Mixing Description Logics in Privacy-Preserving Ontology Publishing

Franz Baader Adrian Nuradiansyah

Technische Universität Dresden

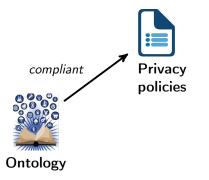
September 25, 2019

Adrian Nuradiansyah

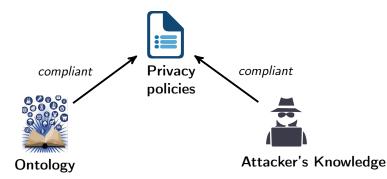
Künstliche Intelligenz 2019

September 25, 2019

1/13

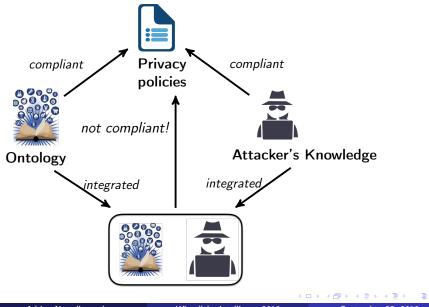


э



September 25, 2019

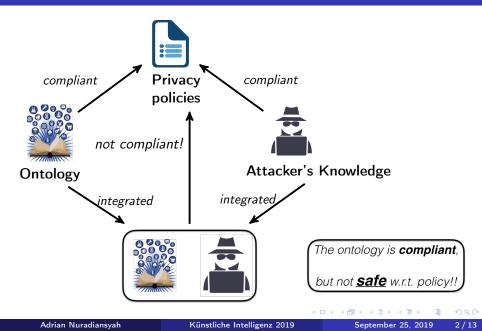
2/13

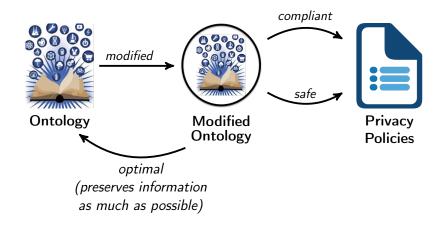


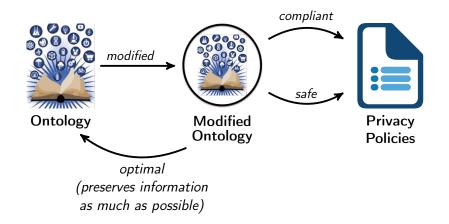
Adrian Nuradiansyah

Künstliche Intelligenz 2019

September 25, 2019 2 / 13







Assumption: Ontologies are formulated in Description Logics (DLs). What are DLs?

Description Logics

- The logical underpinning of Web Ontology Language (OWL)
- Commonly used in medical ontologies
- Decidable fragments of First Order Logics

Description Logics

- The logical underpinning of Web Ontology Language (OWL)
- Commonly used in medical ontologies
- Decidable fragments of First Order Logics
- The basic building blocks are:
 - N_C: set of concept names A: Female, Doctor, Patient, ...
 - N_R: set of role names r: seenBy, suffer, hasSymptom, ...
 - N₁: set of individual names a: LINDA, CANCER

Description Logics

- The logical underpinning of Web Ontology Language (OWL)
- Commonly used in medical ontologies
- Decidable fragments of First Order Logics
- The basic building blocks are:
 - N_C: set of concept names A: Female, Doctor, Patient, ...
 - N_R: set of role names r: seenBy, suffer, hasSymptom, ...
 - N₁: set of individual names a: LINDA, CANCER
- The formal semantics is introduced by means of an interpretation $(\mathcal{I} = \Delta^{\mathcal{I}}, \cdot^{\mathcal{I}})$
 - $\Delta^{\mathcal{I}}$: Non-empty domain elements
 - $A^{\mathcal{I}} \subseteq \Delta^{\mathcal{I}}$ • $r^{\mathcal{I}} \subseteq \Delta^{\mathcal{I}} \times \Delta^{\mathcal{I}}$ • $a^{\mathcal{I}} \in \Delta^{\mathcal{I}}$
- Using N_C, N_R, and N_I as well as necessary constructors, the notion of DL concepts C, D, E are built.

