{T} \cup \mathcal{O}'')$ and thus \mathcal{O}' is not optimal.

Since \mathcal{O}' is chosen arbitrarily, this shows there cannot be an optimal repair!
Optimal Classical Repair

- The repair \mathcal{D}' is a \textbf{classical repair} of \mathcal{D} w.r.t. α if $\mathcal{D}' \subseteq \mathcal{D}_r$.

- It is an \textbf{optimal classical repair} \mathcal{D}' of \mathcal{D} w.r.t. α if there is no classical repair \mathcal{D}'' of \mathcal{D} w.r.t. α such that $\mathcal{D}' \subseteq \mathcal{D}''$.
The repair \mathcal{O}' is a **classical repair** of \mathcal{O} w.r.t. α if $\mathcal{O}' \subset \mathcal{O}_r$.

It is an **optimal classical repair** \mathcal{O}' of \mathcal{O} w.r.t. α if there is no classical repair \mathcal{O}'' of \mathcal{O} w.r.t. α such that $\mathcal{O}' \subset \mathcal{O}''$.

Optimal classical repairs always exist \rightarrow **Justification** and **Hitting Set**. (Horridge, 2011)

Let $\mathcal{O} \models \alpha$. A **justification** J is a minimal subset of \mathcal{O}_r such that $\mathcal{O}_s \cup J \models \alpha$.

Let J_1, \ldots, J_k be the justifications of \mathcal{O} w.r.t. α.
A **hitting set** \mathcal{H} of these justifications is a set of axioms such that $\mathcal{H} \cap J_i \neq \emptyset$ for $i = 1, \ldots, k$.
Optimal Classical Repair

- The repair \mathcal{O}' is a **classical repair** of \mathcal{O} w.r.t. α if $\mathcal{O}' \subseteq \mathcal{O}_r$.

- It is an **optimal classical repair** \mathcal{O}' of \mathcal{O} w.r.t. α if there is no classical repair \mathcal{O}'' of \mathcal{O} w.r.t. α such that $\mathcal{O}' \subset \mathcal{O}''$.

- Optimal classical repairs always exist \rightarrow **Justification** and **Hitting Set**. (Horridge, 2011)

- Let $\mathcal{O} \models \alpha$. A **justification** J is a minimal subset of \mathcal{O}_r such that $\mathcal{O}_s \cup J \models \alpha$.

- Let J_1, \ldots, J_k be the justifications of \mathcal{O} w.r.t. α.
 A **hitting set** \mathcal{H} of these justifications is a set of axioms such that $\mathcal{H} \cap J_i \neq \emptyset$ for $i = 1, \ldots, k$.

- A hitting set \mathcal{H}_{min} is **minimal** if there is no \mathcal{H}' of J_1, \ldots, J_k such that $\mathcal{H}' \subset \mathcal{H}_{\text{min}}$.

$\mathcal{O}' := \mathcal{O}_r \setminus \mathcal{H}_{\text{min}}$ is an optimal classical repair of \mathcal{O} w.r.t. α such that $\mathcal{O}_s \cup \mathcal{O}' \not\models \alpha$.

Adrian Nuradiansyah

Talk in Bolzano 2018

March 8, 2018 14 / 19
Optimal Classical Repair

- The repair \mathcal{O}' is a **classical repair** of \mathcal{O} w.r.t. α if $\mathcal{O}' \subseteq \mathcal{O}_r$.

- It is an **optimal classical repair** \mathcal{O}' of \mathcal{O} w.r.t. α if there is no classical repair \mathcal{O}'' of \mathcal{O} w.r.t. α such that $\mathcal{O}' \subseteq \mathcal{O}''$.

- Optimal classical repairs always exist \Rightarrow **Justification** and **Hitting Set**. (Horridge, 2011)

- Let $\mathcal{O} \models \alpha$. A **justification** J is a minimal subset of \mathcal{O}_r such that $\mathcal{O}_s \cup J \models \alpha$.

