Preliminary Results on The Identity Problem in Description Logic Ontologies

Adrian Nuradiansyah

Franz Baader, Daniel Borchmann Technische Universität Dresden

July 21, 2017

Identification Problem

Ontology

$\xrightarrow{\text { combined }}$

Employee Database (known individuals)

Anonymized Survey Data (anonymous individuals)

Background Knowledge

Identification Problem

Ontology

$\xrightarrow{\text { combined }}$

Employee Database (known individuals)

Anonymized Survey Data (anonymous individuals)

Background Knowledge

Identification Problem

An attacker still can access some axioms in the ontology s.t. he knows:

\{Female\}

$\{$ Female $\}$ linda \{Female $\}$ pattie $\{$ Male $\}$ john $\{$ Male $\}$ jim

Identification Problem

An attacker still can access some axioms in the ontology s.t. he knows:

\{Female\}
$\mathcal{A}: \quad$ logic $\stackrel{\text { expert }}{\rightleftarrows} \stackrel{\text { expert }}{ }$ privacy
$\{$ Female $\}$ linda $\{$ Female $\}$ pattie $\{$ Male $\}$ john $\{$ Male $\}$ jim

$$
\begin{array}{cc}
\mathcal{T}: \quad \text { Female } \sqsubseteq \neg \text { Male } \\
\exists \text { expert. }\{\text { logic }\} \sqsubseteq \text { VerTeam } & \exists \text { expert. }\{\text { privacy }\} \sqsubseteq \text { SecTeam } \\
\text { VerTeam } \equiv\{\text { linda, john, pattie }\} & \text { SecTeam } \equiv\{\text { linda, john, jim }\}
\end{array}
$$

Identification Problem

An attacker still can access some axioms in the ontology s.t. he knows:

\{Female\}
$\mathcal{A}: \quad$ logic $\stackrel{\text { expert }}{\longleftrightarrow} \stackrel{\text { expert }}{\longleftrightarrow}$ privacy
$\{$ Female $\}$ linda \{Female $\}$ pattie $\{$ Male $\}$ john $\{$ Male $\}$ jim

	Female $\sqsubseteq \neg$ Male	
	\exists expert. $\{$ logic $\} \sqsubseteq$ VerTeam	\exists expert. $\{$ privacy \ddagger SecTeam
	VerTeam $\equiv\{$ linda, john, pattie $\}$	SecTeam \equiv \{ linda, john, jim $\}$

consequence: $x \doteq$ linda w.r.t. \mathfrak{O}

The Identity Problem

Identity Problem

Given $a, b \in N_{I}$ and an ontology \mathfrak{O}. Check whether $a^{\mathcal{I}}=b^{\mathcal{I}}$ for all models \mathcal{I} of \mathfrak{O}. It is denoted by $(\mathfrak{O} \models a \doteq b)$.

The Identity Problem

Identity Problem

Given $a, b \in N_{I}$ and an ontology \mathfrak{O}. Check whether $a^{\mathcal{I}}=b^{\mathcal{I}}$ for all models \mathcal{I} of \mathfrak{O}. It is denoted by $(\mathfrak{O} \models a \doteq b)$.

Not all DLs are able to derive equalities between two individuals :(

DLs without Equality Power

Definition

\mathcal{L} is a DL without equality power if there are no ontologies \mathfrak{O} formulated in \mathcal{L} and two distinct individuals $a, b, \in N_{l}$ s.t. $\mathfrak{O} \models a \doteq b$.

DLs without Equality Power

Definition

\mathcal{L} is a DL without equality power if there are no ontologies \mathfrak{O} formulated in \mathcal{L} and two distinct individuals $a, b, \in N_{l}$ s.t. $\mathfrak{O} \models a \doteq b$.

