Towards Privacy-Preserving Ontology Publishing

F. Baader & A. Nuradiansyah

Technische Universität Dresden

October 27, 2018
In privacy, **repair** may not be enough!

Given an **ontology** \mathcal{O}, a **policy** $\mathcal{P} = \{\alpha_1, \ldots, \alpha_n\}$ is a finite set of axioms to be hidden, i.e., an attacker should not be able to see α_i as a consequence of \mathcal{O}.

But, when \mathcal{O}' is published on the Web, ...
In privacy, **repair** may not be enough!

Given an **ontology** \mathcal{O}, a **policy** $\mathcal{P} = \{\alpha_1, \ldots, \alpha_n\}$ is a finite set of axioms to be hidden, i.e., an attacker should not be able to see α_i as a consequence of \mathcal{O}.

Suppose $\mathcal{O} \models \alpha_i$ for some $\alpha_i \in \mathcal{P}$ i.e., \mathcal{O} does not comply with \mathcal{P}.

Let \mathcal{O}' be a **repair** of \mathcal{O} w.r.t. α_i such that $\mathcal{O}' \not\models \alpha_i$ for all i.
In privacy, **repair** may not be enough!

Given an **ontology** \mathcal{O}, a **policy** $\mathcal{P} = \{\alpha_1, \ldots, \alpha_n\}$ is a finite set of axioms to be hidden, i.e., an attacker **should not be able to see** α_i as a consequence of \mathcal{O}.

Suppose $\mathcal{O} \models \alpha_i$ for some $\alpha_i \in \mathcal{P}$ i.e., \mathcal{O} **does not comply** with \mathcal{P}.

Let \mathcal{O}' be a **repair** of \mathcal{O} w.r.t. α_i such that $\mathcal{O}' \not\models \alpha_i$ for all i.

But, when \mathcal{O}' is **published** on the Web, ... an attacker may know an ontology \mathcal{O}'' such that $\mathcal{O}'' \not\models \alpha_i$, but $\mathcal{O}' \cup \mathcal{O}'' \models \alpha_i$.

In this case, it is still not safe to publish \mathcal{O}'.
What people already did:

In (Cuenca Grau & Kostylev, 2016):

- Privacy-Preserving Data Publishing
- Information to be published: a relational dataset with (labeled) nulls
- Policy is a conjunctive query.
- Considering three privacy properties when publishing datasets: policy-compliant, policy-safety, and optimality.
- Published information does not have background knowledge.

What we want to do:

- Privacy-Preserving Ontology Publishing (PPOP)
- Addressed in the context of Description Logic Ontologies
PPOP with Role-Free ABoxes in \mathcal{EL}

- **Starting point:** \mathcal{EL} Ontologies with role-free ABoxes and empty TBoxes.

- An ABox \mathcal{A} is **role-free** if all the axioms $\beta \in \mathcal{A}$ are only in the form of $D(a)$.

- W.l.o.g., only one concept assertion in \mathcal{A} speaks about one individual

 If $C_1(a) \in \mathcal{A}$ and $C_2(a) \in \mathcal{A}$, then $(C_1 \sqcap C_2)(a) \in \mathcal{A}$

- Safe Ontologies $\xrightarrow{\text{reduced}}$ Safe Concepts

- Information to be published for an individual a: an \mathcal{EL} concept C

- **Policy** is a finite set of \mathcal{EL} concepts D_1, \ldots, D_p, such that $D_i \not\equiv \top$ for all $i \in \{1, \ldots, p\}$.
Given a policy $\mathcal{P} = \{D_1, \ldots, D_p\}$ and an \mathcal{EL} concept C, the \mathcal{EL} concept C' is

- **compliant** with \mathcal{P} if $C' \not\sqsubseteq D_i$ for all $i \in \{1, \ldots, p\}$.

- **safe** for \mathcal{P} if $C' \sqcap C''$ is compliant with \mathcal{P} for all \mathcal{EL}-concepts C'' that are compliant with \mathcal{P}.
Given a policy $\mathcal{P} = \{D_1, \ldots, D_p\}$ and an \mathcal{EL} concept C, the \mathcal{EL} concept C' is

- **compliant** with \mathcal{P} if $C' \not\sqsubseteq D_i$ for all $i \in \{1, \ldots, p\}$.

- **safe** for \mathcal{P} if $C' \sqcap C''$ is compliant with \mathcal{P} for all \mathcal{EL}-concepts C'' that are compliant with \mathcal{P}.

- a \mathcal{P}-compliant (safe) generalization of C if
 - $C \sqsubseteq C'$ and
 - C' is compliant (safe) for \mathcal{P}.
Given a policy $\mathcal{P} = \{D_1, \ldots, D_p\}$ and an \mathcal{EL} concept C, the \mathcal{EL} concept C' is

- **compliant** with \mathcal{P} if $C' \not\subseteq D_i$ for all $i \in \{1, \ldots, p\}$.

- **safe** for \mathcal{P} if $C' \sqcap C''$ is compliant with \mathcal{P} for all \mathcal{EL}-concepts C'' that are compliant with \mathcal{P}.