- Let J_1, \ldots, J_k be the justifications of \mathcal{O} w.r.t. α.
 A **hitting set** \mathcal{H} of these justifications is a set of axioms such that $\mathcal{H} \cap J_i \neq \emptyset$ for $i = 1, \ldots, k$.

- A hitting set \mathcal{H}_{min} is **minimal** if there is no \mathcal{H}' of J_1, \ldots, J_k such that $\mathcal{H}' \subseteq \mathcal{H}_{\text{min}}$.

- $\mathcal{O}' := \mathcal{O}_r \setminus \mathcal{H}_{\text{min}}$ is an **optimal classical repair** of \mathcal{O} w.r.t. α such that $\mathcal{O}_s \cup \mathcal{O}' \not\models \alpha$.
Gentle Repair

- Obtaining Classical Repairs \rightarrow removing axioms from \mathcal{O}.
- Instead, we want to weaken axioms in \mathcal{H}_{min}!
- Given axioms β, γ, an axiom γ is weaker than β if $\text{Con}(\{\gamma\}) \subset \text{Con}(\{\beta\})$
Gentle Repair

- Obtaining Classical Repairs → removing axioms from \mathcal{O}.

- Instead, we want to weaken axioms in \mathcal{H}_{min}!

- Given axioms β, γ, an axiom γ is weaker than β if $\text{Con}(\{\gamma\}) \subset \text{Con}(\{\beta\})$

- Algorithm 1:
 For each $\beta \in \mathcal{H}_{min}$ and all J_1, \ldots, J_k containing β,
Gentle Repair

- Obtaining Classical Repairs → **removing axioms** from \mathcal{O}.
- Instead, we want to **weaken axioms** in \mathcal{H}_{min}!

Given axioms β, γ, an axiom γ is **weaker than** β if $\text{Con}\{\gamma\} \subset \text{Con}\{\beta\}$.

Algorithm 1:
For each $\beta \in \mathcal{H}_{\text{min}}$ and all J_1, \ldots, J_k containing β, replace β with **exactly one** γ, where $\gamma \prec \beta$ and
Obtaining Classical Repairs → removing axioms from \mathcal{D}.

Instead, we want to weaken axioms in \mathcal{H}_{min}!

Given axioms β, γ, an axiom γ is weaker than β if $\text{Con}\{\gamma\} \subset \text{Con}\{\beta\}$

Algorithm 1:
For each $\beta \in \mathcal{H}_{\text{min}}$ and all J_1, \ldots, J_k containing β, replace β with exactly one γ, where $\gamma \prec \beta$ and

$$\mathcal{D}_s \cup (J_i \setminus \{\beta\}) \cup \{\gamma\} \not\models \alpha \text{ for } i = 1, \ldots, k.$$
Gentle Repair

- Obtaining Classical Repairs \rightarrow removing axioms from \mathcal{O}.

- Instead, we want to weaken axioms in \mathcal{H}_{min}!

- Given axioms β, γ, an axiom γ is weaker than β if $\text{Con} \{\gamma\} \subset \text{Con} \{\beta\}$

- **Algorithm 1:**
 For each $\beta \in \mathcal{H}_{\text{min}}$ and all J_1, \ldots, J_k containing β, replace β with exactly one γ, where $\gamma \prec \beta$ and
 \[\mathcal{O}_s \cup (J_i \setminus \{\beta\}) \cup \{\gamma\} \not\models \alpha \text{ for } i = 1, \ldots, k. \]

 Construct \mathcal{O}' obtained from \mathcal{O}_r by removing \mathcal{H}_{min} and replace each $\beta \in \mathcal{H}_{\text{min}}$ with the weaker γ.
Obtaining Classical Repairs → **removing axioms** from \mathcal{O}.

Instead, we want to **weaken axioms** in \mathcal{H}_{min}!