Description Logic Ontologies

- \bullet A DL ontology $\mathfrak O$ consists of a TBox $\mathcal T$ and an ABox $\mathcal A$
- A TBox T is a set of General Concept Inclusions (GCIs) C ⊑ D → hierarchical relationship between concepts
- An ABox A is a set of concept assertions C(a) and role assertions r(a, b) \rightarrow knowledge about individuals

Description Logic Ontologies

- \bullet A DL ontology $\mathfrak O$ consists of a TBox $\mathcal T$ and an ABox $\mathcal A$
- A TBox *T* is a set of General Concept Inclusions (GCIs) *C* ⊆ *D* → hierarchical relationship between concepts
- An ABox A is a set of concept assertions C(a) and role assertions r(a, b) \rightarrow knowledge about individuals
- A DL Instance Store \mathfrak{O}' is a DL ontology without role assertions

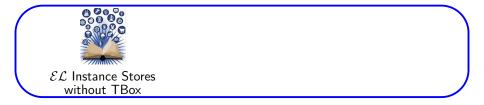
- \bullet A DL ontology $\mathfrak O$ consists of a TBox $\mathcal T$ and an ABox $\mathcal A$
- A TBox T is a set of General Concept Inclusions (GCIs) C ⊑ D → hierarchical relationship between concepts
- An ABox A is a set of concept assertions C(a) and role assertions r(a, b) \rightarrow knowledge about individuals
- A DL Instance Store \mathfrak{O}' is a DL ontology without role assertions
- A main reasoning task in DLs \Rightarrow Deciding subsumption between concepts
- A concept *C* is subsumed by a concept *D*, denoted by $C \sqsubseteq D$, iff $C^{\mathcal{I}} \subseteq D^{\mathcal{I}}$ for all interpretations \mathcal{I} .

- \mathcal{FLE} concepts $C ::= \top (top) | A | C \sqcap C (conjunction) |$ $\exists r.C (existential restriction) | \forall r.C (universal restriction)$
- Semantics of some \mathcal{FLE} concepts:
 - $(\exists r.C)^{\mathcal{I}} = \{d \mid \text{there is } e \in \Delta^{\mathcal{I}} \text{ such that } (d, e) \in r^{\mathcal{I}} \land e \in C^{\mathcal{I}} \}$
 - $(\forall r.C)^{\mathcal{I}} = \{d \mid \text{for all } e \in \Delta^{\mathcal{I}} \text{ if } (d, e) \in r^{\mathcal{I}}, \text{ then } e \in C^{\mathcal{I}}\}$

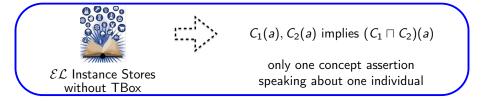
• Fragments of *FLE*:

- the DL \mathcal{EL} (excluding value restrictions)
- the DL \mathcal{FL}_0 (excluding existential restrictions)

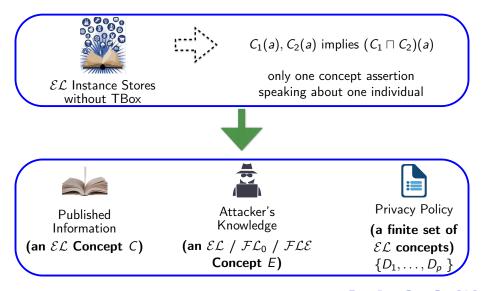
Problem Setting: PPOP for \mathcal{EL} Instance Stores



Problem Setting: PPOP for \mathcal{EL} Instance Stores



Problem Setting: PPOP for \mathcal{EL} Instance Stores



7/13

- Given an \mathcal{EL} concept C (published information) and an \mathcal{EL} policy \mathcal{P}
- Given a quantifier symbol $Q \in \{\exists, \forall, \forall \exists\}$ and a DL $\mathcal{L}_{\exists} = \mathcal{EL}, \mathcal{L}_{\forall} = \mathcal{FL}_{0}, \mathcal{L}_{\forall \exists} = \mathcal{FLE}$