- a \mathcal{P}-compliant (safe) generalization of C if
 - $C \subseteq C'$ and
 - C' is compliant with (safe for) \mathcal{P}.

- a \mathcal{P}-optimal compliant (safe) generalization of C if
 - $C \subseteq C'$,
 - C' is a \mathcal{P}-compliant (safe) generalization of C, and
 - there is no \mathcal{P}-compliant (safe) generalization of C s.t. $C'' \sqsubset C'$.
Consider a policy $\mathcal{P} = \{D\}$ specifying what information should be kept “secret” about Linda

$$D = Patient \sqcap \exists \text{seen by.}(Doctor \sqcap \exists \text{works in. Cardiology})$$

Assume information C is published about Linda

$$C = Patient \sqcap Female \sqcap \exists \text{seen by.}(Doctor \sqcap Male \sqcap \exists \text{works in. Cardiology})$$

Note C is not compliant with D, i.e., $C \subsetneq D$.

Illustration on Compliance, Safety, and Optimality

- Consider a policy \(\mathcal{P} = \{D\} \) specifying what information should be kept “secret” about Linda

\[
D = \text{Patient} \sqcap \exists \text{seen_by}.(\text{Doctor} \sqcap \exists \text{works_in.Cardiology})
\]

- Assume information \(C \) is published about Linda

\[
C = \text{Patient} \sqcap \text{Female} \sqcap \exists \text{seen_by}.(\text{Doctor} \sqcap \text{Male} \sqcap \exists \text{works_in.Cardiology})
\]
Note \(C \) is not compliant with \(D \), i.e., \(C \sqsubseteq D \).

- Generalizing \(C \) to \(C_1 \) yields a compliant concept

\[
C_1 = \text{Female} \sqcap \exists \text{seen_by}.(\text{Doctor} \sqcap \text{Male} \sqcap \exists \text{works_in.Cardiology})
\]
But, \(C_1 \) is not safe for \(D \) since if the attacker knows \(\text{Patient}(linda) \), then \(C_1 \sqcap \text{Patient} \sqsubseteq D \) is revealed.
Consider a policy $\mathcal{P} = \{D\}$ specifying what information should be kept “secret” about *linda*

$$D = Patient \sqcap \exists seen_by.(Doctor \sqcap \exists works_in.Cardiology)$$

Assume information C is published about *linda*

$$C = Patient \sqcap Female \sqcap \exists seen_by.(Doctor \sqcap Male \sqcap \exists works_in.Cardiology)$$

Note C is not compliant with D, i.e., $C \subseteq D$.

Let us *make it safe!*

$$C_2 = Female \sqcap \exists seen_by.(Doctor \sqcap Male \sqcap \exists works_in.\top)$$

But, C_2 is still not optimal since more information than necessary is removed.
Consider a **policy** $\mathcal{P} = \{D\}$ specifying what information should be kept “secret” about *linda*

$$D = Patient \sqcap \exists \text{seen}_\text{by}.(Doctor \sqcap \exists \text{works}_\text{in}.Cardiology)$$

Assume information C is published about *linda*

$$C = Patient \sqcap Female \sqcap \exists \text{seen}_\text{by}.(Doctor \sqcap Male \sqcap \exists \text{works}_\text{in}.Cardiology)$$

Note C is not compliant with D, i.e., $C \subseteq D$.

Let us **make it safe**!

$$C_2 = Female \sqcap \exists \text{seen}_\text{by}.(Doctor \sqcap Male \sqcap \exists \text{works}_\text{in}.\top)$$

But, C_2 is still not optimal since more information than necessary is removed.

Make it **optimal**!

$$C_3 = Female \quad \sqcap \exists \text{seen}_\text{by}.(Doctor \sqcap Male \sqcap \exists \text{works}_\text{in}.\top)$$

$$\quad \sqcap \exists \text{seen}_\text{by}.(Male \sqcap \exists \text{works}_\text{in}.Cardiology)$$
Let $\text{con}(C)$ be the set of all atoms A or $\exists r.E$ occurring in the top-level conjunction of C.
Let $\text{con}(C)$ be the set of all atoms A or $\exists r.E$ occurring in the top-level conjunction of C.

$\text{con}(C)$ covers $\text{con}(D)$ iff for all $F \in \text{con}(D)$, there is $E \in \text{con}(C)$ such that $E \sqsubseteq F$.

Compliance
C is compliant with P iff $\text{con}(C)$ does not cover $\text{con}(D)$ for any $i \in \{1, \ldots, p\}$.

Complexity for Compliance
Deciding whether C' is compliant w.r.t. P is in PTime. One optimal P-compliant generalization can be computed in ExpTime. The set of all optimal P-compliant generalizations can be computed in ExpTime.

F. Baader & A. Nuradiansyah
DL 2018
October 27, 2018
Characterizing Compliant

- Let $\text{con}(C)$ be the set of all atoms A or $\exists r. E$ occurring in the top-level conjunction of C.
- $\text{con}(C)$ covers $\text{con}(D)$ iff for all $F \in \text{con}(D)$, there is $E \in \text{con}(C)$ such that $E \sqsubseteq F \Rightarrow \text{Characterizing } C \sqsubseteq D$.
Let $\text{con}(C)$ be the set of all atoms A or $\exists r.E$ occurring in the top-level conjunction of C.