Given axioms β, γ, an axiom γ is **weaker than** β if $\text{Con}\{\gamma\} \subset \text{Con}\{\beta\}$

Algorithm 1:
For each $\beta \in \mathcal{H}_{\text{min}}$ and all J_1, \ldots, J_k containing β, replace β with **exactly one** γ, where $\gamma \prec \beta$ and

$$\mathcal{O}_s \cup (J_i \setminus \{\beta\}) \cup \{\gamma\} \not\models \alpha \text{ for } i = 1, \ldots, k.$$

Construct \mathcal{O}' **obtained** from \mathcal{O}_r by **removing** \mathcal{H}_{min} and **replace** each $\beta \in \mathcal{H}_{\text{min}}$ with the weaker γ.

Check whether α is a consequence of $\mathcal{O}_s \cup \mathcal{O}'$.
Algorithm 1 is still not enough!

- Using Algorithm 1, α still can be a consequence of $\mathcal{O}_s \cup \mathcal{O}'$.

Example

$\mathcal{O}_s = \emptyset$ and $\mathcal{O}_r = (T, A)$

$T := \{B \sqsubseteq C\}$

$A := \{(C \sqcap B)(a)\}$

$\alpha = C(a) (T \cup A)$

$J := \{(C \sqcap B)(a)\}$

$H_{\min} := \{(C \sqcap B)(a)\}$

Take $(C \sqcap B)(a) \in H_{\min}$, weaken it to $B(a)$

It implies $J \{(C \sqcap B)(a)\} \cup \{B(a)\} \not\models \alpha$

But then, $\mathcal{O}' := \mathcal{O} \{ (C \sqcap B)(a)\} \cup \{B(a)\}$

Solution: Just iterate Algorithm 1 until $\mathcal{O}_s \cup \mathcal{O}' \not\models \alpha$.

Does it terminate? Yes,

The iterative algorithm yields an exponential upper bound on the number of iterations.
Using Algorithm 1, α still can be a consequence of $\mathcal{D}_s \cup \mathcal{D}'$.

Example

$\mathcal{D}_s = \emptyset$ and $\mathcal{D}_r = (\mathcal{T}, \mathcal{A})$

$\mathcal{T} := \{B \subseteq C\} \quad \mathcal{A} := \{(C \cap B)(a)\} \quad \alpha = C(a) \quad (\mathcal{T} \cup \mathcal{A}) \models \alpha.$
Algorithm 1 is still not enough!

- Using Algorithm 1, α still can be a consequence of $\mathcal{D}_s \cup \mathcal{D}'$.

Example

$\mathcal{D}_s = \emptyset$ and $\mathcal{D}_r = (\mathcal{T}, \mathcal{A})$

\[
\begin{align*}
\mathcal{T} & := \{B \subseteq C\} & \mathcal{A} & := \{(C \cap B)(a)\} & \alpha & = C(a) & (\mathcal{T} \cup \mathcal{A}) \models \alpha.
\end{align*}
\]

$J := \{(C \cap B)(a)\} \quad \mathcal{H}_{\text{min}} := \{(C \cap B)(a)\}$
Algorithm 1 is still not enough!

- Using Algorithm 1, α still can be a consequence of $\mathcal{D}_s \cup \mathcal{D}'$.

Example

$\mathcal{D}_s = \emptyset$ and $\mathcal{D}_r = (\mathcal{T}, \mathcal{A})$

\[\mathcal{T} := \{B \subseteq C\} \quad \mathcal{A} := \{(C \cap B)(a)\} \quad \alpha = (T \cup A) \models \alpha. \]

\[J := \{(C \cap B)(a)\} \quad \mathcal{H}_{\min} := \{(C \cap B)(a)\} \]

Take $(C \cap B)(a) \in \mathcal{H}_{\min}$, weaken it to $B(a)$
Using Algorithm 1, α still can be a consequence of $\mathcal{D}_s \cup \mathcal{D}'$.

