Making Repairs in Description Logics More Gentle

Franz Baader ¹ Francesco Kriegel ¹ Adrian Nuradiansyah ¹ Rafael Peñaloza ²

¹TU Dresden

²Free University of Bolzano

November 1, 2018

Motivation

- Reasoning in large ontologies \mathfrak{O} may provide unintended consequences $\alpha \Rightarrow \mathfrak{O}$ contains errors.
- In privacy setting, some (correct) consequences α should be hidden from attackers.
- If $\mathfrak{O} \models \alpha$ and α is unwanted, then let us repair \mathfrak{O} to \mathfrak{O}' such that $\mathfrak{O}' \not\models \alpha$

Motivation

- Reasoning in large ontologies \mathfrak{O} may provide unintended consequences $\alpha \Rightarrow \mathfrak{O}$ contains errors.
- In privacy setting, some (correct) consequences α should be hidden from attackers.
- If $\mathfrak{O} \models \alpha$ and α is unwanted, then let us repair \mathfrak{O} to \mathfrak{O}' such that $\mathfrak{O}' \not\models \alpha$

What people already did:

In (Schlobach et al. 2003), (Kalyanpur et al. 2007), (Meyer et al. 2006), etc

- Understand the reasons why $\mathfrak{O} \models \alpha \Rightarrow$ Justifications.
- Using those reasons and deleting a minimal number of axioms to repair \mathfrak{O} .

- Reasoning in large ontologies \mathfrak{O} may provide unintended consequences $\alpha \Rightarrow \mathfrak{O}$ contains errors.
- In privacy setting, some (correct) consequences α should be hidden from attackers.
- If $\mathfrak{O} \models \alpha$ and α is unwanted, then let us repair \mathfrak{O} to \mathfrak{O}' such that $\mathfrak{O}' \not\models \alpha$

What people already did:

In (Schlobach et al. 2003), (Kalyanpur et al. 2007), (Meyer et al. 2006), etc

- Understand the reasons why $\mathfrak{O} \models \alpha \Rightarrow$ Justifications.
- Using those reasons and deleting a minimal number of axioms to repair \mathfrak{O} .

What we want to do:

- Instead of removing axioms, we propose axiom weakenings.
- Addressed in the context of **Description Logic Ontologies**

- \mathcal{EL} -concepts $C, D ::= \top |A| C \sqcap D | \exists r.C.$
- Inexpressive, but reasoning can be done in **polynomial time**.
- Mainly used in medical ontologies, e.g., SNOMED, GeneOntology, etc.

- \mathcal{EL} -concepts $C, D ::= \top |A| C \sqcap D | \exists r.C.$
- Inexpressive, but reasoning can be done in **polynomial time**.
- Mainly used in medical ontologies, e.g., SNOMED, GeneOntology, etc.
- An ontology \mathfrak{O} consists of **TBox** \mathcal{T} and **ABox** \mathcal{A} .
- A TBox *T* is a finite set of General Concept Inclusions (GCIs) *C* ⊑ *D* → Background knowledge
- An ABox A is a finite set of concept assertions C(a) and role assertions r(a, b)
 → Knowledge about individuals

Assumptions:

- $\mathfrak{O} = \mathfrak{O}_s \cup \mathfrak{O}_r$, where \mathfrak{O}_s is a static ontology and \mathfrak{O}_r is a refutable ontology.
- Only the refutable part may be changed and $\mathfrak{O}_s \not\models \alpha$

Image: Image:

э

Assumptions:

- $\mathfrak{O} = \mathfrak{O}_s \cup \mathfrak{O}_r$, where \mathfrak{O}_s is a static ontology and \mathfrak{O}_r is a refutable ontology.
- Only the refutable part may be changed and $\mathfrak{O}_s \not\models \alpha$

Ontology Repair

Let Con(𝔅) := {α | 𝔅 ⊨ α} be the set of all consequences of 𝔅.