$\text{con}(C)$ covers $\text{con}(D)$ iff for all $F \in \text{con}(D)$, there is $E \in \text{con}(C)$ such that $E \sqsubseteq F \Rightarrow \text{Characterizing } C \sqsubseteq D$.

Compliance

C is **compliant** with \mathcal{P} iff $\text{con}(C)$ does not cover $\text{con}(D_i)$ for any $i \in \{1, \ldots, p\}$.
Characterizing Compliant

- Let $\text{con}(C)$ be the set of all atoms A or $\exists r. E$ occurring in the top-level conjunction of C.

- $\text{con}(C)$ covers $\text{con}(D)$ iff for all $F \in \text{con}(D)$, there is $E \in \text{con}(C)$ such that $E \sqsubseteq F \Rightarrow$ Characterizing $C \sqsubseteq D$.

Compliance

C is compliant with \mathcal{P} iff $\text{con}(C)$ does not cover $\text{con}(D_i)$ for any $i \in \{1, \ldots, p\}$.

Complexity for Compliance

- Deciding whether C' is compliant w.r.t. \mathcal{P} is in PTime.
Let $\text{con}(C)$ be the set of all atoms A or $\exists r. E$ occurring in the top-level conjunction of C.

$\text{con}(C)$ covers $\text{con}(D)$ iff for all $F \in \text{con}(D)$, there is $E \in \text{con}(C)$ such that $E \sqsubseteq F \Rightarrow$ Characterizing $C \sqsubseteq D$.

Compliance

C is **compliant** with \mathcal{P} iff $\text{con}(C)$ does not cover $\text{con}(D_i)$ for any $i \in \{1, \ldots, p\}$.

Complexity for Compliance

- Deciding whether C' is compliant w.r.t. \mathcal{P} is in PTime.
- One optimal \mathcal{P}-compliant generalization can be computed in ExpTime.
- The set of all optimal \mathcal{P}-compliant generalizations can be computed in ExpTime.
Assume \mathcal{P} is **redundant-free**: every $D_i, D_j \in \mathcal{P}$ are **incomparable w.r.t. subsumption**.
Characterizing Safety

Assume \mathcal{P} is \textbf{redundant-free}: every $D_i, D_j \in \mathcal{P}$ are \textit{incomparable w.r.t. subsumption}.

\begin{itemize}
 \item \textbf{Safety}
 \begin{itemize}
 \item \mathcal{C}' is safe for \mathcal{P} iff there is \textbf{no pair of atoms} (E, F) such that $E \in \text{con}(\mathcal{C}')$, $F \in \text{con}(D_1) \cup \ldots \cup \text{con}(D_p)$ and $E \sqsubseteq F$
 \end{itemize}
\end{itemize}

Deciding whether \mathcal{C}' is safe for \mathcal{P} is in \textbf{PTime}.
Assume \mathcal{P} is \textbf{redundant-free}: every $D_i, D_j \in \mathcal{P}$ are \textbf{incomparable w.r.t. subsumption}.

\textbf{Safety}

C' is safe for \mathcal{P} iff there is \textbf{no pair of atoms} (E, F) such that

$$E \in \text{con}(C'), \; F \in \text{con}(D_1) \cup \ldots \cup \text{con}(D_p) \text{ and } E \sqsubseteq F$$

Deciding whether C' is safe for \mathcal{P} is in \textbf{PTime}.

\textbf{The Optimal \mathcal{P}-Safe Generalization}

- If C_1', C_2' are \mathcal{P}-safe generalizations of C, then $C_1' \sqcap C_2'$ is also a \mathcal{P}-safe generalization of C.
 - \Rightarrow Optimal \mathcal{P}-safe generalization is \textbf{unique up to equivalence}.
Characterizing Safety

Assume \mathcal{P} is **redundant-free**: every $D_i, D_j \in \mathcal{P}$ are **incomparable w.r.t. subsumption**.

Safety

C' is safe for \mathcal{P} iff there is **no pair of atoms** (E, F) such that

$$E \in \text{con}(C'), \ F \in \text{con}(D_1) \cup \ldots \cup \text{con}(D_p) \text{ and } E \sqsubseteq F$$

Deciding whether C' is safe for \mathcal{P} is in **PTime**.

The Optimal \mathcal{P}-Safe Generalization

- If C'_1, C'_2 are \mathcal{P}-safe generalizations of C, then $C'_1 \sqcap C'_2$ is also a \mathcal{P}-safe generalization of C.

 \Rightarrow Optimal \mathcal{P}-safe generalization is **unique up to equivalence**.

- The \mathcal{P}-optimal safe generalization of C can be **computed in ExpTime**.

 \Rightarrow Requiring the computation of optimal \mathcal{P}-compliant generalizations.
Future Work

- Decision problem for optimality
- Considering PPOP with \mathcal{EL} concepts w.r.t. (Acyclic) TBoxes
- Considering a setting where \mathcal{A} contains concept and role assertions
- Considering \mathcal{ELO} concepts
Thank You

ROSI