- Given an \mathcal{EL} concept C (published information) and an \mathcal{EL} policy \mathcal{P}
- Given a quantifier symbol $Q \in \{\exists, \forall, \forall \exists\}$ and a DL $\mathcal{L}_{\exists} = \mathcal{EL}, \mathcal{L}_{\forall} = \mathcal{FL}_{0}, \mathcal{L}_{\forall \exists} = \mathcal{FLE}$

Compliance, Safety, Optimality

1. the \mathcal{L}_Q concept C' is compliant with \mathcal{P} if $C' \not\sqsubseteq D_i$ for all $i = 1, \ldots, p$,

- Given an \mathcal{EL} concept C (published information) and an \mathcal{EL} policy \mathcal{P}
- Given a quantifier symbol $Q \in \{\exists, \forall, \forall \exists\}$ and a DL $\mathcal{L}_{\exists} = \mathcal{EL}, \mathcal{L}_{\forall} = \mathcal{FL}_{0}, \mathcal{L}_{\forall \exists} = \mathcal{FLE}$

Compliance, Safety, Optimality

- 1. the \mathcal{L}_Q concept C' is compliant with \mathcal{P} if $C' \not\sqsubseteq D_i$ for all $i = 1, \ldots, p$,
- 2. the \mathcal{EL} concept C' is
 - Q-safe for P if for all L_Q concepts E (attackers' knowledge) that are compliant with P, C' □ E is also compliant with P,

- Given an \mathcal{EL} concept C (published information) and an \mathcal{EL} policy \mathcal{P}
- Given a quantifier symbol $Q \in \{\exists, \forall, \forall \exists\}$ and a DL $\mathcal{L}_{\exists} = \mathcal{EL}, \mathcal{L}_{\forall} = \mathcal{FL}_{0}, \mathcal{L}_{\forall \exists} = \mathcal{FLE}$

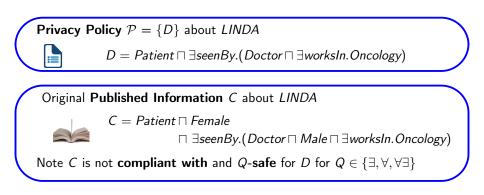
Compliance, Safety, Optimality

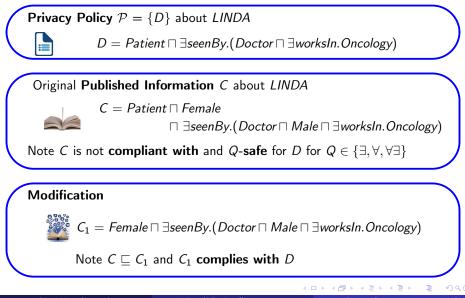
- 1. the \mathcal{L}_Q concept C' is compliant with \mathcal{P} if $C' \not\sqsubseteq D_i$ for all $i = 1, \ldots, p$,
- 2. the \mathcal{EL} concept C' is
 - Q-safe for *P* if for all *L_Q* concepts *E* (attackers' knowledge) that are compliant with *P*, *C*' ⊓ *E* is also compliant with *P*,
 - a *Q*-safe generalization of *C* for \mathcal{P} if $C \sqsubseteq C'$ and C' is *Q*-safe for \mathcal{P} ,

- Given an \mathcal{EL} concept C (published information) and an \mathcal{EL} policy \mathcal{P}
- Given a quantifier symbol $Q \in \{\exists, \forall, \forall \exists\}$ and a DL $\mathcal{L}_{\exists} = \mathcal{EL}, \mathcal{L}_{\forall} = \mathcal{FL}_{0}, \mathcal{L}_{\forall \exists} = \mathcal{FLE}$

Compliance, Safety, Optimality

- 1. the \mathcal{L}_Q concept C' is compliant with \mathcal{P} if $C' \not\sqsubseteq D_i$ for all $i = 1, \ldots, p$,
- 2. the \mathcal{EL} concept C' is
 - Q-safe for *P* if for all *L_Q* concepts *E* (attackers' knowledge) that are compliant with *P*, *C*' ⊓ *E* is also compliant with *P*,
 - a *Q*-safe generalization of *C* for \mathcal{P} if $C \sqsubseteq C'$ and C' is *Q*-safe for \mathcal{P} ,
 - an **optimal** Q-safe generalization of C for \mathcal{P} if
 - C' is a Q-safe generalization of C for \mathcal{P} and
 - there is no Q-safe generalization C'' of C for \mathcal{P} s.t. $C'' \sqsubset C'$.