Example

\[\mathcal{D}_s = \emptyset \text{ and } \mathcal{D}_r = (T, A) \]

\[
T := \{B \sqsubseteq C\} \quad A := \{(C \cap B)(a)\} \quad \alpha = C(a) \quad (T \cup A) \models \alpha.
\]

\[
J := \{(C \cap B)(a)\} \quad \mathcal{H}_{\text{min}} := \{(C \cap B)(a)\}
\]

Take \((C \cap B)(a) \in \mathcal{H}_{\text{min}},\) weaken it to \(B(a)\)

It implies \(J \setminus \{(C \cap B)(a)\} \cup \{B(a)\} \not\models \alpha\)
Algorithm 1 is still not enough!

- Using Algorithm 1, α still can be a consequence of $\mathcal{D}_s \cup \mathcal{D}'$.

Example

$\mathcal{D}_s = \emptyset$ and $\mathcal{D}_r = (T, A)$

$T := \{B \subseteq C\} \quad A := \{(C \cap B)(a)\} \quad \alpha = C(a) \quad (T \cup A) \models \alpha.$

$J := \{(C \cap B)(a)\} \quad \mathcal{H}_{min} := \{(C \cap B)(a)\}$

Take $(C \cap B)(a) \in \mathcal{H}_{min}$, weaken it to $B(a)$

It implies $J \setminus \{(C \cap B)(a)\} \cup \{B(a)\} \not\models \alpha$

But then, $\mathcal{D}' := \mathcal{D} \setminus \{(C \cap B)(a)\} \cup \{B(a)\} \models \alpha.$
Algorithm 1 is still not enough!

- Using Algorithm 1, \(\alpha \) still can be a consequence of \(\mathcal{O}_s \cup \mathcal{O}' \).

Example

\(\mathcal{O}_s = \emptyset \) and \(\mathcal{O}_r = (T, A) \)

\[
T := \{B \subseteq C\} \quad \quad A := \{(C \cap B)(a)\} \quad \quad \alpha = C(a) \quad \quad (T \cup A) \models \alpha.
\]

\[
J := \{(C \cap B)(a)\} \quad \quad \mathcal{H}_{\text{min}} := \{(C \cap B)(a)\}
\]

Take \((C \cap B)(a) \in \mathcal{H}_{\text{min}} \), weaken it to \(B(a) \)

It implies \(J \setminus \{(C \cap B)(a)\} \cup \{B(a)\} \not\models \alpha \)

But then, \(\mathcal{O}' := \mathcal{O} \setminus \{(C \cap B)(a)\} \cup \{B(a)\} \models \alpha. \)

- Solution: Just iterate Algorithm 1 until \(\mathcal{O}_s \cup \mathcal{O}' \not\models \alpha \).
Using Algorithm 1, α still can be a consequence of $\mathcal{D}_s \cup \mathcal{D}'$.

Example

$\mathcal{D}_s = \emptyset$ and $\mathcal{D}_r = (\mathcal{T}, \mathcal{A})$

$\mathcal{T} := \{B \subseteq C\}$ \hspace{1cm} $\mathcal{A} := \{(C \cap B)(a)\}$ \hspace{1cm} $\alpha = C(a)$ \hspace{1cm} $(\mathcal{T} \cup \mathcal{A}) \models \alpha$.

$J := \{(C \cap B)(a)\}$ \hspace{1cm} $\mathcal{H}_{\text{min}} := \{(C \cap B)(a)\}$

Take $(C \cap B)(a) \in \mathcal{H}_{\text{min}}$, weaken it to $B(a)$

It implies $J \setminus \{(C \cap B)(a)\} \cup \{B(a)\} \not\models \alpha$

But then, $\mathcal{D}' := \mathcal{D} \setminus \{(C \cap B)(a)\} \cup \{B(a)\} \models \alpha$.

Solution: Just iterate Algorithm 1 until $\mathcal{D}_s \cup \mathcal{D}' \not\models \alpha$.

Does it terminate? Yes,

The iterative algorithm yields an exponential upper bound on the number of iterations.
Weakening Relation

How do we formally weaken the axioms during the iteration?

