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A Bottom-up Approach for Ontology Construction
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2. [Zarriess and Turhan, 2013] have found:

@ A decision procedure to decide the existence of the lcs w.r.t. general ££-TBoxes
@ An algorithm for computing least common subsumers in general £L£-TBoxes
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2. [Zarriess and Turhan, 2013] have found:
@ A decision procedure to decide the existence of the lcs w.r.t. general ££-TBoxes
@ An algorithm for computing least common subsumers in general £L£-TBoxes

3. How about FLy?

@ No decision procedures for the problem of the existence of the lcs w.r.t. general
F Lo-TBoxes.
@ No algorithms for computing least common subsumers in general FLo-TBoxes.
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A Poet Composes A Poem

1. Example 1: The Ics does not exist

TBox 71 :=
{Songwriter ¢ ArtistnVcomposes.Song
Poet c ArtistnVcomposes.Poem
Song C  ArtnVmadeUpBy.Songwriter
Poem = ArtnVmadeUpBy.Poet}
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Poem = ArtnVmadeUpBy.Poet}

- The lcs of Songwriter and Poet w.r.t. 71 does not exist.

- Their cyclic definitions allow us to always find a more specific common subsumer of
them.
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Poem = ArtnVmadeUpBy.Poet}

- The lcs of Songwriter and Poet w.r.t. 71 does not exist.
- Their cyclic definitions allow us to always find a more specific common subsumer of
them.

- Common subsumers of Songwriter and Poet w.r.t. 71:
1. Artist;
2. ArtistnVcomposes.Art;
3. ArtistnVcomposes.(Art NV madeUpBy.Artist);
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A Poet Composes A Poem

1. Example 1: The Ics does not exist
TBox 71 :=

{Songwriter ¢ ArtistnVcomposes.Song
Poet c ArtistnVcomposes.Poem
Song C  ArtnVmadeUpBy.Songwriter
Poem = ArtnVmadeUpBy.Poet}

- The lcs of Songwriter and Poet w.r.t. 71 does not exist.
- Their cyclic definitions allow us to always find a more specific common subsumer of
them.

- Common subsumers of Songwriter and Poet w.r.t. 71:

1. Artist;
2. ArtistnVcomposes.Art;
3. ArtistnVcomposes.(Art NV madeUpBy.Artist);

2. Example 2: The Ics exists
T2 :=T1u

{Artist & Vcomposes.Art
Art ©  VmadeUpBy.Artist}

The lcs of Songwriter and Poet w.r.t. 75 is Artist.
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Research Problems

Let C,D,E be FLg-concepts and T be a general FLy-TBox.
1. Research Problem | (RP I):

Is concept E the lcs of C and D w.r.t. T7
2. Research Problem II (RP I1):
Does the Ics of C and D w.r.t. T exist?
3. Research Problem III (RP Ill):

If the lcs of C and D w.r.t. T exists, then what is the lcs?
And how big is the size of the lcs?
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Description Logic FLg

@ Nc: set of concept names with A € N¢ — Songwriter, Poet, Song, Poem, ...

@ Ng: set of role names with r € Ng — writes, composes, madeUpBYy, arranges, ...
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Description Logic FLg

@ Nc: set of concept names with A € N¢ — Songwriter, Poet, Song, Poem, ...
@ Ng: set of role names with r € Ng — writes, composes, madeUpBYy, arranges, ...

@ F Lo concepts are built by using the following structures:

CD:=T|A|CnD|VrC
@ An interpretation T = (AZ, -7) consists of:
» AZ: a non-empty domain.
Here we define AZ = Ng
» T with AT ¢ AT and rT c AT x AT

@ The mapping T is extended to FLo-concepts

[ Syntax [ Semantic ]
T (Top) AT
C n D (Conjunction) cT n DT
Vr.C (Value Restriction) {deAT[ecCT forall (d,e) er’}
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Description Logic FLg

@ Nc: set of concept names with A € N¢ — Songwriter, Poet, Song, Poem, ...
@ Ng: set of role names with r € Ng — writes, composes, madeUpBYy, arranges, ...

@ F Lo concepts are built by using the following structures:

CD:=T|A|CnD|VrC
@ An interpretation T = (AZ, -7) consists of:
» AZ: a non-empty domain.
Here we define AZ = Ng
» T with AT ¢ AT and rT c AT x AT

@ The mapping T is extended to FLo-concepts

[ Syntax [ Semantic ]
T (Top) AT
C n D (Conjunction) cT n DT
Vr.C (Value Restriction) {deAT[ecCT forall (d,e) er’}

Conventions:
@ Vr.Vry-VrpA=Vw.A, where w=rira...rpe Ng.
@ A=Ve A
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F Lo-TBoxes in CCNF and PANF

@ A (general) FLy TBox T is a finite set of General Concept Inclusions (GCls)
of the form of C & D.

@ Nc 7: set of concept names occurring in 7.
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FLo-TBoxes in CCNF and PANF

@ A (general) FLy TBox T is a finite set of General Concept Inclusions (GCls)
of the form of C & D.

@ Nc 7: set of concept names occurring in 7.

