Privacy-Preserving Ontology Publishing: The Case of Quantified ABoxes w.r.t. a Static Cycle-Restricted *EL* TBox

Franz Baader¹ Francesco Kriegel¹ Patrick Koopmann¹ Adrian Nuradiansyah¹ Rafael Peñaloza²

¹Technische Universität Dresden & ²University of Milano-Bicocca 34th International Workshop on Description Logics at Bratislava, Slovakia

A. Nuradiansyah et. al., Privacy-Preserving Ontology Publishing

(qABox) (\mathcal{EL} TBox)

Privacy policy (a set of *EL* concepts)

・四ト ・ヨト ・ヨト

Quantified ABox: $\exists X. A$

(ABox with atomic assertions, individuals, and existentially quantified variables) $\exists \{x\}. \{relative(BEN, x), Actor(x), spouse(x, JERRY), Comedian(JERRY)\}$

 \mathcal{EL} TBox \mathcal{T} :Policy \mathcal{P} :{Comedian \sqsubseteq Actor}{ \exists relative.(Actor $\sqcap \exists$ spouse.Actor)}

Policy-Compliance w.r.t. Static $\mathcal{E\!L}$ TBoxes

Quantified ABox: $\exists X. A$

(ABox with atomic assertions, individuals, and existentially quantified variables) $\exists \{x\}.\{relative(BEN, x), Actor(x), spouse(x, JERRY), Comedian(JERRY)\}$

 \mathcal{EL} TBox \mathcal{T} :Policy \mathcal{P} :{Comedian \sqsubseteq Actor}{ \exists relative.(Actor $\sqcap \exists$ spouse.Actor)}

BEN is an instance of the policy w.r.t. $\exists X.A$ and $T \Rightarrow not compliant!$

Optimal Compliant Anonymizations

Optimal Compliant Anonymizations

- *being optimal: not strictly entailed by the other compliant anonymizations
- Cycle-restricted TBoxes are considered: no C ⊑_T ∃w.C for each concept C and each non-empty word w ∈ Σ_R*
- Canonical compliant anonymizations ∃ Y. B: a class of anonymizations covering all optimal compliant anonymizations

How to Compute A Canonical Compliant Anonymization

1. Saturate the qABox $(\exists X.A \Rightarrow sat^{\mathcal{T}}(\exists X.A))$ Saturation always terminates for cycle-restricted TBoxes

How to Compute A Canonical Compliant Anonymization

- Saturate the qABox (∃X.A ⇒ sat^T(∃X.A)) Saturation always terminates for cycle-restricted TBoxes
- 2. Create copies $y_{u,\mathcal{K}}$ of each object u of the sat $^{\mathcal{T}}(\exists X.\mathcal{A})$ s.t.

• each $y_{u,\mathcal{K}}$ is a variable in $\exists Y.\mathcal{B}$

K ⊆ Atoms(P, T) is a repair type that specifies which instance relationships that want to be removed by ∃Y.B
 (C ∈ K implies (∃X.A)^T ⊨ C(u))

How to Compute A Canonical Compliant Anonymization

- Saturate the qABox (∃X.A ⇒ sat^T(∃X.A)) Saturation always terminates for cycle-restricted TBoxes
- 2. Create copies $y_{u,\mathcal{K}}$ of each object u of the sat^{\mathcal{T}}($\exists X.\mathcal{A}$) s.t.

• each $y_{u,\mathcal{K}}$ is a variable in $\exists Y.\mathcal{B}$

- K ⊆ Atoms(P, T) is a repair type that specifies which instance relationships that want to be removed by ∃Y.B
 (C ∈ K implies (∃X.A)^T ⊨ C(u))
- 3. Define a compliance seed function (csf) s that assigns each individual to a repair type s.t.
 - For each P ∈ P with sat^T(∃X.A) ⊨ P(a), the repair type s(a) contains an atom subsuming P
 - ► *s* is further used to induce $\exists Y.\mathcal{B}$, e.g., create assertions for $\exists Y.\mathcal{B}$ s.t. $C \in \mathcal{K}$ implies $\exists Y.\mathcal{B} \not\models C(y_{u,\mathcal{K}})$