Assumptions:

- $\mathfrak{O} = \mathfrak{O}_s \cup \mathfrak{O}_r$, where \mathfrak{O}_s is a static ontology and \mathfrak{O}_r is a refutable ontology.
- Only the refutable part may be changed and $\mathfrak{O}_{s} \not\models \alpha$

Ontology Repair

- Let $Con(\mathfrak{O}) := \{ \alpha \mid \mathfrak{O} \models \alpha \}$ be the set of all consequences of \mathfrak{O} .
- Let $\mathfrak{O} \models \alpha$ and $\mathfrak{O}_s \not\models \alpha$. The ontology \mathfrak{O}' is a repair of \mathfrak{O} w.r.t. α if

 $Con(\mathfrak{O}_s \cup \mathfrak{O}') \subseteq Con(\mathfrak{O}) \setminus \{\alpha\}$

Assumptions:

- $\mathfrak{O} = \mathfrak{O}_s \cup \mathfrak{O}_r$, where \mathfrak{O}_s is a static ontology and \mathfrak{O}_r is a refutable ontology.
- Only the refutable part may be changed and $\mathfrak{O}_s \not\models \alpha$

Ontology Repair

- Let $Con(\mathfrak{O}) := \{ \alpha \mid \mathfrak{O} \models \alpha \}$ be the set of all consequences of \mathfrak{O} .
- Let $\mathfrak{O} \models \alpha$ and $\mathfrak{O}_s \not\models \alpha$. The ontology \mathfrak{O}' is a repair of \mathfrak{O} w.r.t. α if

 $Con(\mathfrak{O}_{s} \cup \mathfrak{O}') \subseteq Con(\mathfrak{O}) \setminus \{\alpha\}$

 Optimal repair D' of D w.r.t. α: No Repair D" of D w.r.t. α having more consequences than D'.

Assumptions:

- $\mathfrak{O} = \mathfrak{O}_s \cup \mathfrak{O}_r$, where \mathfrak{O}_s is a static ontology and \mathfrak{O}_r is a refutable ontology.
- Only the refutable part may be changed and $\mathfrak{O}_s \not\models \alpha$

Ontology Repair

- Let $Con(\mathfrak{O}) := \{ \alpha \mid \mathfrak{O} \models \alpha \}$ be the set of all consequences of \mathfrak{O} .
- Let $\mathfrak{O} \models \alpha$ and $\mathfrak{O}_s \not\models \alpha$. The ontology \mathfrak{O}' is a repair of \mathfrak{O} w.r.t. α if

 $Con(\mathfrak{O}_{s} \cup \mathfrak{O}') \subseteq Con(\mathfrak{O}) \setminus \{\alpha\}$

 Optimal repair D' of D w.r.t. α: No Repair D" of D w.r.t. α having more consequences than D'.

Theorem (Existence of Optimal Repairs)

Optimal repairs need not exist!

Adrian	Nuradiansya	h

Assumptions:

- $\mathfrak{O} = \mathfrak{O}_s \cup \mathfrak{O}_r$, where \mathfrak{O}_s is a static ontology and \mathfrak{O}_r is a refutable ontology.
- Only the refutable part may be changed and $\mathfrak{O}_{s} \not\models \alpha$

Ontology Repair

- Let $Con(\mathfrak{O}) := \{ \alpha \mid \mathfrak{O} \models \alpha \}$ be the set of all consequences of \mathfrak{O} .
- Let $\mathfrak{O} \models \alpha$ and $\mathfrak{O}_s \not\models \alpha$. The ontology \mathfrak{O}' is a repair of \mathfrak{O} w.r.t. α if

 $Con(\mathfrak{O}_s \cup \mathfrak{O}') \subseteq Con(\mathfrak{O}) \setminus \{\alpha\}$

 Optimal repair D' of D w.r.t. α: No Repair D" of D w.r.t. α having more consequences than D'.

Theorem (Existence of Optimal Repairs)

Optimal repairs need not exist!

Consider: $\mathcal{T} := \{ A \sqsubseteq \exists r.A, \exists r.A \sqsubseteq A \} \quad \mathcal{A} := \{ A(a) \} \quad \alpha = A(a)$

If $\mathfrak{O}_r := \mathcal{A}$, then an optimal repair must contain $((\exists r.)^n \top)(a)$ for infinitely many n

- The repair \mathfrak{O}' is a classical repair of \mathfrak{O} w.r.t. α if $\mathfrak{O}' \subset \mathfrak{O}_r$.
- Optimal classical repair D' of D w.r.t. α: No classical repair D" having more axioms than D'.

