Computing Compliant Anonymisations of Quantified ABoxes w.r.t. $\mathcal{E L}$ Policies

Franz Baader ${ }^{1} \quad$ Francesco Kriegel ${ }^{1}$ Adrian Nuradiansyah ${ }^{1}$ Rafael Peñaloza²
${ }^{1}$ Technische Universität Dresden ${ }^{2}$ University of Milano-Bicocca

November 4 ${ }^{\text {th }}, 2020$

Funded by

An Illustration of Non-Compliance

An Illustration of Non-Compliance

Dataset:

$\exists\{x\} .\{\operatorname{Politician}(d)$, Businessman(d), related (d, x), Politician (x), Businessman $(x)\}$

Policy:

$\{$ Politician \sqcap Businessman, $\exists r$.(Politician \sqcap Businessman) \}
The individual d is an instance of both concepts w.r.t. the dataset \Rightarrow not compliant!

An Illustration of Non-Compliance

An Illustration of Non-Compliance

An Illustration of Non-Compliance

Question:

How to anonymise a dataset in a minimal way s.t. all the published information follows from the original one, but privacy constraints are satisfied?

An Illustration of Non-Compliance

Question:

How to anonymise a dataset in a minimal way s.t. all the published information follows from the original one, but privacy constraints are satisfied?

Assumption: Our problem will be considered in the context of Description Logic (DL) ontologies

How Our Dataset Looks Like

A quantified ABox $\exists X . \mathcal{A}$
$\exists\{x\} .\{\operatorname{Politician(d),Businessman(d),~related(d,~} x)$, Politician (x), Businessman $(x)\}$ is built over

- a set X of variables, e.g., x, x_{1}, x_{2}, \ldots
- a set of individual names, e.g., d, d_{1}, d_{2}, \ldots
- a set of concept names, e.g., Politician, Businessman, P, B, \ldots
- a set of role names, e.g., related, r, s

How Our Dataset Looks Like

A quantified ABox $\exists X . \mathcal{A}$
$\exists\{x\} .\{\operatorname{Politician(d),Businessman(d),~related(d,~} x)$, Politician (x), Businessman $(x)\}$
is built over

- a set X of variables, e.g., x, x_{1}, x_{2}, \ldots
- a set of individual names, e.g., d, d_{1}, d_{2}, \ldots
- a set of concept names, e.g., Politician, Businessman, P, B, \ldots
- a set of role names, e.g., related, r, s
and \mathcal{A}, in general, consists of:
- concept assertions, e.g., Politician(d), Businessman(x), ...
- role assertions, e.g., related $(d, x), \ldots$

Note: A traditional DL ABox is a quantified ABox where X is empty.

How Our Dataset Looks Like

A quantified ABox $\exists X . \mathcal{A}$
$\exists\{x\} .\{$ Politician(d), Businessman(d), related (d, $x)$, Politician (x), Businessman $(x)\}$

Entailment between Quantified ABoxes

- $\exists X . \mathcal{A} \models \exists Y$. \mathcal{B} denotes that $\exists X$. \mathcal{A} entails $\exists Y$.B
- The entailment problem between quantified ABoxes is NP-complete

How the Policy Looks Like

A policy \mathcal{P} is a finite set of $\mathcal{E L}$ concepts

$\{$ Politician \sqcap Businessman, $\exists r$.(Politician \sqcap Businessman) $\}$
It has the following components:

- Atoms $(\mathcal{P})=\{$ Politician, Businessman, $\exists r$. $($ Politician \sqcap Businessman $)\}$
- Let P_{1} be the first concept in \mathcal{P}
$\operatorname{Conj}\left(P_{1}\right)=\{$ Politician, Businessman $\}$ occurs in the top-level conjunction of P_{1}

How the Policy Looks Like

A policy \mathcal{P} is a finite set of $\mathcal{E L}$ concepts
$\{$ Politician \sqcap Businessman, $\exists r .($ Politician \sqcap Businessman) $\}$
It has the following components:

- Atoms $(\mathcal{P})=\{$ Politician, Businessman, $\exists r .($ Politician \sqcap Businessman $)\}$
- Let P_{1} be the first concept in \mathcal{P}
$\operatorname{Conj}\left(P_{1}\right)=\{$ Politician, Businessman $\}$ occurs in the top-level conjunction of P_{1}