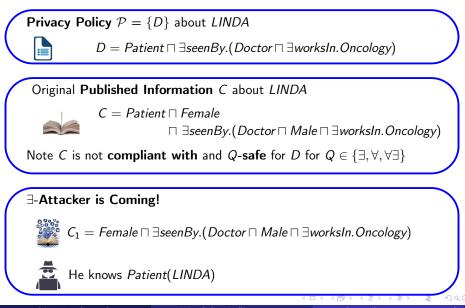




Adrian Nuradiansyah

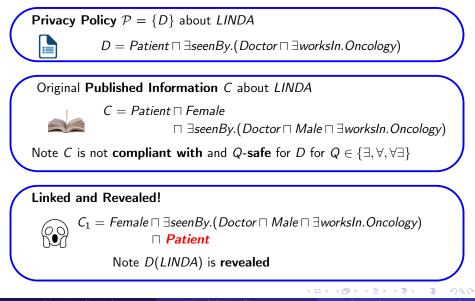
Künstliche Intelligenz 2019

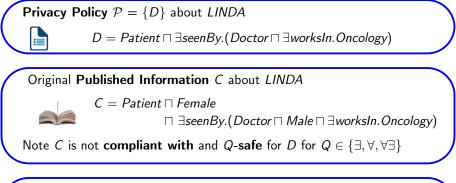
September 25, 2019 9 / 13



Adrian Nuradiansyah

September 25, 2019 9 / 13

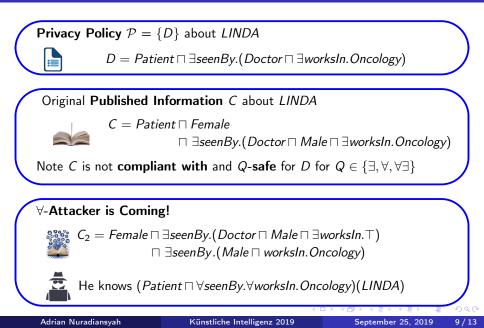


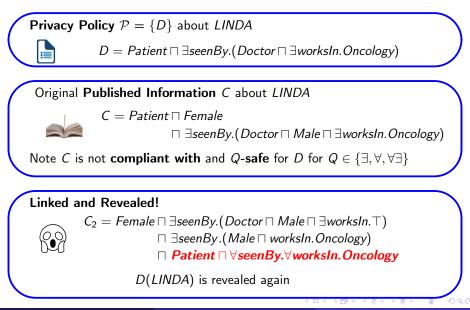


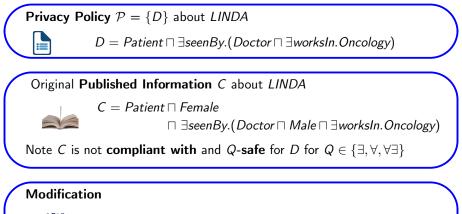
Modification

 $C_2 = Female \sqcap \exists seenBy.(Doctor \sqcap Male \sqcap \exists worksIn. \top) \\ \sqcap \exists seenBy.(Male \sqcap worksIn. Oncology)$

 C_2 is the (unique) **optimal** \exists -safe generalization for D







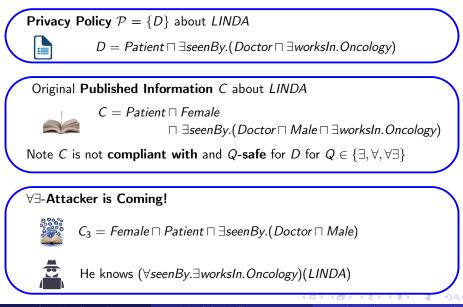
$$C_3 = Female \sqcap Patient \sqcap \exists seenBy.(Doctor \sqcap Male)$$