- The repair \mathfrak{O}' is a classical repair of \mathfrak{O} w.r.t. α if $\mathfrak{O}' \subset \mathfrak{O}_r$.
- Optimal classical repair D' of D w.r.t. α: No classical repair D" having more axioms than D'.
- Optimal classical repairs always exist → Justification and Hitting Set. (Reiter, 1987)

- The repair \mathfrak{O}' is a classical repair of \mathfrak{O} w.r.t. α if $\mathfrak{O}' \subset \mathfrak{O}_r$.
- Optimal classical repair D' of D w.r.t. α: No classical repair D" having more axioms than D'.
- Optimal classical repairs always exist → Justification and Hitting Set. (Reiter, 1987)
- Let $\mathfrak{O} \models \alpha$. A justification J of \mathfrak{O} w.r.t. α is a minimal subset of \mathfrak{O}_r s.t. $\mathfrak{O}_s \cup J \models \alpha$.
- Let J₁,..., J_k be the justifications of 𝔅 w.r.t. α.
 A hitting set ℋ of J₁,..., J_k is a set of axioms such that ℋ ∩ J_i ≠ ∅

- The repair \mathfrak{O}' is a classical repair of \mathfrak{O} w.r.t. α if $\mathfrak{O}' \subset \mathfrak{O}_r$.
- Optimal classical repair D' of D w.r.t. α: No classical repair D" having more axioms than D'.
- Optimal classical repairs always exist → Justification and Hitting Set. (Reiter, 1987)
- Let $\mathfrak{O} \models \alpha$. A justification J of \mathfrak{O} w.r.t. α is a minimal subset of \mathfrak{O}_r s.t. $\mathfrak{O}_s \cup J \models \alpha$.
- Let J₁,..., J_k be the justifications of D w.r.t. α.
 A hitting set H of J₁,..., J_k is a set of axioms such that H ∩ J_i ≠ Ø
- A hitting set \mathcal{H}_{min} is minimal if there is no \mathcal{H}' of J_1, \ldots, J_k such that $\mathcal{H}' \subset \mathcal{H}_{min}$.

Optimal Classical Repair

- The repair \mathfrak{O}' is a classical repair of \mathfrak{O} w.r.t. α if $\mathfrak{O}' \subset \mathfrak{O}_r$.
- Optimal classical repair D' of D w.r.t. α: No classical repair D" having more axioms than D'.
- Optimal classical repairs always exist → Justification and Hitting Set. (Reiter, 1987)
- Let $\mathfrak{O} \models \alpha$. A justification J of \mathfrak{O} w.r.t. α is a minimal subset of \mathfrak{O}_r s.t. $\mathfrak{O}_s \cup J \models \alpha$.
- Let J₁,..., J_k be the justifications of 𝔅 w.r.t. α.
 A hitting set ℋ of J₁,..., J_k is a set of axioms such that ℋ ∩ J_i ≠ ∅
- A hitting set \mathcal{H}_{min} is minimal if there is no \mathcal{H}' of J_1, \ldots, J_k such that $\mathcal{H}' \subset \mathcal{H}_{min}$.
- $\mathfrak{O}' := \mathfrak{O}_r \setminus \mathcal{H}_{min}$ is an optimal classical repair of \mathfrak{O} w.r.t. α such that

 $\mathfrak{O}_{s} \cup \mathfrak{O}' \not\models \alpha$

イロト イポト イヨト イヨト

- Obtaining Classical Repairs \rightarrow removing axioms from \mathfrak{O} .
- Instead, we want to weaken axioms in \mathcal{H}_{min} !
- Given axioms β, γ , an axiom γ is weaker than β if $Con(\{\gamma\}) \subset Con(\{\beta\})$

- Obtaining Classical Repairs \rightarrow removing axioms from \mathfrak{O} .
- Instead, we want to weaken axioms in \mathcal{H}_{min} !
- Given axioms β, γ , an axiom γ is weaker than β if $Con(\{\gamma\}) \subset Con(\{\beta\})$

- $\mathfrak{O}_s := \{\exists owns.(GermanCar \sqcap Diesel) \sqsubseteq \exists gets.Compensations\}$
- $\mathfrak{O}_r := \{ GermanTaxiDriver \sqsubseteq \exists owns.(GermanCar \sqcap Diesel). \}$
- Every German taxi driver gets compensation w.r.t. $\mathfrak{O}_s \cup \mathfrak{O}_r$.

