Computing Compliant Anonymisations of Quantified ABoxes with \mathcal{EL} Policies

Franz Baader¹ Francesco Kriegel¹ Adrian Nuradiansyah¹ Rafael Peñaloza²

> ¹Technische Universität Dresden ²University of Milano-Bicocca

> > November 4th, 2020

1/11

Computing Compliant Anonymisations

ISWC 2020

November 4th, 2020

Dataset:

```
\exists \{x\}. \{Politician(d), Businessman(d), related(d, x), Politician(x), Businessman(x)\}
```

Policy:

```
\{Politician \sqcap Businessman, \exists r. (Politician \sqcap Businessman)\}
```

The individual d is an instance of both concepts w.r.t. the dataset \Rightarrow not compliant!

Question:

How to **anonymise** a dataset **in a minimal way** s.t. all the published information **follows from the original one**, but **privacy** constraints **are satisfied**?

Question:

How to **anonymise** a dataset **in a minimal way** s.t. all the published information **follows from the original one**, but **privacy** constraints **are satisfied**?

Assumption: Our problem will be considered in the context of Description Logic $\overline{(DL)}$ ontologies

Computing Compliant Anonymisations

A quantified ABox $\exists X. A$

 $\exists \{x\}. \{Politician(d), Businessman(d), related(d, x), Politician(x), Businessman(x)\}$ is built over

- a set X of variables, e.g., x, x_1, x_2, \ldots
- a set of individual names, e.g., d, d_1, d_2, \ldots
- a set of concept names, e.g., Politician, Businessman, P, B, ...
- a set of role names, e.g., related, r, s

A quantified ABox $\exists X. A$

 $\exists \{x\}. \{Politician(d), Businessman(d), related(d, x), Politician(x), Businessman(x)\}$ is built over

- a set X of variables, e.g., x, x_1, x_2, \ldots
- a set of individual names, e.g., d, d_1, d_2, \ldots
- a set of concept names, e.g., Politician, Businessman, P, B, ...
- a set of role names, e.g., related, r, s

and \mathcal{A} , in general, consists of:

- **concept** assertions, e.g., *Politician*(*d*), *Businessman*(*x*),...
- role assertions, e.g., related(d, x),...

Note: A traditional DL ABox is a quantified ABox where X is empty.

A quantified ABox $\exists X. A$

 $\exists \{x\}. \{Politician(d), Businessman(d), related(d, x), Politician(x), Businessman(x)\}$

Entailment between Quantified ABoxes

- $\exists X. \mathcal{A} \models \exists Y. \mathcal{B}$ denotes that $\exists X. \mathcal{A}$ entails $\exists Y. \mathcal{B}$
- The entailment problem between quantified ABoxes is NP-complete

A policy $\mathcal P$ is a finite set of \mathcal{EL} concepts

 $\{Politician \sqcap Businessman, \exists r. (Politician \sqcap Businessman)\}$

It has the following components:

• Atoms(\mathcal{P}) = {*Politician*, *Businessman*, $\exists r.(Politician \sqcap Businessman)$ }

• Let
$$P_1$$
 be the first concept in \mathcal{P}
 $Conj(P_1) = \{Politician, Businessman\}$ occurs in the top-level conjunction
of P_1

How the Policy Looks Like

A policy \mathcal{P} is a finite set of \mathcal{EL} concepts

 $\{Politician \sqcap Businessman, \exists r.(Politician \sqcap Businessman)\}$

It has the following components:

- Atoms(P) = {Politician, Businessman, ∃r.(Politician ⊓ Businessman)}
- Let P_1 be the first concept in \mathcal{P} $Conj(P_1) = \{Politician, Businessman\}$ occurs in the top-level conjunction of P_1

Reasoning Problems in \mathcal{EL}

- $C \sqsubseteq_{\emptyset} D$ means that the \mathcal{EL} concept C is subsumed by the \mathcal{EL} concept D
- $\exists X. A \models C(a)$ means that the individual *a* is an **instance** of the \mathcal{EL} concept *C* w.r.t. $\exists X. A$
- Both subsumption and instance relationships can be checked in polynomial time for \mathcal{EL}

A quantified ABox $\exists Y.B$ is an optimal P-compliant anonymisation of $\exists X.A$ iff

- $\exists Y. \mathcal{B} \not\models P(a)$ for all $P \in \mathcal{P}$ and all individuals a (compliance)
- $\exists X. A \models \exists Y. B$ (anonymisation)
- there is no *P*-compliant anonymisation ∃*Z*.*C* of ∃*X*.*A* that stricly entails ∃*Y*.*B* (optimal)

Non-compliance means that there exist an individual *a* and $P \in \mathcal{P}$ s.t.

a is an instance of all atoms in Conj(P) w.r.t. $\exists X.A$.