Reasoning Problems in $\mathcal{E} \mathcal{L}$

- $C \sqsubseteq \emptyset$ means that the $\mathcal{E L}$ concept C is subsumed by the $\mathcal{E L}$ concept D
- $\exists X . \mathcal{A} \models C(a)$ means that the individual a is an instance of the $\mathcal{E L}$ concept \subset w.r.t. $\exists X . \mathcal{A}$
- Both subsumption and instance relationships can be checked in polynomial time for $\mathcal{E L}$

Optimal Compliant Anonymisations

A quantified ABox $\exists Y . \mathcal{B}$ is an optimal \mathcal{P}-compliant anonymisation of $\exists X . \mathcal{A}$ iff

- $\exists Y . \mathcal{B} \not \models P(a)$ for all $P \in \mathcal{P}$ and all individuals a (compliance)
- $\exists X . \mathcal{A} \models \exists Y . \mathcal{B}$ (anonymisation)
- there is no \mathcal{P}-compliant anonymisation $\exists Z . \mathcal{C}$ of $\exists X . \mathcal{A}$ that stricly entails $\exists Y . \mathcal{B}$ (optimal)

How to Make an ABox Compliant

Non-compliance means that there exist an individual a and $P \in \mathcal{P}$ s.t. a is an instance of all atoms in $\operatorname{Conj}(P)$ w.r.t. $\exists X . \mathcal{A}$.

How to Make an ABox Compliant

Non-compliance means that there exist an individual a and $P \in \mathcal{P}$ s.t. a is an instance of all atoms in $\operatorname{Conj}(P)$ w.r.t. $\exists X . \mathcal{A}$.
\Rightarrow To make the ABox compliant, choose one atom C from $\operatorname{Conj}(P)$ such that a will not be an instance of C in the resulting anonymisation

This idea is represented by the use of a compliance seed function

How to Make an ABox Compliant

Non-compliance means that there exist an individual a and $P \in \mathcal{P}$ s.t. a is an instance of all atoms in $\operatorname{Conj}(P)$ w.r.t. $\exists X . \mathcal{A}$.
\Rightarrow To make the ABox compliant, choose one atom C from $\operatorname{Conj}(P)$ such that a will not be an instance of C in the resulting anonymisation

This idea is represented by the use of a compliance seed function
A compliance seed function (csf) s on $\exists X . \mathcal{A}$ for \mathcal{P} maps each individual name a to a subset of $\operatorname{Atoms}(\mathcal{P})$ such that for each $P \in \mathcal{P}$, there is $C \in s(a)$ such that $C \in \operatorname{Conj}(P)$
$\exists X \cdot \mathcal{A}=\exists\{x\} \cdot\{P(d), B(d), r(d, x), P(x), B(x)\} \quad \mathcal{P}=\{P \sqcap B, \exists r \cdot(P \sqcap B)\}$
Mapping d to $s(d)=\{B, \exists r .(P \sqcap B)\}$ yields a csf

Computing a Compliant Anonymisation

From a given csf s, we can compute a compliant anonymisation with the following idea:
$\exists X \cdot \mathcal{A}=\exists\{x\} \cdot\{P(d), B(d), r(d, x), P(x), B(x)\} \quad \mathcal{P}=\{P \sqcap B, \exists r \cdot(P \sqcap B)\}$

Computing a Compliant Anonymisation

From a given csf s, we can compute a compliant anonymisation with the following idea:
$\exists X \cdot \mathcal{A}=\exists\{x\} \cdot\{P(d), B(d), r(d, x), P(x), B(x)\} \quad \mathcal{P}=\{P \sqcap B, \exists r .(P \sqcap B)\}$

1. Copy operation: select a variable/an individual, copy this object, and duplicate assertions involving it

Computing a Compliant Anonymisation

From a given csf s, we can compute a compliant anonymisation with the following idea:
$\exists X \cdot \mathcal{A}=\exists\{x\} \cdot\{P(d), B(d), r(d, x), P(x), B(x)\} \quad \mathcal{P}=\{P \sqcap B, \exists r .(P \sqcap B)\}$