- Obtaining Classical Repairs \rightarrow removing axioms from \mathfrak{O} .
- Instead, we want to weaken axioms in \mathcal{H}_{min} !
- Given axioms β, γ , an axiom γ is weaker than β if $Con(\{\gamma\}) \subset Con(\{\beta\})$

- $\mathfrak{O}_s := \{\exists owns.(GermanCar \sqcap Diesel) \sqsubseteq \exists gets.Compensations\}$
- $\mathfrak{O}_r := \{GermanTaxiDriver \sqsubseteq \exists owns.(GermanCar \sqcap Diesel).\}$
- Every German taxi driver gets compensation w.r.t. $\mathfrak{O}_s \cup \mathfrak{O}_r$.
- Classical: Removes $\beta \in \mathfrak{O}_r$. Removes the correct consequence: *GermanTaxiDriver* $\sqsubseteq \exists owns.GermanCar$.

- Obtaining Classical Repairs \rightarrow removing axioms from \mathfrak{O} .
- Instead, we want to weaken axioms in \mathcal{H}_{min} !
- Given axioms β, γ , an axiom γ is weaker than β if $Con(\{\gamma\}) \subset Con(\{\beta\})$

- $\mathfrak{O}_s := \{\exists owns.(GermanCar \sqcap Diesel) \sqsubseteq \exists gets.Compensations\}$
- $\mathfrak{O}_r := \{GermanTaxiDriver \sqsubseteq \exists owns.(GermanCar \sqcap Diesel).\}$
- Every German taxi driver gets compensation w.r.t. $\mathfrak{O}_s \cup \mathfrak{O}_r$.
- Classical: Removes $\beta \in \mathfrak{O}_r$. Removes the correct consequence: *GermanTaxiDriver* $\sqsubseteq \exists owns.GermanCar$.
- Gentle: Weaken β to GermanTaxiDriver ⊑ ∃owns.GermanCar.
 But, this consequence GermanTaxiDriver ⊑ ∃owns.Diesel is also gone.

- Obtaining Classical Repairs \rightarrow removing axioms from \mathfrak{O} .
- Instead, we want to weaken axioms in \mathcal{H}_{min} !
- Given axioms β, γ , an axiom γ is weaker than β if $Con(\{\gamma\}) \subset Con(\{\beta\})$

- $\mathfrak{O}_s := \{\exists owns.(GermanCar \sqcap Diesel) \sqsubseteq \exists gets.Compensations\}$
- $\mathfrak{O}_r := \{GermanTaxiDriver \sqsubseteq \exists owns.(GermanCar \sqcap Diesel).\}$
- Every German taxi driver gets compensation w.r.t. $\mathfrak{O}_s \cup \mathfrak{O}_r$.
- Classical: Removes $\beta \in \mathfrak{O}_r$. Removes the correct consequence: *GermanTaxiDriver* $\sqsubseteq \exists owns.GermanCar$.
- Gentle: Weaken β to GermanTaxiDriver ⊑ ∃owns.GermanCar.
 But, this consequence GermanTaxiDriver ⊑ ∃owns.Diesel is also gone.
- More gentle: Weaken β to GermanTaxiDriver ⊑ ∃owns.GermanCar □ ∃owns.Diesel

• In (Horridge et.al., 2008) & (Du et.al., 2014),

- $\bullet\,$ First, specific structural transformations are applied to axioms in $\mathfrak O$
- Then, repair this modified ontology using classical repairs
- $\bullet\,$ It might blow up the size of $\mathfrak O$ before repairing

In (Horridge et.al., 2008) & (Du et.al., 2014),

- $\bullet\,$ First, specific structural transformations are applied to axioms in $\mathfrak O$
- Then, repair this modified ontology using classical repairs
- $\bullet\,$ It might blow up the size of $\mathfrak O$ before repairing

In (Lam et.al., 2008)

- Using tracing tableau technique from (Baader & Hollunder, 1995)
- $\bullet\,$ To identify which parts of the axioms involved in deriving α
- Their approach does not always yield a repair

For each $\beta \in \mathcal{H}_{\textit{min}}$ and all J_1, \ldots, J_k containing β ,