Normalization in FLq-TBoxes [Pensel,2015]

@ A concept is in concept-conjunction-normal-form (CCNF) iff it is of the form
VWl.A]_ m...MN VWn.An,
where A; € Nc and w; € Ng, for all 1<i<n.
@ An FLo-TBox T is in plane-axiom-normal-form (PANF) iff

@ All left- and right-hand sides of all GCls in 7 are in CCNF;
@ Every VYw.A, occurring in T, has |w|<1
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Models, Subsumption, and Least Common Subsumer

@ An interpretation T satisfies a GCl C g D iff C* c DZ.
@ T is a model of T iff it satisfies all GCls in 7.

@ Cis subsumed by D w.r.t. T (denoted by C = D) iff C ¢ D for all
models Z of 7. This relationship is called subsumption.

Adrian Nuradiansyah Master's Thesis September 27, 2016 7/1



Models, Subsumption, and Least Common Subsumer

@ An interpretation T satisfies a GCl C g D iff C* c DZ.
@ T is a model of T iff it satisfies all GCls in 7.

@ Cis subsumed by D w.r.t. T (denoted by C = D) iff C ¢ D for all
models Z of 7. This relationship is called subsumption.

@ An FLo-concept E is the least common subsumer(lcs7(C, D)) of C and D w.r.t. T iff:
- Ccy Eand Degr E
— For all concepts F such that C = F and D c F, then E =+ F.
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Models, Subsumption, and Least Common Subsumer

@ An interpretation T satisfies a GCl C g D iff C* c DZ.
@ T is a model of T iff it satisfies all GCls in 7.

@ Cis subsumed by D w.r.t. T (denoted by C = D) iff C ¢ D for all
models Z of 7. This relationship is called subsumption.
@ An FLo-concept E is the least common subsumer(lcs7(C, D)) of C and D w.r.t. T iff:
- Ccy Eand Degr E
— For all concepts F such that C = F and D c F, then E =+ F.

In the following, w.l.0.g., we assume that the inputs are
A PANF TBox 7 and concept names C,D e N¢ .
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Functional Models of a Concept w.r.t. a TBox

@ T is a functional model of a concept C w.r.t. a TBox T iff

> Complete n-ary tree, where n=|Ng| (tree-structured);
> For all rin Ng, (u,v) e r? iff v = ur (tree-structured);
> Satisfying all GCls in T (model of T);

» Satisfying C at the root (g ¢ CT).

@ For all we AT, the label of w in Z is a set of concept names A€ N¢, where we AT,
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@ T is a functional model of a concept C w.r.t. a TBox T iff

> Complete n-ary tree, where n=|Ng| (tree-structured);
> For all rin Ng, (u,v) e r? iff v = ur (tree-structured);
> Satisfying all GCls in T (model of T);

» Satisfying C at the root (g ¢ CT).

@ For all we AT, the label of w in Z is a set of concept names A€ N¢, where we AT,
@ Let 77 and Z, be over the same domain elements.

» Subset relation between two functional models.
Ty € T, iff ATr ¢ AT2 for all Ae N¢
> Intersection 71 NZ, between two functional models.
AZ1"Z2 iff AZ1n AZ2 for all Ae N¢
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Functional Models of a Concept w.r.t. a TBox

@ T is a functional model of a concept C w.r.t. a TBox T iff

> Complete n-ary tree, where n=|Ng| (tree-structured);
> For all rin Ng, (u,v) e r? iff v = ur (tree-structured);
> Satisfying all GCls in T (model of T);

» Satisfying C at the root (g ¢ CT).

@ For all we AT, the label of w in Z is a set of concept names A€ N¢, where we AT,
@ Let 77 and Z, be over the same domain elements.

> Subset relation between two functional models.
Ty ¢ T iff ATt c AT2 for all Ae N¢
> Intersection 71 NZ, between two functional models.
AZ1"Z2 iff AZ1n AZ2 for all Ae N¢
@ Let Z be a functional model of a TBox. (Z,u) is a subtree of Z defined as follows:

> |t has the same domain elements as Z;
» AT = {we N | uwe AT}, for all Ae N.
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Least Functional Model

@ Zc 7 is the least functional model (LFM) of a concept C w.r.t. a TBox T iff
Zc7 €T for all functional models Z of C w.r.t. 7.
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Least Functional Model

@ Zc 7 is the least functional model (LFM) of a concept C w.r.t. a TBox T iff
Zc7 €T for all functional models Z of C w.r.t. 7.

@ Example

{Sw
Pt
Sg
Pm
Ar
At

nonononon o n

3: TBox 72

ArnVe.Sg;
ArnvVc.Pm;
AtnVm.Sw;
AtnVm.Pt;
Vc.At;
Vm.Ar}

Sw = Songwriter  Ar = Artist

Sg = Song
Pt = Poet
m = madeUpBy

At = Art
Pm = Poem
c = compose

Adrian Nuradiansyah
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Master's Thesis
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Least Functional Model

@ Zc 7 is the least functional model (LFM) of a concept C w.r.t. a TBox T iff
Zc7 €T for all functional models Z of C w.r.t. 7.