Note C_3 is an **optimal** \forall -safe generalization for D

Adrian Nuradiansyah

Künstliche Intelligenz 2019

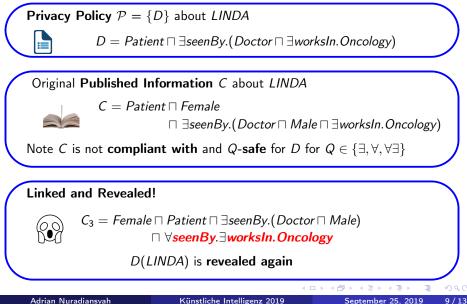
September 25, 2019 9 / 13



Adrian Nuradiansyah

Künstliche Intelligenz 2019

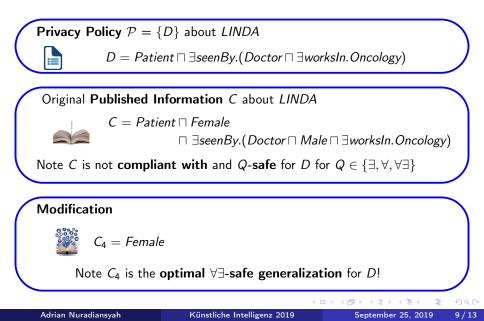
September 25, 2019 9 / 13



Adrian Nuradiansyah

Künstliche Intelligenz 2019

September 25, 2019



Our Decision and Computational Problems

Given $Q \in \{\forall, \forall \exists\}$, a published information (\mathcal{EL} concept) C, an \mathcal{EL} policy \mathcal{P} .

Decision Problems

- Q-Safety: Is an EL concept C₁ Q-safe for a policy P?
- Q-Optimality: Is an \mathcal{EL} concept C_1 an optimal Q-safe generalization of C for \mathcal{P} ?

Computational Problem

Find an \mathcal{EL} concept C_1 s.t C_1 is an optimal Q-safe generalization of C for \mathcal{P} !

compliance, ∃-**safety** and ∃-**optimality** have been investigated by (Baader, Kriegel, Nuradiansyah in JELIA 2019)

10/13

< □ > < 同 > < 回 > < 回 > < 回 >

Decision Problems	$Q = \exists$	$Q=\forall$	$\mathbf{Q} = \forall \exists$
Q-safety	PTime*	PTime	PTime
Q-optimality	coNP* and Dual-hard*	coNP and Dual-hard	PTime

Table: Complexity results of decision problems on PPOP for \mathcal{EL} instance stores

Computational Problems	$Q = \exists$	$\mathbf{Q}=\forall$	$\mathbf{Q} = \forall \exists$
Optimal <i>Q</i> -safe	ExpTime*	ExpTime	PTime
Generalization(s)	Lxprime	LxpTime	FIIIIe

Table: Complexity of computing one/all optimal Q-safe generalizations for ${\mathcal P}$

* investigated by (Baader, Kriegel, and Nuradiansyah in JELIA 2019)

Adrian Nuradiansyah

3

Decision Problems	$\mathbf{Q} = \forall$	$Q=\forall$	$\mathbf{Q} = \forall \exists$
Q-safety	PTime*	PTime	PTime
Q-optimality	coNP* and Dual-hard*	coNP and Dual-hard	PTime

Computational Problems	Q = ∃	$Q = \forall$	$\mathbf{Q} = \forall \exists$
Optimal <i>Q</i> -safe Generalization(s)	ExpTime*	ExpTime	PTime

Reasons:

- Given an *EL* concept *D*, con(*D*) is the set of all atoms (*A* or ∃*r*.*D'*) in the top-level conjunction of *D*.
- Computing all minimal hitting sets of con(D₁),..., con(D_p), where P = {D₁,..., D_p}.
- The computation is performed recursively on the **role depth** of the published information *C*