For each $eta \in \mathcal{H}_{\textit{min}}$ and all J_1, \ldots, J_k containing eta ,

replace β with exactly one $\gamma,$ where γ is weaker than β such that

For each $eta \in \mathcal{H}_{\textit{min}}$ and all J_1, \ldots, J_k containing eta ,

replace β with exactly one $\gamma,$ where γ is weaker than β such that

$$\mathfrak{O}_s \cup (J_i \setminus \{\beta\}) \cup \{\gamma\} \not\models \alpha \text{ for } i = 1, \dots, k.$$

$$(1)$$

For each $eta \in \mathcal{H}_{\textit{min}}$ and all J_1, \ldots, J_k containing eta ,

replace β with exactly one $\gamma,$ where γ is weaker than β such that

$$\mathfrak{O}_s \cup (J_i \setminus \{\beta\}) \cup \{\gamma\} \not\models \alpha \text{ for } i = 1, \dots, k.$$
(1)

Construct \mathfrak{O}' obtained from \mathfrak{O}_r by replacing each $\beta \in \mathcal{H}_{min}$ with an appropriate weaker γ satisfying (1).

For each $eta \in \mathcal{H}_{\textit{min}}$ and all J_1, \ldots, J_k containing eta ,

replace β with exactly one $\gamma,$ where γ is weaker than β such that

$$\mathfrak{O}_s \cup (\mathcal{J}_i \setminus \{\beta\}) \cup \{\gamma\} \not\models \alpha \text{ for } i = 1, \dots, k.$$
(1)

Construct \mathfrak{O}' obtained from \mathfrak{O}_r by replacing each $\beta \in \mathcal{H}_{min}$ with an appropriate weaker γ satisfying (1).

Check whether α is a consequence of $\mathfrak{O}_s \cup \mathfrak{O}'$.

Using the algorithm above, α still can be a consequence of $\mathfrak{O}_s \cup \mathfrak{O}'$.

For each $eta \in \mathcal{H}_{\textit{min}}$ and all J_1, \ldots, J_k containing eta ,

replace β with exactly one $\gamma,$ where γ is weaker than β such that

$$\mathfrak{O}_s \cup (\mathcal{J}_i \setminus \{\beta\}) \cup \{\gamma\} \not\models \alpha \text{ for } i = 1, \dots, k.$$
(1)

Construct \mathfrak{O}' obtained from \mathfrak{O}_r by replacing each $\beta \in \mathcal{H}_{min}$ with an appropriate weaker γ satisfying (1).

Check whether α is a consequence of $\mathfrak{O}_s \cup \mathfrak{O}'$.

Using the algorithm above, α still can be a consequence of $\mathfrak{O}_s \cup \mathfrak{O}'$.

Theorem (Termination)

- Obtaining gentle repairs **needs Iterations until** $\mathfrak{O}_s \cup \mathfrak{O}' \not\models \alpha$.
- There is an **exponential upper bound** on the required number of iterations.

Theorem (Termination)

- Obtaining gentle repairs needs Iterations until $\mathfrak{O}_s \cup \mathfrak{O}' \not\models \alpha$.
- There is an exponential upper bound on the required number of iterations.

In (Troquard et.al., 2018)

- Weakening axioms via refinement operators (Lehmann & Hitzler, 2010).
- Realized that weakening axioms needs iterations.
- But, no termination proof.

To obtain better bounds on the number of iterations, introduce weakening relations on axioms.

Weakening Relation

The binary relation \succ on axioms is

• a weakening relation if $\beta \succ \gamma$ implies that γ is weaker than β ;

To obtain better bounds on the number of iterations, introduce weakening relations on axioms.

Weakening Relation

The binary relation \succ on axioms is

- a weakening relation if $\beta \succ \gamma$ implies that γ is weaker than β ;
- well-founded if there is no infinite \succ -chain $\beta_1 \succ \beta_2 \succ \beta_3 \succ \ldots$;

To obtain better bounds on the number of iterations, introduce weakening relations on axioms.

Weakening Relation

The binary relation \succ on axioms is

- a weakening relation if $\beta \succ \gamma$ implies that γ is weaker than β ;
- well-founded if there is no infinite \succ -chain $\beta_1 \succ \beta_2 \succ \beta_3 \succ \ldots$;
- complete if for any axiom β that is not a tautology, there is a tautology γ such that $\beta \succ \gamma$.

To obtain better bounds on the number of iterations, introduce weakening relations on axioms.