The binary relation \succ on axioms is a weakening relation if $\beta \succ \gamma$ implies that γ is weaker than β; well-founded if there is no infinite \succ-chain $\beta_1 \succ \beta_2 \succ \beta_3 \succ \ldots$; complete if for any axiom β that is not a tautology, there is a tautology γ such that $\beta \succ \gamma$. A linear (polynomial) weakening relation shows that the iterative algorithm can terminate after a linear (polynomial) number of iterations.

In the context of Description Logics, if $\alpha = C \sqsubseteq D$, then the idea for weakening α is to generalize D or to specialize C. If $\alpha = C(a)$, then the idea for weakening α is to generalize C.

Adrian Nuradiansyah
Talk in Bolzano 2018
March 8, 2018 17 / 19
Weakening Relation

How do we formally weaken the axioms during the iteration?

The binary relation \succ on axioms is

- a **weakening relation** if $\beta \succ \gamma$ implies that γ is weaker than β;
Weakening Relation

How do we formally weaken the axioms during the iteration?

Weakening Relation

The binary relation \succ on axioms is

- a **weakening relation** if $\beta \succ \gamma$ implies that γ is weaker than β;
- **well-founded** if there is no infinite \succ-chain $\beta_1 \succ \beta_2 \succ \beta_3 \succ \ldots$;
Weakening Relation

How do we formally weaken the axioms during the iteration?

Weakening Relation

The binary relation \succ on axioms is

- a **weakening relation** if $\beta \succ \gamma$ implies that γ is weaker than β;
- **well-founded** if there is no infinite \succ-chain $\beta_1 \succ \beta_2 \succ \beta_3 \succ \ldots$;
- **complete** if for any axiom β that is not a tautology, there is a tautology γ such that $\beta \succ \gamma$.
How do we formally weaken the axioms during the iteration?

The binary relation \succ on axioms is

- a **weakening relation** if $\beta \succ \gamma$ implies that γ is weaker than β;
- **well-founded** if there is no infinite \succ-chain $\beta_1 \succ \beta_2 \succ \beta_3 \succ \ldots$;
- **complete** if for any axiom β that is not a tautology, there is a tautology γ such that $\beta \succ \gamma$.
- **linear (polynomial)** if for every axiom β, the length of the longest chain \succ-generated from β is linearly (polynomially) bounded by the size of β;
Weakening Relation

How do we formally weaken the axioms during the iteration?

<table>
<thead>
<tr>
<th>Weakening Relation</th>
</tr>
</thead>
<tbody>
<tr>
<td>The binary relation \succ on axioms is</td>
</tr>
<tr>
<td>- weakening relation if $\beta \succ \gamma$ implies that γ is weaker than β;</td>
</tr>
<tr>
<td>- well-founded if there is no infinite \succ-chain $\beta_1 \succ \beta_2 \succ \beta_3 \succ \ldots$;</td>
</tr>
<tr>
<td>- complete if for any axiom β that is not a tautology, there is a tautology γ such that $\beta \succ \gamma$.</td>
</tr>
<tr>
<td>- linear (polynomial) if for every axiom β, the length of the longest chain \succ-generated from β is linearly (polynomially) bounded by the size of β;</td>
</tr>
</tbody>
</table>

A linear (polynomial) weakening relation shows that the iterative algorithm can terminate after a **linear (polynomial) number of iterations**.
Weakening Relation

How do we formally weaken the axioms during the iteration?

Weakening Relation

The binary relation \succ on axioms is

- a **weakening relation** if $\beta \succ \gamma$ implies that γ is weaker than β;
- **well-founded** if there is no infinite \succ-chain $\beta_1 \succ \beta_2 \succ \beta_3 \succ \ldots$;
- **complete** if for any axiom β that is not a tautology, there is a tautology γ such that $\beta \succ \gamma$.
- **linear (polynomial)** if for every axiom β, the length of the longest chain \succ-generated from β is linearly (polynomially) bounded by the size of β;

A linear (polynomial) weakening relation shows that the iterative algorithm can terminate after a **linear (polynomial) number of iterations**.