Non-compliance means that there exist an individual *a* and $P \in \mathcal{P}$ s.t.

a is an instance of all atoms in Conj(P) w.r.t. $\exists X. A$.

 \Rightarrow To make the ABox compliant, choose one atom C from Conj(P) such that a will not be an instance of C in the resulting anonymisation

This idea is represented by the use of a compliance seed function

Non-compliance means that there exist an individual *a* and $P \in \mathcal{P}$ s.t.

a is an instance of all atoms in Conj(P) w.r.t. $\exists X. A$.

 \Rightarrow To make the ABox compliant, choose one atom C from Conj(P) such that a will not be an instance of C in the resulting anonymisation

This idea is represented by the use of a compliance seed function

A compliance seed function (csf) s on $\exists X.\mathcal{A}$ for \mathcal{P} maps each individual name *a* to a subset of Atoms(\mathcal{P}) such that

for each $P \in \mathcal{P}$, there is $C \in s(a)$ such that $C \in \operatorname{Conj}(P)$

 $\exists X. \mathcal{A} = \exists \{x\}. \{P(d), B(d), r(d, x), P(x), B(x)\} \qquad \mathcal{P} = \{P \sqcap B, \exists r. (P \sqcap B)\}$

Mapping d to $s(d) = \{B, \exists r.(P \sqcap B)\}$ yields a csf

$$\exists X. \mathcal{A} = \exists \{x\}. \{P(d), B(d), r(d, x), P(x), B(x)\} \qquad \mathcal{P} = \{P \sqcap B, \exists r. (P \sqcap B)\}$$

 $\exists X. \mathcal{A} = \exists \{x\}. \{P(d), B(d), r(d, x), P(x), B(x)\} \qquad \mathcal{P} = \{P \sqcap B, \exists r. (P \sqcap B)\}$

1. **Copy operation**: select a variable/an individual, copy this object, and duplicate assertions involving it

 $\exists X. \mathcal{A} = \exists \{x\}. \{P(d), B(d), r(d, x), P(x), B(x)\} \qquad \mathcal{P} = \{P \sqcap B, \exists r. (P \sqcap B)\}$

1. Copy operation: select a variable/an individual, copy this object, and duplicate assertions involving it e.g., (select d and make the copy y_d)

 $\exists \{x, y_d\}. \{P(d), B(d), r(d, x), P(x), B(x), \\ P(y_d), B(y_d), r(y_d, x)\}$

 $\exists X. \mathcal{A} = \exists \{x\}. \{P(d), B(d), r(d, x), P(x), B(x)\} \qquad \mathcal{P} = \{P \sqcap B, \exists r. (P \sqcap B)\}$

1. Copy operation: select a variable/an individual, copy this object, and duplicate assertions involving it e.g., (select x and make the copy y_x)

 $\exists \{x, y_d, y_x\} . \{P(d), B(d), r(d, x), P(x), B(x), P(y_d), B(y_d), r(y_d, x), r(d, y_x), r(y_d, y_x), P(y_x), B(y_x)\}$

 $\exists X. \mathcal{A} = \exists \{x\}. \{P(d), B(d), r(d, x), P(x), B(x)\} \qquad \mathcal{P} = \{P \sqcap B, \exists r. (P \sqcap B)\}$

1. **Copy operation**: select a variable/an individual, copy this object, and duplicate assertions involving it

 $\exists \{x, y_d, y_x\} . \{P(d), B(d), r(d, x), P(x), B(x), P(y_d), B(y_d), r(y_d, x), r(d, y_x), r(y_d, y_x), P(y_x), B(y_x)\}$

Note: It suffices to create at most exponentially many copies of each object!