Weakening Relation

The binary relation \succ on axioms is

- a weakening relation if $\beta \succ \gamma$ implies that γ is weaker than β ;
- well-founded if there is no infinite \succ -chain $\beta_1 \succ \beta_2 \succ \beta_3 \succ \ldots$;
- complete if for any axiom β that is not a tautology, there is a tautology γ such that β ≻ γ.
- linear (polynomial) if for every axiom β, the length of the longest chain ≻generated from β is linearly (polynomially) bounded by the size of β;

To obtain better bounds on the number of iterations, introduce weakening relations on axioms.

Weakening Relation

The binary relation \succ on axioms is

- a weakening relation if $\beta \succ \gamma$ implies that γ is weaker than β ;
- well-founded if there is no infinite \succ -chain $\beta_1 \succ \beta_2 \succ \beta_3 \succ \ldots$;
- complete if for any axiom β that is not a tautology, there is a tautology γ such that β ≻ γ.
- linear (polynomial) if for every axiom β, the length of the longest chain ≻generated from β is linearly (polynomially) bounded by the size of β;

Theorem (Linearity/Polynomiality)

If \succ is linear (polynomial) and complete, then the iterative algorithm stops after a **linear (polynomial) number of iterations**.

(I) < ((()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) <

Maximally Strong Weakening Axioms

Let $\mathfrak{O}_s \cup (J_i \setminus \{\beta\}) \cup \{\gamma\} \not\models \alpha$

Maximally Strong Weakening Axioms

Let $\mathfrak{O}_s \cup (J_i \setminus \{\beta\}) \cup \{\gamma\} \not\models \alpha$

 γ is a maximally strong weakening (MSW) of β in J_i if

 $\mathfrak{O}_{s} \cup (J_{i} \setminus \{\beta\}) \cup \{\delta\} \models \alpha \text{ for all } \delta \text{ with } \beta \succ \delta \succ \gamma.$

Maximally Strong Weakening Axioms Let $\mathcal{D}_{s} \cup (J_{i} \setminus \{\beta\}) \cup \{\gamma\} \not\models \alpha$ γ is a maximally strong weakening (MSW) of β in J_{i} if $\mathcal{D}_{s} \cup (J_{i} \setminus \{\beta\}) \cup \{\delta\} \models \alpha$ for all δ with $\beta \succ \delta \succ \gamma$.

One-step generated

Let \succ be a weakening relation. The **one-step relation** \succ_1 of \succ is:

$$\succ_1 := \{ (\beta, \gamma) \in \succ | \text{ there is no } \delta \text{ such that } \beta \succ \delta \succ \gamma \}$$

Maximally Strong Weakening Axioms Let $\mathcal{D}_{s} \cup (J_{i} \setminus \{\beta\}) \cup \{\gamma\} \not\models \alpha$ γ is a maximally strong weakening (MSW) of β in J_{i} if $\mathcal{D}_{s} \cup (J_{i} \setminus \{\beta\}) \cup \{\delta\} \models \alpha$ for all δ with $\beta \succ \delta \succ \gamma$.

One-step generated

Let \succ be a weakening relation. The **one-step relation** \succ_1 of \succ is:

$$\succ_1 := \{ (\beta, \gamma) \in \succ | \text{ there is no } \delta \text{ such that } \beta \succ \delta \succ \gamma \}$$

If the transitive closure of \succ_1 is again \succ , then \succ is **one-step generated**.

Maximally Strong Weakening Axioms Let $\mathcal{D}_{s} \cup (J_{i} \setminus \{\beta\}) \cup \{\gamma\} \not\models \alpha$ γ is a maximally strong weakening (MSW) of β in J_{i} if $\mathcal{D}_{s} \cup (J_{i} \setminus \{\beta\}) \cup \{\delta\} \models \alpha$ for all δ with $\beta \succ \delta \succ \gamma$.

One-step generated

Let \succ be a weakening relation. The **one-step relation** \succ_1 of \succ is:

 $\succ_1 := \{ (\beta, \gamma) \in \succ | \text{ there is no } \delta \text{ such that } \beta \succ \delta \succ \gamma \}$

If the transitive closure of \succ_1 is again \succ , then \succ is **one-step generated**. \succ is **effectively finitely branching** if for all axioms β , the set $\{\gamma \mid \beta \succ_1 \gamma\}$ is finite.

イロト イポト イヨト イヨト 二日

Theorem (Computing MSWs)

To compute all MSWs, the weakening relation \succ should be **well-founded**, **complete**, **one-step generated**, **and effectively finitely branching**.