Theorem (ISWC '20, CADE '21)

There is an algorithm to compute the set of all optimal compliant anonymizations of $\exists X. A$ w.r.t. \mathcal{P} and \mathcal{T} that

- is deterministic and runs in exponential time, and (the number of seed functions and variables is exponential)
- has access to an NP-oracle (remove the non-optimal anonymizations)

Complexity of the Computation and Optimizations

Theorem (ISWC '20, CADE '21)

There is an algorithm to compute the set of all optimal compliant anonymizations of $\exists X. \mathcal{A}$ w.r.t. \mathcal{P} and \mathcal{T} that

- is deterministic and runs in exponential time, and
- has access to an NP-oracle

Can we improve the complexity?

Smaller/Optimized Compliant Anonymizations

- The number of variables in canonical anonymizations is always exponential
- Start with a csf, and then only introduce necessary variables stepwise

Complexity of the Computation and Optimizations

Theorem (ISWC '20, CADE '21)

There is an algorithm to compute the set of all optimal compliant anonymizations of $\exists X. \mathcal{A}$ w.r.t. \mathcal{P} and \mathcal{T} that

- is deterministic and runs in exponential time, and
- has access to an NP-oracle

Theorem (CADE '21)

Each optimized compliant anonymization induced by a csf s is **equivalent** to the corresponding canonical compliant anonymization induced by s

Implementation: https://github.com/ de-tu-dresden-inf-lat/abox-repairs-wrt-static-tbox.

Safety for Singleton Policies and Without TBoxes

Dataset $\exists X. A:$ $\exists \emptyset. \{ father(BEN, JERRY), Comedian(JERRY) \}$

Policy \mathcal{P} : {*Comedian* $\sqcap \exists$ *father*.*Comedian*}

No instance of the policy concept w.r.t. the dataset

Safety for Singleton Policies and Without TBoxes

Attacker $\exists Y.\mathcal{B}$ knows: $\exists \emptyset. \{Comedian(BEN)\}$

No instance of the policy concept w.r.t. the attacker's knowledge

Safety for Singleton Policies and Without TBoxes

BEN is an instance of the policy concept w.r.t. the dataset and the attacker's knowledge \Rightarrow the dataset is **compliant with**, but **not safe** for the policy !

Characterization of Safety for Singleton Policies

Characterization of Safety (SAC '21)

 $\exists X. A$ is safe for $\{P\}$ iff for each individual a,

- if $A \in Atoms(\{P\})$, then $A(a) \notin A$
- if r(a, u) ∈ A and ∃r.D ∈ Atoms({P}), then there is no partial homomorphism from D to ∃X.A at u.

Characterization of Safety for Singleton Policies

Characterization of Safety (SAC '21)

 $\exists X. A$ is safe for $\{P\}$ iff for each individual a,

- if $A \in Atoms(\{P\})$, then $A(a) \notin A$
- if r(a, u) ∈ A and ∃r.D ∈ Atoms({P}), then there is no partial homomorphism from D to ∃X.A at u.

Partial Homomorphism

It is like a homomorphism, but the mapping only maps nodes of the syntax tree of D that are between the root and a "cut".

Characterization of Safety for Singleton Policies

Characterization of Safety (SAC '21)

 $\exists X. A$ is safe for $\{P\}$ iff for each individual a,

- if $A \in Atoms(\{P\})$, then $A(a) \notin A$
- if r(a, u) ∈ A and ∃r.D ∈ Atoms({P}), then there is no partial homomorphism from D to ∃X.A at u.

Partial Homomorphism

It is like a homomorphism, but the mapping only maps nodes of the syntax tree of D that are between the root and a "cut".