 $\exists X. \mathcal{A} = \exists \{x\}. \{P(d), B(d), r(d, x), P(x), B(x)\} \qquad \mathcal{P} = \{P \sqcap B, \exists r. (P \sqcap B)\}$

1. **Copy operation**: select a variable/an individual, copy this object, and duplicate assertions involving it

 $\exists \{x, y_d, y_x\} . \{P(d), B(d), r(d, x), P(x), B(x), P(y_d), B(y_d), r(y_d, x), r(d, y_x), r(y_d, y_x), P(y_x), B(y_x)\}$

2. **Deletion operation**: The given csf *s* will guide which assertions should be removed from the current anonymisation

Computing a Compliant Anonymisation

From a given csf s, we can compute a compliant anonymisation with the following idea:

 $\exists X. \mathcal{A} = \exists \{x\}. \{P(d), B(d), r(d, x), P(x), B(x)\} \qquad \mathcal{P} = \{P \sqcap B, \exists r. (P \sqcap B)\}$

1. **Copy operation**: select a variable/an individual, copy this object, and duplicate assertions involving it

 $\exists \{x, y_d, y_x\} \cdot \{P(d), B(d), r(d, x), P(x), B(x), P(y_d), B(y_d), r(y_d, x), r(d, y_x), r(y_d, y_x), P(y_x), B(y_x)\}$

Deletion operation: The given csf s will guide which assertions should be removed from the current anonymisation
 Since s(d) = {B,∃r.(P ⊓ B)} ⇒ d is not allowed to be an instance of B

 $\exists \{x, y_d, y_x\} . \{P(d), B(d), r(d, x), P(x), B(x), P(y_d), B(y_d), r(y_d, x), r(d, y_x), r(y_d, y_x), P(y_x), B(y_x)\}$

Computing a Compliant Anonymisation

From a given csf s, we can compute a compliant anonymisation with the following idea:

 $\exists X. \mathcal{A} = \exists \{x\}. \{P(d), B(d), r(d, x), P(x), B(x)\} \qquad \mathcal{P} = \{P \sqcap B, \exists r. (P \sqcap B)\}$

1. **Copy operation**: select a variable/an individual, copy this object, and duplicate assertions involving it

 $\exists \{x, y_d, y_x\} . \{P(d), B(d), r(d, x), P(x), B(x), P(y_d), B(y_d), r(y_d, x), r(d, y_x), r(y_d, y_x), P(y_x), B(y_x)\}$

2. **Deletion operation**: The given csf *s* will guide which assertions should be removed from the current anonymisation

Since $s(d) = \{B, \exists r. (P \sqcap B)\} \Rightarrow r$ -successors of d are not allowed to be an instance of $P \sqcap B$

$$\exists \{x, y_d, y_x\} \cdot \{P(d), \not \in \mathcal{A}, r(d, x), P(x), \not \in \mathcal{A}, p(y_d), B(y_d), r(y_d, x), r(d, y_x), r(y_d, y_x), P(y_x), B(y_x)\}$$

 $\exists X. \mathcal{A} = \exists \{x\}. \{P(d), B(d), r(d, x), P(x), B(x)\} \qquad \mathcal{P} = \{P \sqcap B, \exists r. (P \sqcap B)\}$

The following resulting anonymisation

$$\mathsf{ca}(\exists X.\mathcal{A},s) = \exists Y.\mathcal{B}$$

is a \mathcal{P} -compliant anonymisation of $\exists X. \mathcal{A}$, where \mathcal{B} is

 $\{P(d), r(d, x), P(x), \\ P(y_d), B(y_d), r(y_d, x), r(d, y_x), r(y_d, y_x), B(y_x)\}$ and $Y = \{x, y_d, y_x\}$

In general,

• For every csf s, the induced ABox

 $\mathsf{ca}(\exists X.\mathcal{A},s) = \exists Y.\mathcal{B}$

is entailed by $\exists X. A$ and complies with P

In general,

• For every csf s, the induced ABox

 $\mathsf{ca}(\exists X.\mathcal{A},s) = \exists Y.\mathcal{B}$

is entailed by $\exists X. A$ and complies with P

The set

$$\mathsf{CA}(\exists X.\mathcal{A},\mathcal{P}) = \{\mathsf{ca}(\exists X.\mathcal{A},s) \mid s \text{ is a csf on } \exists X.\mathcal{A} \text{ for } \mathcal{P}\}$$

- contains all optimal \mathcal{P} -compliant anonymisations of $\exists X. \mathcal{A}$
- can be computed in exponential time

(exponentially many csfs!)