Theorem

Every DL translated to a first-order logic without equality predicate is a $D L$ without equality power

DLs without Equality Power

Definition

\mathcal{L} is a DL without equality power if there are no ontologies \mathfrak{O} formulated in \mathcal{L} and two distinct individuals $a, b, \in N_{l}$ s.t. $\mathfrak{O} \models a \doteq b$.

Theorem

Every DL translated to a first-order logic without equality predicate is a DL without equality power

They are:

- $\mathcal{A L C}$ and its fragments: $\mathcal{E} \mathcal{L}, \mathcal{F} \mathcal{L}_{0}, \mathcal{F} \mathcal{L} \mathcal{E}, \ldots$
- $\mathcal{S R} \mathcal{I}$: extending $\mathcal{A L C}$ with inverse roles, role axioms, role compositions, and transitive roles.

DLs with Equality Power

- $\mathcal{A L C O}$: lifting up an individual into a concept Example: Case of Employee.

DLs with Equality Power

- $\mathcal{A L C O}$: lifting up an individual into a concept Example: Case of Employee.
- $\mathcal{A L C Q}$: restricting the number of successors of a domain element Example: $\mathfrak{O}=(\{$ PhDstudent $\sqsubseteq \leq 1$ supervised.$~ T\}$, $\{$ supervised(adrian, y), supervised(adrian, franz) \})

DLs with Equality Power

- $\mathcal{A L C O}$: lifting up an individual into a concept Example: Case of Employee.
- $\mathcal{A L C Q}$: restricting the number of successors of a domain element Example: $\mathfrak{O}=(\{$ PhDstudent $\sqsubseteq \leq 1$ supervised.$~ T\}$, $\{$ supervised(adrian, y), supervised(adrian, franz) $\}$)
- $\mathcal{C F} \mathcal{D}_{n c}$: featuring functional dependencies

Functional Dependencies: if two individuals agree on some attributes, then they are unique.
Example: $\mathfrak{O}=(\{A \sqsubseteq A: f \rightarrow i d\}$,

$$
\{\mathbf{A}(\mathbf{a}), \mathbf{A}(\mathbf{x}), f(a)=b, f(x)=b\})
$$

How to solve the identity problem?

Problem Reduction 1 (Upper Bound)

Identity $\xrightarrow{\text { reduced }}$ Instance for all DLs with equality power.

$$
\mathfrak{O}_{1} \models a \doteq b \text { iff }\left(\mathfrak{O}_{1} \cup A(a)\right) \models A(b), \text { where } A \in N_{C} \text { is new }
$$

How to solve the identity problem?

Problem Reduction 1 (Upper Bound)

Identity reduced Instance for all DLs with equality power.

$$
\mathfrak{O}_{1} \models a \doteq b \text { iff }\left(\mathfrak{O}_{1} \cup A(a)\right) \models A(b), \text { where } A \in N_{C} \text { is new }
$$

Problem Reduction 2 (Lower Bound)

Instance reduced Identity in $\mathcal{A L C O}$ and $\mathcal{A L C Q}$
HornSAT reduced Identity in $\mathcal{C F} \mathcal{D}_{n c}$

How to solve the identity problem?

Problem Reduction 1 (Upper Bound)

Identity reduced Instance for all DLs with equality power.

$$
\mathfrak{O}_{1} \models a \doteq b \text { iff }\left(\mathfrak{O}_{1} \cup A(a)\right) \models A(b) \text {, where } A \in N_{C} \text { is new }
$$

Problem Reduction 2 (Lower Bound)

Instance reduced Identity in $\mathcal{A L C O}$ and $\mathcal{A L C Q}$
HornSAT $\xrightarrow{\text { reduced }}$ Identity in $\mathcal{C F} \mathcal{D}_{n c}$

Complexity Results

- ExpTime-complete in $\mathcal{A L C O}$ and $\mathcal{A L C Q}$
- NExpTime-complete in $\mathcal{A L C O} \mathcal{I} \mathcal{Q}$
- PTime-complete in $\mathcal{C F} \mathcal{D}_{n c}$