1. Copy operation: select a variable/an individual, copy this object, and duplicate assertions involving it e.g., (select d and make the copy y_{d})

$$
\begin{gathered}
\exists\left\{x, y_{d}\right\} \cdot\{P(d), B(d), r(d, x), P(x), B(x), \\
\left.P\left(y_{d}\right), B\left(y_{d}\right), r\left(y_{d}, x\right)\right\}
\end{gathered}
$$

Computing a Compliant Anonymisation

From a given csf s, we can compute a compliant anonymisation with the following idea:
$\exists X \cdot \mathcal{A}=\exists\{x\} \cdot\{P(d), B(d), r(d, x), P(x), B(x)\} \quad \mathcal{P}=\{P \sqcap B, \exists r .(P \sqcap B)\}$

1. Copy operation: select a variable/an individual, copy this object, and duplicate assertions involving it e.g., (select x and make the copy y_{x})

$$
\begin{gathered}
\exists\left\{x, y_{d}, y_{x}\right\} \cdot\{P(d), B(d), r(d, x), P(x), B(x), \\
\left.P\left(y_{d}\right), B\left(y_{d}\right), r\left(y_{d}, x\right), r\left(d, y_{x}\right), r\left(y_{d}, y_{x}\right), P\left(y_{x}\right), B\left(y_{x}\right)\right\}
\end{gathered}
$$

Computing a Compliant Anonymisation

From a given csf s, we can compute a compliant anonymisation with the following idea:
$\exists X \cdot \mathcal{A}=\exists\{x\} \cdot\{P(d), B(d), r(d, x), P(x), B(x)\} \quad \mathcal{P}=\{P \sqcap B, \exists r \cdot(P \sqcap B)\}$

1. Copy operation: select a variable/an individual, copy this object, and duplicate assertions involving it

$$
\begin{gathered}
\exists\left\{x, y_{d}, y_{x}\right\} \cdot\{P(d), B(d), r(d, x), P(x), B(x), \\
\left.P\left(y_{d}\right), B\left(y_{d}\right), r\left(y_{d}, x\right), r\left(d, y_{x}\right), r\left(y_{d}, y_{x}\right), P\left(y_{x}\right), B\left(y_{x}\right)\right\}
\end{gathered}
$$

Note: It suffices to create at most exponentially many copies of each object!

Computing a Compliant Anonymisation

From a given csf s, we can compute a compliant anonymisation with the following idea:
$\exists X \cdot \mathcal{A}=\exists\{x\} \cdot\{P(d), B(d), r(d, x), P(x), B(x)\} \quad \mathcal{P}=\{P \sqcap B, \exists r \cdot(P \sqcap B)\}$

1. Copy operation: select a variable/an individual, copy this object, and duplicate assertions involving it

$$
\begin{gathered}
\exists\left\{x, y_{d}, y_{x}\right\} \cdot\{P(d), B(d), r(d, x), P(x), B(x), \\
\left.P\left(y_{d}\right), B\left(y_{d}\right), r\left(y_{d}, x\right), r\left(d, y_{x}\right), r\left(y_{d}, y_{x}\right), P\left(y_{x}\right), B\left(y_{x}\right)\right\}
\end{gathered}
$$

2. Deletion operation: The given csf s will guide which assertions should be removed from the current anonymisation

Computing a Compliant Anonymisation

From a given csf s, we can compute a compliant anonymisation with the following idea:
$\exists X \cdot \mathcal{A}=\exists\{x\} \cdot\{P(d), B(d), r(d, x), P(x), B(x)\} \quad \mathcal{P}=\{P \sqcap B, \exists r \cdot(P \sqcap B)\}$

1. Copy operation: select a variable/an individual, copy this object, and duplicate assertions involving it

$$
\begin{gathered}
\exists\left\{x, y_{d}, y_{x}\right\} \cdot\{P(d), B(d), r(d, x), P(x), B(x), \\
\left.P\left(y_{d}\right), B\left(y_{d}\right), r\left(y_{d}, x\right), r\left(d, y_{x}\right), r\left(y_{d}, y_{x}\right), P\left(y_{x}\right), B\left(y_{x}\right)\right\}
\end{gathered}
$$