Complexity of Safety for Singleton Policies (SAC'21)

Safety of a qABox for singleton \mathcal{EL} policies is in P

• • • • • • • • • • • •

Canonical safe anonymizations $\exists Z.C$ of $\exists X.A$ w.r.t. $\{P\}$ covers each $\{P\}$ -safe anonymization of $\exists X.A$.

Canonical safe anonymizations $\exists Z.C$ of $\exists X.A$ w.r.t. $\{P\}$ covers each $\{P\}$ -safe anonymization of $\exists X.A$.

Analogous to the computation of canonical compliant anonymizations, but:

- no saturation, no seed function
- ▶ each variable is of the form $y_{u,\mathcal{K}}$, but \mathcal{K} is not a repair type, it's just a subset of \mathcal{EL} atoms.
- there is an additional mechanism to avoid partial homomorphisms

Canonical safe anonymizations $\exists Z.C$ of $\exists X.A$ w.r.t. $\{P\}$ covers each $\{P\}$ -safe anonymization of $\exists X.A$.

Analogous to the computation of canonical compliant anonymizations, but:

- no saturation, no seed function
- each variable is of the form $y_{u,\mathcal{K}}$, but \mathcal{K} is not a repair type, it's just a subset of \mathcal{EL} atoms.
- there is an additional mechanism to avoid partial homomorphisms

Results of the Computation (SAC '21)

There is only one optimal safe anonymization of $\exists X.A$ w.r.t. $\{P\}$ and computing this can be done in exponential time

Using a similar idea as the computation of optimized compliant anonymizations

Theorem (NEW!)

The optimized safe anonymization of $\exists X. A \text{ w.r.t. } \{P\}$ is **equivalent** to the canonical safe anonymization of $\exists X. A \text{ w.r.t. } \{P\}$

Smaller Optimal Safe Anonymizations

Using a similar idea as the computation of optimized compliant anonymizations

Theorem (NEW!)

The optimized safe anonymization of $\exists X. A \text{ w.r.t. } \{P\}$ is **equivalent** to the canonical safe anonymization of $\exists X. A \text{ w.r.t. } \{P\}$

Smaller Optimal Safe Anonymizations

Using a similar idea as the computation of optimized compliant anonymizations

Theorem (NEW!)

The optimized safe anonymization of $\exists X. A \text{ w.r.t. } \{P\}$ is **equivalent** to the canonical safe anonymization of $\exists X. A \text{ w.r.t. } \{P\}$

Complexity of the Problem

Expressing general policies by singleton policies using TBoxes

- Safety problem for singleton policies is at least as hard as safety for general policies when TBoxes are considered
- The safety problem for general policies w.r.t. static *EL* TBoxes is in coNP.

Our work reviewed results from

- Baader, Kriegel, Nuradiansyah, Peñaloza, Computing Compliant Anonymisations of Quantified ABoxes w.r.t. EL Policies, ISWC '20
- Baader, Kriegel, Nuradiansyah, Peñaloza, Safety of Quantified ABoxes w.r.t. Singleton EL Policies, SAC '21
- Baader, Koopmann, Kriegel, Nuradiansyah, Computing Optimal Repairs of Quantified ABoxes w.r.t. Static EL TBoxes, CADE '21

and presented new results in the topic of safety with and without TBoxes.

Our work reviewed results from

- Baader, Kriegel, Nuradiansyah, Peñaloza, Computing Compliant Anonymisations of Quantified ABoxes w.r.t. EL Policies, ISWC '20
- Baader, Kriegel, Nuradiansyah, Peñaloza, Safety of Quantified ABoxes w.r.t. Singleton EL Policies, SAC '21
- Baader, Koopmann, Kriegel, Nuradiansyah, Computing Optimal Repairs of Quantified ABoxes w.r.t. Static EL TBoxes, CADE '21

and presented new results in the topic of safety with and without TBoxes.

Possible Future Work:

- Safety w.r.t. general policies and/or (cycle-restricted) TBoxes
- Safety w.r.t. a finite set of concept assertions $\{P_1(a_1), \ldots, P_n(a_n)\}$