Towards Privacy-Preserving Ontology Publishing

F. Baader & A. Nuradiansyah

Technische Universität Dresden

October 27, 2018

- In privacy, repair may not be enough!
- Given an ontology \mathfrak{D} , a policy $\mathcal{P} = \{\alpha_1, \ldots, \alpha_n\}$ is a finite set of axioms to be hidden, i.e., an attacker should not be able to see α_i as a consequence of \mathfrak{D} .

- In privacy, repair may not be enough!
- Given an ontology \mathfrak{D} , a policy $\mathcal{P} = \{\alpha_1, \ldots, \alpha_n\}$ is a finite set of axioms to be hidden, i.e., an attacker should not be able to see α_i as a consequence of \mathfrak{D} .
- Suppose $\mathfrak{O} \models \alpha_i$ for some $\alpha_i \in \mathcal{P}$ i.e., \mathfrak{O} does not comply with \mathcal{P} .
- Let \mathfrak{O}' be a repair of \mathfrak{O} w.r.t. α_i such that $\mathfrak{O}' \not\models \alpha_i$ for all *i*.

- In privacy, repair may not be enough!
- Given an ontology \mathfrak{D} , a policy $\mathcal{P} = \{\alpha_1, \ldots, \alpha_n\}$ is a finite set of axioms to be hidden, i.e., an attacker should not be able to see α_i as a consequence of \mathfrak{D} .
- Suppose $\mathfrak{O} \models \alpha_i$ for some $\alpha_i \in \mathcal{P}$ i.e., \mathfrak{O} does not comply with \mathcal{P} .
- Let \mathfrak{O}' be a repair of \mathfrak{O} w.r.t. α_i such that $\mathfrak{O}' \not\models \alpha_i$ for all *i*.
- But, when \mathfrak{D}' is **published** on the Web, ... an attacker may know an ontology \mathfrak{D}'' such that $\mathfrak{D}'' \not\models \alpha_i$, but $\mathfrak{D}' \cup \mathfrak{D}'' \models \alpha_i$.
- In this case, it is still not safe to publish D'.

Privacy-Preserving Ontology Publishing

What people already did:

In (Cuenca Grau & Kostylev, 2016):

- Privacy-Preserving Data Publishing
- Information to be published: a relational dataset with (labeled) nulls
- Policy is a conjunctive query.
- Considering three privacy properties when publishing datasets: policy-compliant, policy-safety, and optimality.
- Published information does not have background knowledge.

What we want to do:

- Privacy-Preserving Ontology Publishing (PPOP)
- Addressed in the context of Description Logic Ontologies

Image: A matrix and a matrix

- Starting point: *EL* Ontologies with role-free ABoxes and empty TBoxes.
- An ABox \mathcal{A} is role-free if all the axioms $\beta \in \mathcal{A}$ are only in the form of D(a).
- W.I.o.g., only one concept assertion in A speaks about one individual If C₁(a) ∈ A and C₂(a) ∈ A, then (C₁ ⊓ C₂)(a) ∈ A
- Safe Ontologies $\xrightarrow{reduced}$ Safe Concepts
- Information to be published for an individual *a*: an \mathcal{EL} concept *C*
- Policy is a finite set of \mathcal{EL} concepts D_1, \ldots, D_p , such that $D_i \not\equiv \top$ for all $i \in \{1, \ldots, p\}$.

Compliance, Safety, and Optimality

Given a policy $\mathcal{P} = \{D_1, \dots, D_p\}$ and an \mathcal{EL} concept C, the \mathcal{EL} concept C' is • compliant with \mathcal{P} if $C' \not\sqsubseteq D_i$ for all $i \in \{1, \dots, p\}$.

safe for *P* if C' ⊓ C" is compliant with *P* for all *EL*-concepts C" that are compliant with *P*.

Compliance, Safety, and Optimality

Given a policy $\mathcal{P} = \{D_1, \dots, D_p\}$ and an \mathcal{EL} concept C, the \mathcal{EL} concept C' is

- compliant with \mathcal{P} if $C' \not\sqsubseteq D_i$ for all $i \in \{1, \ldots, p\}$.
- safe for *P* if C' ⊓ C" is compliant with *P* for all *EL*-concepts C" that are compliant with *P*.
- a *P*-compliant (safe) generalization of *C* if
 - $C \sqsubseteq C'$ and
 - C' is compliant with (safe for) \mathcal{P} .