Adrian Nuradiansyah

Decision Problems	$Q = \exists$	$\mathbf{Q}=\forall$	$\mathbf{Q} = \forall \exists$
Q-safety	PTime*	PTime	PTime
Q-optimality	coNP* and Dual-hard*	coNP and Dual-hard	PTime

Computational Problems	Q = ∃	$\mathbf{Q}=\forall$	$\mathbf{Q} = \forall \exists$
Optimal <i>Q</i> -safe Generalization(s)	ExpTime*	ExpTime	PTime

Reasons:

- Check if C_1 is an \forall -safe generalization of C for \mathcal{P}
- Check if there is C_2 s.t. $C \sqsubseteq C_2 \sqsubset C_1$, where C_2 is a not \forall -safe generalization of C for \mathcal{P}
- There is an NP algorithm to guess such concept C₂ (Baader, Kriegel, Nuradiansyah in JELIA 2019)

11/13

Decision Problems	$Q = \exists$	$\mathbf{Q}=\forall$	$\mathbf{Q} = \forall \exists$
Q-safety	PTime*	PTime	PTime
Q-optimality	coNP* and Dual-hard*	coNP and Dual-hard	PTime

Computational Problems	Q = ∃	$\mathbf{Q}= \forall$	$\mathbf{Q} = \forall \exists$
Optimal <i>Q</i> -safe Generalization(s)	ExpTime*	ExpTime	PTime

Reasons:

- ∀-Optimality is coNP-hard? Don't know yet
- There is a polynomial reduction of Dual problem to ∀-optimality

Given two families of inclusion-comparable sets \mathcal{G} and \mathcal{H} , Dual asks whether \mathcal{H} consists exactly of the minimal hitting sets of \mathcal{G} .

11/13

Decision Problems	$Q = \exists$		$Q=\forall$	$\mathbf{Q} = \forall \exists$
Q-safety		PTime*	PTime	PTime
Q-optimality	coNP* and Dual-hard*		coNP and Dual-hard	PTime
Computationa Problems	I	Q = ∃	$\mathbf{Q} = \forall$	$\mathbf{Q} = \forall \exists$
Optimal <i>Q</i> -safe Generalization(ExpTime*	ExpTime	PTime

Reasons:

$\forall \exists$ -Safety and $\forall \exists$ -Optimality

C is $\forall \exists$ -safe for \mathcal{P} iff

- 1. $A \notin \operatorname{con}(C)$ for all concept names $A \in \operatorname{con}(D_1) \cup \ldots \cup \operatorname{con}(D_p)$, and
- 2. for all existential restrictions $\exists r.D' \in \operatorname{con}(D_1) \cup \ldots \cup \operatorname{con}(D_p)$, there is no concept of the form $\exists r.E \in \operatorname{con}(C)$

Adrian Nuradiansyah

Künstliche Intelligenz 2019

Conclusions:

- Investigate PPOP for \mathcal{EL} Instance Stores
- \bullet Considering attacker's knowledge to be given by an \mathcal{FL}_0 or \mathcal{FLE} concept
- Deciding *Q*-safety and *Q*-optimality, where $Q \in \{\forall, \forall \exists\}$.
- \bullet Computing optimal Q-safe generalizations of \mathcal{EL} concepts for $\mathcal P$

Note: the stronger the attacker's knowledge, the more radical we need to change the concept to make it safe

Conclusions:

- Investigate PPOP for \mathcal{EL} Instance Stores
- \bullet Considering attacker's knowledge to be given by an \mathcal{FL}_0 or \mathcal{FLE} concept
- Deciding *Q*-safety and *Q*-optimality, where $Q \in \{\forall, \forall \exists\}$.
- Computing optimal Q-safe generalizations of \mathcal{EL} concepts for \mathcal{P}

Note: the stronger the attacker's knowledge, the more radical we need to change the concept to make it safe

Future Work:

- PPOP in *EL* ABoxes, including role assertions (Ongoing!)
- PPOP in \mathcal{EL} Instance Stores w.r.t. (General) TBoxes
- Playing with more different or expressive DLs

Thank You

Adrian Nuradiansyah

Künstliche Intelligenz 2019

September 25, 2019

포 문 문

13/13