In the context of Description Logics,

- If $\alpha = C \sqsubseteq D$, then the idea for weakening α is to **generalize** D or to **specialize** C.

Adrian Nuradiansyah
Talk in Bolzano 2018
March 8, 2018
17 / 19
Weakening Relation

How do we formally weaken the axioms during the iteration?

Weakening Relation

The binary relation \succ on axioms is

- a **weakening relation** if $\beta \succ \gamma$ implies that γ is weaker than β;
- **well-founded** if there is no infinite \succ-chain $\beta_1 \succ \beta_2 \succ \beta_3 \succ \ldots$;
- **complete** if for any axiom β that is not a tautology, there is a tautology γ such that $\beta \succ \gamma$.
- **linear (polynomial)** if for every axiom β, the length of the longest chain \succ-generated from β is linearly (polynomially) bounded by the size of β.

A linear (polynomial) weakening relation shows that the iterative algorithm can terminate after a **linear (polynomial) number of iterations**.

In the context of Description Logics,

- If $\alpha = C \sqsubseteq D$, then the idea for weakening α is to **generalize** D or to **specialize** C.
- If $\alpha = C(a)$, then the idea for weakening α is to **generalize** C.
Future Work

- Investigating weakening relations in some DLs
Future Work

- Investigating weakening relations in some DLs

- To make repairs as gentle as possible, the following problem is encountered: Given a concept D, a concept F is an upper neighbor (UN) of D iff
 - $D \sqsubseteq F$
 - there is no E such that $D \sqsubseteq E \sqsubseteq F$

Given $J \mid \alpha$ and $C \sqsubseteq D \in J$, find D' without "searching blindly" s.t.

- $D \sqsubseteq D'$
- $O \cup (J \{ C \sqsubseteq D \}) \cup \{ C \sqsubseteq D' \} \mid = \alpha$
- D' is as specific as possible

Whatever how you repair/anonymize O to O', please show for all O'' s.t. $O'' \not\mid = \alpha$, we have $(O' \cup O'') \not\mid = \alpha$.

Adrian Nuradiansyah
Talk in Bolzano 2018
March 8, 2018
18 / 19
Future Work

- Investigating weakening relations in some DLs

- To make repairs as gentle as possible, the following problem is encountered: Given a concept D, a concept F is an upper neighbor (UN) of D iff
 - $D \sqsubseteq F$
 - there is no E such that $D \sqsubseteq E \sqsubseteq F$

- Given $J \models \alpha$ and $C \sqsubseteq D \in J$, find D' without “searching blindly” s.t.
 - $D \sqsubseteq D'$
 - $\mathcal{O}_s \cup (J \setminus \{C \sqsubseteq D\}) \cup \{C \sqsubseteq D'\} \models \alpha$
 - D' is as specific as possible
Future Work

- Investigating weakening relations in some DLs

- To make repairs as gentle as possible, the following problem is encountered: Given a concept D, a concept F is an upper neighbor (UN) of D iff
 - $D \sqsubseteq F$
 - there is no E such that $D \sqsubseteq E \sqsubseteq F$

- Given $J \models \alpha$ and $C \sqsubseteq D \in J$, find D' without “searching blindly” s.t.
 - $D \sqsubseteq D'$
 - $\mathcal{O}_s \cup (J \setminus \{C \sqsubseteq D\}) \cup \{C \sqsubseteq D'\} \models \alpha$
 - D' is as specific as possible

- Whatever how you repair/anonymize \mathcal{O} to \mathcal{O}', please show
 for all \mathcal{O}'' s.t. $\mathcal{O}'' \not\models \alpha$, we have $(\mathcal{O}' \cup \mathcal{O}'') \not\models \alpha$.
Thank You