Compliance, Safety, and Optimality

Given a policy $\mathcal{P} = \{D_1, \dots, D_p\}$ and an \mathcal{EL} concept C, the \mathcal{EL} concept C' is

- compliant with \mathcal{P} if $C' \not\sqsubseteq D_i$ for all $i \in \{1, \ldots, p\}$.
- safe for \mathcal{P} if $C' \sqcap C''$ is compliant with \mathcal{P} for all \mathcal{EL} -concepts C'' that are compliant with \mathcal{P} .
- a *P*-compliant (safe) generalization of *C* if
 - $C \sqsubseteq C'$ and
 - C' is compliant with (safe for) \mathcal{P} .
- a \mathcal{P} -optimal compliant (safe) generalization of C if
 - $C \sqsubseteq C'$,
 - C' is a \mathcal{P} -compliant (safe) generalization of C, and
 - there is no \mathcal{P} -compliant (safe) generalization of C s.t. $C'' \sqsubset C'$.

Consider a policy P = {D} specifying what information should be kept "secret" about *linda*

 $D = Patient \sqcap \exists seen_by.(Doctor \sqcap \exists works_in.Cardiology)$

• Assume information C is published about linda

 $C = Patient \sqcap Female \sqcap \exists seen_by.(Doctor \sqcap Male \sqcap \exists works_in.Cardiology)$ Note C is not compliant with D, i.e., $C \sqsubseteq D$.

 Consider a policy P = {D} specifying what information should be kept "secret" about *linda*

$$D = Patient \sqcap \exists seen_by.(Doctor \sqcap \exists works_in.Cardiology)$$

• Assume information C is published about linda

 $C = Patient \sqcap Female \sqcap \exists seen_by.(Doctor \sqcap Male \sqcap \exists works_in.Cardiology)$ Note C is not compliant with D, i.e., $C \sqsubseteq D$.

• Generalizing C to C_1 yields a compliant concept

 $C_1 = Female \sqcap \exists seen_by.(Doctor \sqcap Male \sqcap \exists works_in.Cardiology)$ But, C_1 is not safe for D since if the attacker knows Patient(linda), then $C_1 \sqcap Patient \sqsubseteq D$ is revealed.

Consider a policy P = {D} specifying what information should be kept "secret" about *linda*

 $D = Patient \sqcap \exists seen_by.(Doctor \sqcap \exists works_in.Cardiology)$

• Assume information C is published about linda

 $C = Patient \sqcap Female \sqcap \exists seen_by.(Doctor \sqcap Male \sqcap \exists works_in.Cardiology)$ Note C is not compliant with D, i.e., $C \sqsubseteq D$.

• Let us make it safe!

 $C_2 = Female \sqcap \exists seen_by.(Doctor \sqcap Male \sqcap \exists works_in.\top)$

But, C_2 is still not optimal since more information than necessary is removed.

Consider a policy P = {D} specifying what information should be kept "secret" about *linda*

 $D = Patient \sqcap \exists seen_by.(Doctor \sqcap \exists works_in.Cardiology)$

• Assume information C is published about linda

 $C = Patient \sqcap Female \sqcap \exists seen_by.(Doctor \sqcap Male \sqcap \exists works_in.Cardiology)$ Note C is not compliant with D, i.e., $C \sqsubseteq D$.

• Let us make it safe!

 $C_2 = Female \sqcap \exists seen_by.(Doctor \sqcap Male \sqcap \exists works_in.\top)$

But, C_2 is still not optimal since more information than necessary is removed.

• Make it optimal!

 $C_{3} = Female \quad \sqcap \exists seen_by.(Doctor \sqcap Male \sqcap \exists works_in.\top) \\ \sqcap \exists seen_by.(Male \sqcap \exists works_in.Cardiology)$

イロト イヨト イヨト イヨト

Let con(C) be the set of all atoms A or ∃r.E occurring in the top-level conjunction of C.

47 ▶

- Let con(C) be the set of all atoms A or ∃r.E occurring in the top-level conjunction of C.
- con(C) covers con(D) iff for all F ∈ con(D), there is E ∈ con(C) such that E ⊑ F

- Let con(C) be the set of all atoms A or ∃r.E occurring in the top-level conjunction of C.
- con(C) covers con(D) iff for all F ∈ con(D), there is E ∈ con(C) such that E ⊑ F ⇒ Characterizing C ⊑ D.