To compute all MSWs, the weakening relation \succ should be **well-founded**, **complete**, **one-step generated**, **and effectively finitely branching**.

Algorithm for Computing MSWs

- There are only finitely many γ such that $\beta \succ \gamma$.
- All these γ can be reached by following \succ_1 .

To compute all MSWs, the weakening relation \succ should be **well-founded**, **complete**, **one-step generated**, **and effectively finitely branching**.

Algorithm for Computing MSWs

- There are only finitely many γ such that $\beta \succ \gamma$.
- All these γ can be reached by following \succ_1 .
- By a breadth-first search, we can compute the set of all γ such that there is a path

$$\beta \succ_1 \delta_1 \succ_1 \ldots \succ_1 \delta_n \succ_1 \gamma$$
 with

To compute all MSWs, the weakening relation \succ should be **well-founded**, **complete**, **one-step generated**, **and effectively finitely branching**.

Algorithm for Computing MSWs

- There are only finitely many γ such that $\beta \succ \gamma$.
- All these γ can be reached by following \succ_1 .
- By a breadth-first search, we can compute the set of all γ such that there is a path

$$\beta \succ_1 \delta_1 \succ_1 \ldots \succ_1 \delta_n \succ_1 \gamma$$
 with

 $\mathfrak{O}_{s} \cup (J_{i} \setminus \{\beta\}) \cup \{\gamma\} \not\models \alpha, \text{ but } \mathfrak{O}_{s} \cup (J_{i} \setminus \{\beta\}) \cup \{\delta_{i}\} \models \alpha \ \forall i \in \{1, \dots, n\}$

To compute all MSWs, the weakening relation \succ should be **well-founded**, **complete**, **one-step generated**, **and effectively finitely branching**.

Algorithm for Computing MSWs

- There are only finitely many γ such that $\beta \succ \gamma$.
- All these γ can be reached by following \succ_1 .
- By a breadth-first search, we can compute the set of all γ such that there is a path

$$\beta \succ_1 \delta_1 \succ_1 \ldots \succ_1 \delta_n \succ_1 \gamma$$
 with

 $\mathfrak{O}_{s} \cup (J_{i} \setminus \{\beta\}) \cup \{\gamma\} \not\models \alpha, \text{ but } \mathfrak{O}_{s} \cup (J_{i} \setminus \{\beta\}) \cup \{\delta_{i}\} \models \alpha \ \forall i \in \{1, \dots, n\}$

- If this set contains comparable elements, then remove the weaker ones.
- The remaining set only consists of all MSWs of β in J_i .

• We define

$$C \sqsubseteq D \succ^{s} C' \sqsubseteq D'$$
 if $C' \sqsubseteq C$, $D \sqsubseteq D'$, and $\{C' \sqsubseteq D'\} \not\models C \sqsubseteq D$

• \succ^s is complete, but not well founded.

3

We define

$$C \sqsubseteq D \succ^{s} C' \sqsubseteq D'$$
 if $C' \sqsubseteq C, \ D \sqsubseteq D'$, and $\{C' \sqsubseteq D'\} \not\models C \sqsubseteq D$

- \succ^{s} is complete, but not well founded.
- Specializing the left-hand side is not well-founded in *EL*.

 $\top \sqsubseteq A \succ \exists r. \top \sqsubseteq A \succ \exists r \exists r. \top \sqsubseteq A \succ \dots$

- Generalizing the right-hand side is well-founded in *EL* (Baader & Morawska, 2010).
- For assertions in \mathcal{A} :
 - D(a) is weakened by generalizing D
 - r(a, b) is weakened to a tautological axiom

A Weakening Relation \succ^{sub} in \mathcal{EL}

• We define

$$C \sqsubseteq D \succ^{sub} C' \sqsubseteq D' \text{ if } C' = C \text{ and } D \sqsubset D' \text{ and } \{C' \sqsubseteq D'\} \not\models C \sqsubseteq D$$

æ

A Weakening Relation \succ^{sub} in \mathcal{EL}

• We define

 $C \sqsubseteq D \succ^{sub} C' \sqsubseteq D' \text{ if } C' = C \text{ and } D \sqsubset D' \text{ and } \{C' \sqsubseteq D'\} \not\models C \sqsubseteq D$

- It is well-founded, complete, one-step generated, finitely branching, but not polynomial.
- |D'| can be exponential in |D|.
- Let $N_n := \{A_1, \ldots, A_{2n}\}$ be a set of 2n distinct concept names.

$$\exists r. \prod N_n \sqsubset \prod_{X \subseteq N_n \land |X|=n} \exists r. \prod X.$$

• **Exponentially many** $\exists r. \Box X$ that can be removed.