2. Deletion operation: The given csf s will guide which assertions should be removed from the current anonymisation
Since $s(d)=\{B, \exists r .(P \sqcap B)\} \Rightarrow d$ is not allowed to be an instance of B

$$
\begin{gathered}
\exists\left\{x, y_{d}, y_{x}\right\} \cdot\{P(d), B(d), r(d, x), P(x), B(x), \\
\left.P\left(y_{d}\right), B\left(y_{d}\right), r\left(y_{d}, x\right), r\left(d, y_{x}\right), r\left(y_{d}, y_{x}\right), P\left(y_{x}\right), B\left(y_{x}\right)\right\}
\end{gathered}
$$

Computing a Compliant Anonymisation

From a given csf s, we can compute a compliant anonymisation with the following idea:
$\exists X \cdot \mathcal{A}=\exists\{x\} \cdot\{P(d), B(d), r(d, x), P(x), B(x)\} \quad \mathcal{P}=\{P \sqcap B, \exists r \cdot(P \sqcap B)\}$

1. Copy operation: select a variable/an individual, copy this object, and duplicate assertions involving it

$$
\begin{gathered}
\exists\left\{x, y_{d}, y_{x}\right\} \cdot\{P(d), B(d), r(d, x), P(x), B(x), \\
\left.P\left(y_{d}\right), B\left(y_{d}\right), r\left(y_{d}, x\right), r\left(d, y_{x}\right), r\left(y_{d}, y_{x}\right), P\left(y_{x}\right), B\left(y_{x}\right)\right\}
\end{gathered}
$$

2. Deletion operation: The given csf s will guide which assertions should be removed from the current anonymisation
Since $s(d)=\{B, \exists r .(P \sqcap B)\} \Rightarrow r$-successors of d are not allowed to be an instance of $P \sqcap B$

$$
\begin{gathered}
\exists\left\{x, y_{d}, y_{x}\right\} \cdot\{P(d), B \notin, r(d, x), P(x), B(\not), \\
\left.P\left(y_{d}\right), B\left(y_{d}\right), r\left(y_{d}, x\right), r\left(d, y_{x}\right), r\left(y_{d}, y_{x}\right), P\left(y_{x}\right), B\left(y_{x}\right)\right\}
\end{gathered}
$$

Computing a Compliant Anonymisation

From a given csf s, we can compute a compliant anonymisation with the following idea:
$\exists X \cdot \mathcal{A}=\exists\{x\} \cdot\{P(d), B(d), r(d, x), P(x), B(x)\} \quad \mathcal{P}=\{P \sqcap B, \exists r .(P \sqcap B)\}$
The following resulting anonymisation

$$
\mathrm{ca}(\exists X \cdot \mathcal{A}, s)=\exists Y \cdot \mathcal{B}
$$

is a \mathcal{P}-compliant anonymisation of $\exists X . \mathcal{A}$, where \mathcal{B} is

$$
\begin{gathered}
\{P(d), r(d, x), P(x), \\
\left.P\left(y_{d}\right), B\left(y_{d}\right), r\left(y_{d}, x\right), r\left(d, y_{x}\right), r\left(y_{d}, y_{x}\right), B\left(y_{x}\right)\right\}
\end{gathered}
$$

and $Y=\left\{x, y_{d}, y_{x}\right\}$

Soundness, Completeness, Complexity

In general,

- For every csf s, the induced ABox

$$
\mathrm{ca}(\exists X \cdot \mathcal{A}, s)=\exists Y \cdot \mathcal{B}
$$

is entailed by $\exists X . \mathcal{A}$ and complies with \mathcal{P}

Soundness, Completeness, Complexity

In general,

- For every csf s, the induced ABox

$$
\mathrm{ca}(\exists X \cdot \mathcal{A}, s)=\exists Y \cdot \mathcal{B}
$$

is entailed by $\exists X . \mathcal{A}$ and complies with \mathcal{P}

- The set

$$
\mathrm{CA}(\exists X \cdot \mathcal{A}, \mathcal{P})=\{\operatorname{ca}(\exists X \cdot \mathcal{A}, s) \mid s \text { is a csf on } \exists X \cdot \mathcal{A} \text { for } \mathcal{P}\}
$$

- contains all optimal \mathcal{P}-compliant anonymisations of $\exists X . \mathcal{A}$
- can be computed in exponential time
(exponentially many csfs!)