In general,

• For every csf *s*, the induced ABox

$$\mathsf{ca}(\exists X.\mathcal{A},s) = \exists Y.\mathcal{B}$$

is entailed by $\exists X. A$ and complies with P

The set

$$\mathsf{CA}(\exists X.\mathcal{A},\mathcal{P}) = \{\mathsf{ca}(\exists X.\mathcal{A},s) \mid s \text{ is a csf on } \exists X.\mathcal{A} \text{ for } \mathcal{P}\}$$

- contains all optimal \mathcal{P} -compliant anonymisations of $\exists X. \mathcal{A}$
- can be computed in exponential time

(exponentially many csfs!)

• To remove the ones that are not optimal, we use an **NP-oracle** to check entailment between compliant anonymisations

In general,

• For every csf *s*, the induced ABox

$$\mathsf{ca}(\exists X.\mathcal{A},s) = \exists Y.\mathcal{B}$$

is entailed by $\exists X. A$ and complies with P

The set

$$\mathsf{CA}(\exists X.\mathcal{A},\mathcal{P}) = \{\mathsf{ca}(\exists X.\mathcal{A},s) \mid s \text{ is a csf on } \exists X.\mathcal{A} \text{ for } \mathcal{P}\}$$

- contains all optimal \mathcal{P} -compliant anonymisations of $\exists X. \mathcal{A}$
- can be computed in exponential time

(exponentially many csfs!)

• To remove the ones that are not optimal, we use an **NP-oracle** to check entailment between compliant anonymisations

Is it possible to get rid of the NP oracle?

1. Using a **partial order** \leq on csfs

We take only the \leq -**minimal csfs** for computing optimal compliant anonymisations

1. Using a **partial order** \leq on csfs

We take only the \leq -**minimal csfs** for computing optimal compliant anonymisations

- 2. Introducing IQ-entailment
 - *EL* concepts are **instance queries (IQ)**
 - Only compare ABoxes based on which instance queries entailed by them

Deciding if $\exists X. A \mid Q$ -entails $\exists Y. B$ can be done in polynomial time

Table of Complexity Results

Settings	Completeness	
standard entailment	all optimal	
	compliant anonymisations	
standard entailment	only optimal compliant	
and \leq on csfs	anonymisations, not all of them	
IQ-entailment	all optimal	
	compliant IQ-anonymisations	

æ

Table of Complexity Results

Settings	Completeness	
standard entailment	all optimal	
	compliant anonymisations	
standard entailment	only optimal compliant	
and \leq on csfs	anonymisations, not all of them	
IQ-entailment	all optimal	
	compliant IQ-anonymisations	

Settings	Combined Complexity	Data Complexity
standard entailment	exponential time	polynomial time
	with an NP-oracle	with an NP-oracle
standard entailment	exponential time	polynomial time
and \leq on csfs		
IQ-entailment	exponential time	polynomial time

æ

Future Work

- Safety for \mathcal{EL} policies A quantified ABox is safe for \mathcal{P} if its combination with other \mathcal{P} -compliant ABoxes is also compliant with \mathcal{P}
- Compliance w.r.t. (general) TBoxes
- Computing optimal compliant anonymisations w.r.t. conjunctive queries

Future Work

- Safety for \mathcal{EL} policies A quantified ABox is safe for \mathcal{P} if its combination with other \mathcal{P} -compliant ABoxes is also compliant with \mathcal{P}
- Compliance w.r.t. (general) TBoxes
- Computing optimal compliant anonymisations w.r.t. conjunctive queries

Our work is based on the following related work:

- F. Baader, F. Kriegel, A. Nuradiansyah, *Privacy-Preserving Ontology Publishing for EL Instance Stores*, JELIA 2019
- B. Cuenca Grau and E. Kostylev, *Logical Foundations of Linked Data Anonymizations*, JAIR, 2019