A Weakening Relation \succ^{sub} in \mathcal{EL}

• We define

 $C \sqsubseteq D \succ^{sub} C' \sqsubseteq D' \text{ if } C' = C \text{ and } D \sqsubset D' \text{ and } \{C' \sqsubseteq D'\} \not\models C \sqsubseteq D$

- It is well-founded, complete, one-step generated, finitely branching, but not polynomial.
- |D'| can be exponential in |D|.
- Let $N_n := \{A_1, \ldots, A_{2n}\}$ be a set of 2n distinct concept names.

$$\exists r. \prod N_n \sqsubset \prod_{X \subseteq N_n \land |X|=n} \exists r. \prod X.$$

• Exponentially many $\exists r. \Box X$ that can be removed.

Complexity Results

The Algorithm for computing all maximally strong weakenings in *EL* w.r.t. ≻^{sub} has non-elementary complexity.

• Deciding if γ is a maximally strong weakening w.r.t. \succ^{sub} is coNP-hard.

(日) (四) (日) (日) (日)

A Better Fragment \succ^{syn} of \succ^{sub}

Syntactic Generalizations

A concept D' is a **syntactic generalization** of D, written $D \sqsubset^{syn} D'$, iff some occurrences of subconcepts $\neq \top$ in D are replaced with \top .

We define

$$C \sqsubseteq D \succ^{syn} C' \sqsubseteq D'$$
 if $C' = C$ and $D \sqsubset^{syn} D'$ and $\{C' \sqsubseteq D'\} \not\models C \sqsubseteq D$

A Better Fragment \succ^{syn} of \succ^{sub}

Syntactic Generalizations

A concept D' is a syntactic generalization of D, written $D \sqsubset^{syn} D'$, iff some occurrences of subconcepts $\neq \top$ in D are replaced with \top .

We define

$$C \sqsubseteq D \succ^{syn} C' \sqsubseteq D'$$
 if $C' = C$ and $D \sqsubset^{syn} D'$ and $\{C' \sqsubseteq D'\} \not\models C \sqsubseteq D$

- \succ^{syn} is linear, complete, one-step generated, and finitely branching.
- |D| > |D'|.

A Better Fragment \succ^{syn} of \succ^{sub}

Syntactic Generalizations

A concept D' is a syntactic generalization of D, written $D \sqsubset^{syn} D'$, iff some occurrences of subconcepts $\neq \top$ in D are replaced with \top .

We define

 $C \sqsubseteq D \succ^{syn} C' \sqsubseteq D' \text{ if } C' = C \text{ and } D \sqsubset^{syn} D' \text{ and } \{C' \sqsubseteq D'\} \not\models C \sqsubseteq D$

- \succ^{syn} is linear, complete, one-step generated, and finitely branching.
- |D| > |D'|.

Complexity Results

- A single maximally strong weakening w.r.t. \succ^{syn} can be computed in **PTime**.
- All maximally strong weakenings w.r.t. \succ^{syn} can be computed in ExpTime.
- Deciding if γ is a maximally strong weakening w.r.t. \succ^{syn} is coNP-complete.

Conclusions

- Framework for repairing ontologies via weakening axioms rather than deleting
- Introduced weakening relations and maximally strong weakenings
- Applied the framework in Description Logic \mathcal{EL}

Conclusions

- Framework for repairing ontologies via weakening axioms rather than deleting
- Introduced weakening relations and maximally strong weakenings
- \bullet Applied the framework in Description Logic \mathcal{EL}

Future Work

- More complexity results for ≻^{sub}
 - Finding better upper bound for deciding whether an axiom is an MSW w.r.t. \succ^{sub}
 - Finding a better algorithm to compute MSWs w.r.t. \succ^{sub} .
- Weakening relations for more expressive logics $\Rightarrow \mathcal{ELO}, \mathcal{ALC}, \text{ etc.}$
- Choosing which axioms to be weakened and the maximally strong weakenings.

Thank You

3