Soundness, Completeness, Complexity

In general,

- For every csf s, the induced $A B o x$

$$
\mathrm{ca}(\exists X \cdot \mathcal{A}, s)=\exists Y \cdot \mathcal{B}
$$

is entailed by $\exists X . \mathcal{A}$ and complies with \mathcal{P}

- The set

$$
\mathrm{CA}(\exists X \cdot \mathcal{A}, \mathcal{P})=\{\operatorname{ca}(\exists X \cdot \mathcal{A}, s) \mid s \text { is a csf on } \exists X \cdot \mathcal{A} \text { for } \mathcal{P}\}
$$

- contains all optimal \mathcal{P}-compliant anonymisations of $\exists X . \mathcal{A}$
- can be computed in exponential time
(exponentially many csfs!)
- To remove the ones that are not optimal, we use an NP-oracle to check entailment between compliant anonymisations

Soundness, Completeness, Complexity

In general,

- For every csf s, the induced ABox

$$
\mathrm{ca}(\exists X \cdot \mathcal{A}, s)=\exists Y \cdot \mathcal{B}
$$

is entailed by $\exists X . \mathcal{A}$ and complies with \mathcal{P}

- The set

$$
\mathrm{CA}(\exists X \cdot \mathcal{A}, \mathcal{P})=\{\operatorname{ca}(\exists X \cdot \mathcal{A}, s) \mid s \text { is a csf on } \exists X \cdot \mathcal{A} \text { for } \mathcal{P}\}
$$

- contains all optimal \mathcal{P}-compliant anonymisations of $\exists X . \mathcal{A}$
- can be computed in exponential time
(exponentially many csfs!)
- To remove the ones that are not optimal, we use an NP-oracle to check entailment between compliant anonymisations

Is it possible to get rid of the NP oracle?

Improving Complexity

1. Using a partial order \leq on csfs

We take only the \leq-minimal csfs for computing optimal compliant anonymisations

Improving Complexity

1. Using a partial order \leq on csfs

We take only the \leq-minimal csfs for computing optimal compliant anonymisations
2. Introducing IQ-entailment

- $\mathcal{E L}$ concepts are instance queries (IQ)
- Only compare ABoxes based on which instance queries entailed by them Deciding if $\exists X$. \mathcal{A} IQ-entails $\exists Y . \mathcal{B}$ can be done in polynomial time

Table of Complexity Results

Settings	Completeness
standard entailment	lll optimal compliant anonymisations
standard entailment and \leq on csfs	only optimal compliant anonymisations, not all of them
IQ-entailment	all optimal compliant IQ-anonymisations

Table of Complexity Results

Settings	Completeness
standard entailment	all optimal compliant anonymisations
standard entailment and \leq on csfs	only optimal compliant anonymisations, not all of them
IQ-entailment	all optimal compliant IQ-anonymisations

Settings	Combined Complexity	Data Complexity
standard entailment	exponential time with an NP-oracle	polynomial time with an NP-oracle
standard entailment and \leq on csfs	exponential time	polynomial time
IQ-entailment	exponential time	polynomial time

Future Work and References

Future Work

- Safety for $\mathcal{E L}$ policies A quantified ABox is safe for \mathcal{P} if its combination with other \mathcal{P}-compliant ABoxes is also compliant with \mathcal{P}
- Compliance w.r.t. (general) TBoxes
- Computing optimal compliant anonymisations w.r.t. conjunctive queries

Future Work and References

Future Work

- Safety for $\mathcal{E L}$ policies A quantified ABox is safe for \mathcal{P} if its combination with other \mathcal{P}-compliant ABoxes is also compliant with \mathcal{P}
- Compliance w.r.t. (general) TBoxes
- Computing optimal compliant anonymisations w.r.t. conjunctive queries

Our work is based on the following related work:

- F. Baader, F. Kriegel, A. Nuradiansyah, Privacy-Preserving Ontology Publishing for $\mathcal{E L}$ Instance Stores, JELIA 2019
- B. Cuenca Grau and E. Kostylev, Logical Foundations of Linked Data Anonymizations, JAIR, 2019