Complexities of identity and instance problem are not the same in $\mathcal{A L C}{ }^{=}$allowing $\left\{a \doteq b \mid a, b \in N_{l}\right\} \subseteq \mathcal{A} \rightarrow$ PTime vs ExpTime-hard

The View-based Identity Problem

A rôle-based access control scenario:
A partially visible ontology $\mathfrak{O}_{\text {I }}$
combined

The View-based Identity Problem

A rôle-based access control scenario:
A partially visible ontology $\mathfrak{O}_{\text {, }}$

At rôle \hat{r}_{1}

- queries through $\mathfrak{O}_{\hat{r}_{\mathbf{1}}} \subseteq \mathfrak{O}_{\boldsymbol{\prime}} \xrightarrow{\text { switch }} \cdots \xrightarrow{\text { switch }}$
- obtains View $V_{\hat{r}_{1}}$

At rôle \hat{r}_{k}

- queries through $\mathfrak{O}_{\hat{r}_{k}} \subseteq \mathfrak{O}_{l}$
- obtains View $V_{\hat{r}_{k}}$

At rôle \hat{r}_{k+1}, is the identity of an anonymous x hidden w.r.t. $V_{\hat{f}_{1}}, \ldots, V_{\hat{r}_{k}}$?

Query Answering and View

- Let $N_{I}=N_{K I} \cup N_{A I}$, where $N_{K I}$ and $N_{A I}$ are the sets of known and anonymous individuals, respectively.

Query Answering and View

- Let $N_{I}=N_{K I} \cup N_{A I}$, where $N_{K I}$ and $N_{A I}$ are the sets of known and anonymous individuals, respectively.
- Let $x \in N_{A I}$. The identity of x w.r.t. an ontology \mathfrak{O}_{l} is

$$
i d n\left(x, \mathfrak{O}_{l}\right)=\left\{a \in N_{K I}\left|\mathfrak{O}_{l}\right|=x \doteq a\right\}
$$

Query Answering and View

- Let $N_{I}=N_{K I} \cup N_{A I}$, where $N_{K I}$ and $N_{A I}$ are the sets of known and anonymous individuals, respectively.
- Let $x \in N_{A I}$. The identity of x w.r.t. an ontology $\mathfrak{O}_{\text {I }}$ is

$$
i d n\left(x, \mathfrak{O}_{l}\right)=\left\{a \in N_{K I}\left|\mathfrak{O}_{l}\right|=x \doteq a\right\}
$$

- Given $\mathfrak{O}_{l}, \mathfrak{D}_{\hat{r}} \subseteq \mathfrak{O}_{l}$ accessed by a user with a rôle \hat{r}, and a (subsumption or retrieval) query q, the answer to q w.r.t. \hat{r} is:
- $\operatorname{ans}(q, \hat{r}):=\{$ true $\}$, if $q=C \sqsubseteq D$ and $\mathfrak{O}_{\hat{r}} \models C \sqsubseteq D$,
- ans $(q, \hat{r}):=\emptyset$, if $q=C \sqsubseteq D$ and $\mathfrak{O}_{\hat{r}} \not \vDash C \sqsubseteq D$,
- $\operatorname{ans}(q, \hat{r}):=\left\{a \in N_{l} \mid \mathfrak{O}_{\hat{r}} \models C(a)\right\}$, if $q=C$,
- $\operatorname{ans}(q, \hat{r}):=\left\{(a, b) \in N_{l} \times N_{l} \mid \mathfrak{O}_{\hat{r}} \models r(a, b)\right\}$, if $q=r \in N_{R}$.