- Let con(C) be the set of all atoms A or ∃r.E occurring in the top-level conjunction of C.
- con(C) covers con(D) iff for all F ∈ con(D), there is E ∈ con(C) such that E ⊑ F ⇒ Characterizing C ⊑ D.

Compliance

C is compliant with \mathcal{P} iff con(C) does not cover $con(D_i)$ for any $i \in \{1, \ldots, p\}$.

- Let con(C) be the set of all atoms A or ∃r.E occurring in the top-level conjunction of C.
- con(C) covers con(D) iff for all F ∈ con(D), there is E ∈ con(C) such that E ⊑ F ⇒ Characterizing C ⊑ D.

Compliance

C is compliant with \mathcal{P} iff con(C) does not cover $con(D_i)$ for any $i \in \{1, \ldots, p\}$.

Complexity for Compliance

• Deciding whether C' is compliant w.r.t. \mathcal{P} is in **PTime**.

< 47 ▶

- Let con(C) be the set of all atoms A or ∃r.E occurring in the top-level conjunction of C.
- con(C) covers con(D) iff for all F ∈ con(D), there is E ∈ con(C) such that E ⊑ F ⇒ Characterizing C ⊑ D.

Compliance

C is compliant with \mathcal{P} iff con(C) does not cover $con(D_i)$ for any $i \in \{1, \ldots, p\}$.

Complexity for Compliance

- Deciding whether C' is compliant w.r.t. \mathcal{P} is in **PTime.**
- One optimal *P*-compliant generalization can be **computed in ExpTime**.
- The set of all optimal \mathcal{P} -compliant generalizations can be **computed in ExpTime**.

< /□> < Ξ

Assume \mathcal{P} is redundant-free: every $D_i, D_j \in \mathcal{P}$ are incomparable w.r.t. subsumption.

Image: Image:

э

Assume \mathcal{P} is **redundant-free**: every $D_i, D_j \in \mathcal{P}$ are **incomparable w.r.t.** subsumption.

Safety C' is safe for \mathcal{P} iff there is no pair of atoms (E, F) such that $E \in \operatorname{con}(C'), F \in \operatorname{con}(D_1) \cup \ldots \cup \operatorname{con}(D_p)$ and $E \sqsubseteq F$

Deciding whether C' is safe for \mathcal{P} is in **PTime.**

Assume \mathcal{P} is **redundant-free**: every $D_i, D_j \in \mathcal{P}$ are **incomparable w.r.t.** subsumption.

Safety

C' is safe for \mathcal{P} iff there is **no pair of atoms** (E, F) such that

 $E \in \operatorname{con}(C'), F \in \operatorname{con}(D_1) \cup \ldots \cup \operatorname{con}(D_p) \text{ and } E \sqsubseteq F$

Deciding whether C' is safe for \mathcal{P} is in **PTime**.

The Optimal \mathcal{P} -Safe Generalization

If C'₁, C'₂ are P-safe generalizations of C, then C'₁ ⊓ C'₂ is also a P-safe generalization of C.
 ⇒ Optimal P-safe generalization is unique up to equivalence.

3

(I) < ((()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) <

Assume \mathcal{P} is **redundant-free**: every $D_i, D_j \in \mathcal{P}$ are **incomparable w.r.t.** subsumption.

Safety

C' is safe for \mathcal{P} iff there is **no pair of atoms** (E, F) such that

 $E \in \operatorname{con}(C'), F \in \operatorname{con}(D_1) \cup \ldots \cup \operatorname{con}(D_p) \text{ and } E \sqsubseteq F$

Deciding whether C' is safe for \mathcal{P} is in **PTime**.

The Optimal \mathcal{P} -Safe Generalization

- If C'₁, C'₂ are P-safe generalizations of C, then C'₁ ⊓ C'₂ is also a P-safe generalization of C.
 ⇒ Optimal P-safe generalization is unique up to equivalence.
- The *P*-optimal safe generalization of *C* can be **computed in ExpTime**.
 - \Rightarrow Requiring the computation of optimal $\mathcal{P}\text{-compliant}$ generalizations.

3

< ロト < 同ト < ヨト < ヨト

- Decision problem for optimality
- Considering PPOP with \mathcal{EL} concepts w.r.t. (Acylic) TBoxes
- $\bullet\,$ Considering a setting where ${\cal A}$ contains concept and role assertions
- Considering *ELO* concepts

Thank You

3

Image: Image: