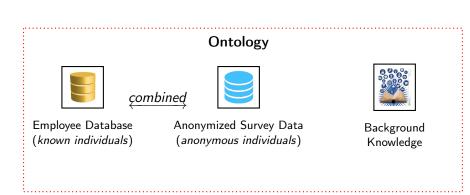
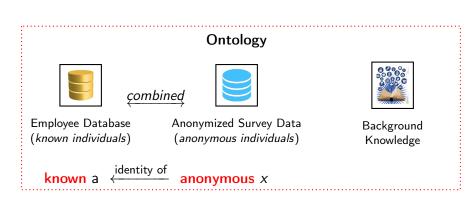
# Preliminary Results on The Identity Problem in Description Logic Ontologies

Adrian Nuradiansyah

#### Franz Baader, Daniel Borchmann Technische Universität Dresden

July 21, 2017

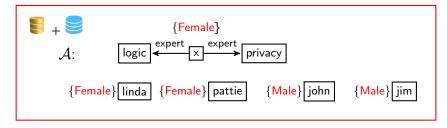




July 21, 2017 2 / 1

# Identification Problem

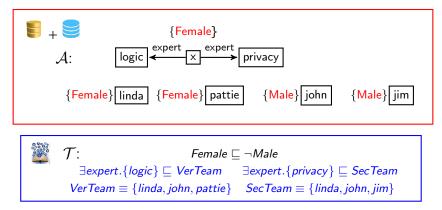
An attacker still can access some axioms in the ontology s.t. he knows:



July 21, 2017 3 / 1

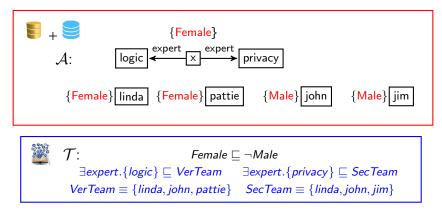
# Identification Problem

An attacker still can access some axioms in the ontology s.t. he knows:



# Identification Problem

An attacker still can access some axioms in the ontology s.t. he knows:



*consequence*:  $x \doteq$  linda w.r.t.  $\mathfrak{O}$ 

## Identity Problem

Given  $a, b \in N_I$  and an ontology  $\mathfrak{O}$ . Check whether  $a^{\mathcal{I}} = b^{\mathcal{I}}$  for all models  $\mathcal{I}$  of  $\mathfrak{O}$ . It is denoted by  $(\mathfrak{O} \models a \doteq b)$ .

## Identity Problem

Given  $a, b \in N_I$  and an ontology  $\mathfrak{O}$ . Check whether  $a^{\mathcal{I}} = b^{\mathcal{I}}$  for all models  $\mathcal{I}$  of  $\mathfrak{O}$ . It is denoted by  $(\mathfrak{O} \models a \doteq b)$ .

Not all DLs are able to derive equalities between two individuals :(

#### Definition

 $\mathcal{L}$  is a **DL** without equality power if there are no ontologies  $\mathfrak{O}$  formulated in  $\mathcal{L}$  and two distinct individuals  $a, b, \in N_I$  s.t.  $\mathfrak{O} \models a \doteq b$ .

#### Definition

 $\mathcal{L}$  is a **DL without equality power** if there are no ontologies  $\mathfrak{O}$  formulated in  $\mathcal{L}$  and two distinct individuals  $a, b, \in N_I$  s.t.  $\mathfrak{O} \models a \doteq b$ .

#### Theorem

Every DL translated to a **first-order logic without equality predicate** is a DL without equality power

#### Definition

 $\mathcal{L}$  is a **DL without equality power** if there are no ontologies  $\mathfrak{O}$  formulated in  $\mathcal{L}$  and two distinct individuals  $a, b, \in N_I$  s.t.  $\mathfrak{O} \models a \doteq b$ .

#### Theorem

Every DL translated to a **first-order logic without equality predicate** is a DL without equality power

They are:

- ALC and its fragments:  $EL, FL_0, FLE, \ldots$
- SR1: extending ALC with inverse roles, role axioms, role compositions, and transitive roles.

Image: Image:

• *ALCO*: lifting up an individual into a concept **Example**: Case of Employee.

- *ALCO*: lifting up an individual into a concept **Example:** Case of Employee.
- ALCQ: restricting the number of successors of a domain element Example: D = ({PhDstudent ⊑ ≤ 1supervised. ⊤}, {supervised(adrian, y), supervised(adrian, franz)})

- *ALCO*: lifting up an individual into a concept **Example**: Case of Employee.
- ALCQ: restricting the number of successors of a domain element Example: D = ({PhDstudent ⊑ ≤ 1supervised. ⊤}, {supervised(adrian, y), supervised(adrian, franz)})
- *CFD<sub>nc</sub>*: featuring functional dependencies **Functional Dependencies**: if two individuals agree on **some attributes**, then they are unique.

Example: 
$$\mathfrak{O} = (\{A \sqsubseteq A : f \rightarrow id\}, \{A(a), A(x), f(a) = b, f(x) = b\})$$

# How to solve the identity problem?

## Problem Reduction 1 (Upper Bound)

Identity reduced Instance for all DLs with equality power.

$$\mathfrak{O}_1\models a\doteq b$$
 iff  $(\mathfrak{O}_1\cup A(a))\models A(b)$ , where  $A\in N_C$  is new

# How to solve the identity problem?

# Problem Reduction 1 (Upper Bound)

Identity reduced Instance for all DLs with equality power.

 $\mathfrak{O}_1 \models a \doteq b$  iff  $(\mathfrak{O}_1 \cup A(a)) \models A(b)$ , where  $A \in N_C$  is new

#### Problem Reduction 2 (Lower Bound)

 $\begin{array}{l} \mbox{Instance } \underline{\textit{reduced}} \ \mbox{Identity in } \mathcal{ALCO} \ \mbox{and } \mathcal{ALCQ} \\ \mbox{HornSAT} \ \underline{\textit{reduced}} \ \mbox{Identity in } \mathcal{CFD}_{\textit{nc}} \end{array}$ 

# How to solve the identity problem?

# Problem Reduction 1 (Upper Bound)

Identity reduced Instance for all DLs with equality power.

 $\mathfrak{O}_1\models a\dot{=}b$  iff  $(\mathfrak{O}_1\cup A(a))\models A(b)$ , where  $A\in N_C$  is new

## Problem Reduction 2 (Lower Bound)

## Complexity Results

- ExpTime-complete in  $\mathcal{ALCO}$  and  $\mathcal{ALCQ}$
- NExpTime-complete in  $\mathcal{ALCOIQ}$
- PTime-complete in  $CFD_{nc}$

Complexities of identity and instance problem are not the same in  $\mathcal{ALC}^{=}$  allowing  $\{a \doteq b \mid a, b \in N_l\} \subseteq \mathcal{A} \rightarrow \mathsf{PTime} \text{ vs ExpTime-hard}$ 

# The View-based Identity Problem

A rôle-based access control scenario:

A partially visible ontology  $\mathfrak{O}_I$ 









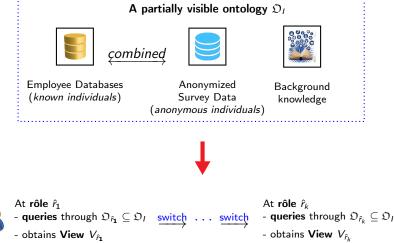
Employee Databases (known individuals)

Anonymized Survey Data (anonymous individuals) Background knowledge

Adrian Nuradiansyah

# The View-based Identity Problem

A rôle-based access control scenario:



At rôle  $\hat{r}_{k+1}$ , is the identity of an anonymous x hidden w.r.t.  $V_{\hat{r}_1}, \ldots, V_{\hat{r}_k}$ ?

Adrian Nuradiansyah

Description Logic Workshop 2017

July 21, 2017 8 / 1

# Query Answering and View

• Let  $N_I = N_{KI} \cup N_{AI}$ , where  $N_{KI}$  and  $N_{AI}$  are the sets of known and anonymous individuals, respectively.

# Query Answering and View

- Let  $N_I = N_{KI} \cup N_{AI}$ , where  $N_{KI}$  and  $N_{AI}$  are the sets of known and anonymous individuals, respectively.
- Let  $x \in N_{AI}$ . The identity of x w.r.t. an ontology  $\mathcal{D}_I$  is  $idn(x, \mathcal{D}_I) = \{a \in N_{KI} \mid \mathcal{D}_I \models x \doteq a\}$

- Let  $N_I = N_{KI} \cup N_{AI}$ , where  $N_{KI}$  and  $N_{AI}$  are the sets of known and anonymous individuals, respectively.
- Let  $x \in N_{AI}$ . The identity of x w.r.t. an ontology  $\mathfrak{O}_I$  is  $idn(x, \mathfrak{O}_I) = \{a \in N_{KI} \mid \mathfrak{O}_I \models x \doteq a\}$
- Given  $\mathfrak{O}_I$ ,  $\mathfrak{O}_{\hat{r}} \subseteq \mathfrak{O}_I$  accessed by a user with a rôle  $\hat{r}$ , and a (*subsumption* or *retrieval*) query q, the answer to q w.r.t.  $\hat{r}$  is:
  - $ans(q, \hat{r}) := \{ true \}, if q = C \sqsubseteq D and \mathfrak{O}_{\hat{r}} \models C \sqsubseteq D,$
  - $ans(q, \hat{r}) := \emptyset$ , if  $q = C \sqsubseteq D$  and  $\mathfrak{O}_{\hat{r}} \not\models C \sqsubseteq D$ ,
  - $ans(q, \hat{r}) := \{a \in N_I \mid \mathfrak{O}_{\hat{r}} \models C(a)\}, \text{ if } q = C,$
  - $ans(q, \hat{r}) := \{(a, b) \in N_I \times N_I \mid \mathfrak{O}_{\hat{r}} \models r(a, b)\}, \text{ if } q = r \in N_R.$

- Let  $N_I = N_{KI} \cup N_{AI}$ , where  $N_{KI}$  and  $N_{AI}$  are the sets of known and anonymous individuals, respectively.
- Let  $x \in N_{AI}$ . The identity of x w.r.t. an ontology  $\mathfrak{O}_I$  is  $idn(x, \mathfrak{O}_I) = \{a \in N_{KI} \mid \mathfrak{O}_I \models x \doteq a\}$
- Given D<sub>1</sub>, D<sub>r</sub> ⊆ D<sub>1</sub> accessed by a user with a rôle r̂, and a (subsumption or retrieval) query q, the answer to q w.r.t. r̂ is:
  - $ans(q, \hat{r}) := \{ true \}, if q = C \sqsubseteq D and \mathcal{D}_{\hat{r}} \models C \sqsubseteq D,$ •  $ans(q, \hat{r}) := \emptyset, if q = C \sqsubseteq D and \mathcal{D}_{\hat{r}} \nvDash C \sqsubseteq D,$
  - $ans(q, \hat{r}) := \{a \in N_l \mid \mathfrak{O}_{\hat{r}} \models C(a)\}, \text{ if } q = C,$
  - $ans(q, \hat{r}) := \{(a, b) \in N_I \times N_I \mid \mathfrak{O}_{\hat{r}} \models r(a, b)\}, \text{ if } q = r \in N_R.$
- Given a rôle  $\hat{r}$ , a view is a total function  $V_{\hat{r}}: dom(V_{\hat{r}}) \rightarrow 2^{N_l} \cup 2^{N_l \times N_l} \cup \{\{\texttt{true}\}\}, \text{ where}$ 
  - View definition  $dom(V_{\hat{r}})$  is a finite set of queries.
  - $V_{\hat{r}}(q)$  is a finite set of answers for all  $q \in dom(V_{\hat{r}})$ .

< 回 > < 三 > < 三 >

### Canonical Ontology

The canonical ontology  $C(V_{\hat{r}_1}, \ldots, V_{\hat{r}_k})$  of  $V_{\hat{r}_1}, \ldots, V_{\hat{r}_k}$  is defined as  $C(V_{\hat{r}_1}, \ldots, V_{\hat{r}_k}) := (\mathcal{T}, \mathcal{A})$  where

$$\begin{aligned} \mathcal{T} &:= \{ C \sqsubseteq D \mid V_{\hat{r}_i}(C \sqsubseteq D) = \{ \texttt{true} \} \text{ for some } i, 1 \leq i \leq k \} \\ \mathcal{A} &:= \{ C(a) \mid a \in V_{\hat{r}_i}(C) \text{ for some } i, 1 \leq i \leq k \} \cup \\ & \{ r(a,b) \mid (a,b) \in V_{\hat{r}_i}(r) \text{ for some } i, 1 \leq i \leq k \}. \end{aligned}$$

### Hidden Identity

The identity of  $x \in N_{AI}$  is hidden w.r.t.  $V_{\hat{r}_1}, \ldots, V_{\hat{r}_k}$  iff

$$idn(x, \mathcal{C}(V_{\hat{r}_1}, \ldots, V_{\hat{r}_k})) = \emptyset.$$

#### Probabilistic-based Reasoning

Two individuals are equal with certain probability. Subjective probabilistic in DLs with equality power is more suitable

#### Probabilistic-based Reasoning

Two individuals are equal with certain probability. Subjective probabilistic in DLs with equality power is more suitable

#### Probabilistic-based Reasoning

Two individuals are equal with certain probability. Subjective probabilistic in DLs with equality power is more suitable

#### • Anonymizing Description Logic Ontologies

Generalizing concepts/nominals on the right hand side of GCIs as specific as possible.

# Thank You

э.

Image: A math and A

2