Query Answering and View

- Let $N_{I}=N_{K I} \cup N_{A I}$, where $N_{K I}$ and $N_{A I}$ are the sets of known and anonymous individuals, respectively.
- Let $x \in N_{A I}$. The identity of x w.r.t. an ontology \mathfrak{O}_{I} is

$$
i d n\left(x, \mathfrak{O}_{l}\right)=\left\{a \in N_{K I}\left|\mathfrak{O}_{l}\right|=x \doteq a\right\}
$$

- Given $\mathfrak{O}_{l}, \mathfrak{D}_{\hat{r}} \subseteq \mathfrak{O}_{l}$ accessed by a user with a rôle \hat{r}, and a (subsumption or retrieval) query q, the answer to q w.r.t. \hat{r} is:
- $\operatorname{ans}(q, \hat{r}):=\{$ true $\}$, if $q=C \sqsubseteq D$ and $\mathfrak{O}_{\hat{r}} \models C \sqsubseteq D$,
- $\operatorname{ans}(q, \hat{r}):=\emptyset$, if $q=C \sqsubseteq D$ and $\mathfrak{O}_{\hat{r}} \not \vDash C \sqsubseteq D$,
- $\operatorname{ans}(q, \hat{r}):=\left\{a \in N_{l} \mid \mathfrak{O}_{\hat{r}} \models C(a)\right\}$, if $q=C$,
- ans $(q, \hat{r}):=\left\{(a, b) \in N_{I} \times N_{l} \mid \mathfrak{O}_{\hat{r}} \models r(a, b)\right\}$, if $q=r \in N_{R}$.
- Given a rôle \hat{r}, a view is a total function
$V_{\hat{r}}: \operatorname{dom}\left(V_{\hat{r}}\right) \rightarrow 2^{N_{I}} \cup 2^{N_{I} \times N_{I}} \cup\{\{$ true $\}\}$, where
- View definition $\operatorname{dom}\left(V_{\hat{r}}\right)$ is a finite set of queries.
- $V_{\hat{r}}(q)$ is a finite set of answers for all $q \in \operatorname{dom}\left(V_{\hat{r}}\right)$.

How to solve the View-based Identity Problem?

Canonical Ontology

The canonical ontology $\mathcal{C}\left(V_{\hat{r}_{1}}, \ldots, V_{\hat{r}_{k}}\right)$ of $V_{\hat{r}_{1}}, \ldots, V_{\hat{r}_{k}}$ is defined as $\mathcal{C}\left(V_{\hat{r}_{1}}, \ldots, V_{\hat{r}_{k}}\right):=(\mathcal{T}, \mathcal{A})$ where

$$
\begin{aligned}
\mathcal{T}:= & \left\{C \sqsubseteq D \mid V_{\hat{r}_{i}}(C \sqsubseteq D)=\{\text { true }\} \text { for some } i, 1 \leq i \leq k\right\} \\
\mathcal{A}:= & \left\{C(a) \mid a \in V_{\hat{r}_{i}}(C) \text { for some } i, 1 \leq i \leq k\right\} \cup \\
& \left\{r(a, b) \mid(a, b) \in V_{\hat{r}_{i}}(r) \text { for some } i, 1 \leq i \leq k\right\} .
\end{aligned}
$$

Hidden Identity

The identity of $x \in N_{A l}$ is hidden w.r.t. $V_{\hat{r}_{1}}, \ldots, V_{\hat{r}_{k}}$ iff

$$
i d n\left(x, \mathcal{C}\left(V_{\hat{r}_{1}}, \ldots, V_{\hat{r}_{k}}\right)\right)=\emptyset
$$

Future Work

- Probabilistic-based Reasoning

Two individuals are equal with certain probability.
Subjective probabilistic in DLs with equality power is more suitable

Future Work

- Probabilistic-based Reasoning

Two individuals are equal with certain probability.
Subjective probabilistic in DLs with equality power is more suitable

Future Work

- Probabilistic-based Reasoning

Two individuals are equal with certain probability.
Subjective probabilistic in DLs with equality power is more suitable

- Anonymizing Description Logic Ontologies

Generalizing concepts/nominals on the right hand side of GCl as specific as possible.

Thank You