@ Example 3: TBox 73

{Sw = ArnVec.Sg;
Pt c© ArnVc.Pm; Tsw.T»
Sg t© AtnvVYm.Sw; {Sw, Ar}
Pm = AtnVm.Pt;
c
c

Ar Vc.At; /@\
' Sg, At
%) " @
Sw = Songwriter  Ar = Artist
Sg = Song At = Art

Pt = Poet Pm = Poem
m = madeUpBy  c=compose

Why do we need LFMs? [Pensel, 2015]
Ce7 D iff Zp 7 € Zc 7 (Characterizing subsumption)
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Equivalence Class of Words

Labeling Function

For all we AZC.T | we have a labeling function
Ieq(w)={AeNc T |weATcT}
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Equivalence Class of Words

Labeling Function

For all we AZC.T | we have a labeling function
Ieq(w)={AeNc T |weATcT}

v
Equivalence Relation

~Ic ON ATCT s defined as:
u~ze v iff Ze 7(u) =Zc 7(v)

Let u,v e AZC.T . An equivalence relation
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Equivalence Class of Words

Labeling Function

For all we AZC.T | we have a labeling function
IC,T(W) = {A € NC,T | w € AIC’T}

Equivalence Relation

| A\

Let u,v e AZC.T . An equivalence relation ~Ic ON ATCT s defined as:
u~ze v iff Ze 7(u) =Zc 7 (v)

N,

Equivalence Class of Words

Let ue AZC.T. The equivalence class of words u is defined as follows:
[u]FeT = {veAcT |y ~Ter V}E

Convention: Sometimes, to simplify the notation, we may omit ~Ic in [u]NICT.
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Equivalence Class of Words

Labeling Function

For all we AZC.T | we have a labeling function
IC,T(W) = {A € NC,T | w € AIC’T}

Equivalence Relation

| \

Let u,v e AZC.T . An equivalence relation ~Ic ON ATCT s defined as:
u~ze v iff Ze 7(u) =Zc 7 (v)

N,

Equivalence Class of Words

Let ue AZC.T. The equivalence class of words u is defined as follows:
[u]FeT = {veAcT |y ~Ter V}E

Convention: Sometimes, to simplify the notation, we may omit ~z_ in [u]NICT.
@ The LFMs still have infinite number of elements with the same label.
@ We construct the LFMs that only have a finite number of elements and . ..

@ ...change the form into a cyclic fashion — graph of functional model.
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Graph of Least Functional Model

Example 4:
1. We have Zs,, 1,

Jo@ cWCaCh

2. Equivalence class of words: 3. Construct the graph model Js,, 7, (computing

- [e]={e.cm.. .} quotient structure AISW-TZ/~ISWT )
Vwe [e], Z(w) = {Sw,Ar}; 2
{Sw,Ar}

- [e]={c,cmc,...} ‘@A

VYwe[c], Z(w) = {Sg,At}; c m

- [m]={m,cc,me,...} {Sg. At} 2
Vwe[m], Z(w) =@. c @Dcm
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Graph of Least Functional Model

@ Jc 1 is effectively computable in a finite time.

» AJceT coNeT
(subsets of concept names occurring in T are finite)

> Initially, we have [¢] €T with Z(¢) ={BeNc 7| Ccr B}
(It is computable to find a maximal set from N¢ 1 s.t. all elements of the set
subsume C w.r.t. T)

> For each r e Ng, we have

([u]™®e7 [v]"FeT) e rTCT iff for all BeZ(v), it holds MZ(u) e Vr.B

(It is computable to find a maximal set from N¢ 1 s.t. for all elements B of the set,
we have Yr.B subsumes MZ(u) w.r.t. T)
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Graph of Least Functional Model

@ Jc 1 is effectively computable in a finite time.

» AJceT coNeT
(subsets of concept names occurring in T are finite)

> Initially, we have [¢] €T with Z(¢) ={BeNc 7| Ccr B}
(It is computable to find a maximal set from N¢ 1 s.t. all elements of the set
subsume C w.r.t. T)

> For each r e Ng, we have

([u]™®e7 [v]"FeT) e rTCT iff for all BeZ(v), it holds MZ(u) e Vr.B

(It is computable to find a maximal set from N¢ 1 s.t. for all elements B of the set,
we have Yr.B subsumes MZ(u) w.r.t. T)

Graph of Intersection Models

@ Let Jc,7 and Jp 7 be the graph models of Z¢ 7 and Zp 7;

@ Compute the product Jc 7 x Jp 7 of Jc7 and Jp 1;

@ We take a subgraph G of Jc 7 x Jp 7, where all elements of G are reachable from
(el e o)

@ G is the graph model of Z¢ + n Zp 7
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Simulation between Interpretations

@ Let 77 and Z, be interpretations.
S c AT1 x AZ2 s defined as a simulation from Zy to Zo.



Simulation between Interpretations

@ Let 77 and Z, be interpretations.
S c AT1 x AZ2 s defined as a simulation from Zy to Zo.

@ Example 5:

7, {A} ___>‘ {A} I, ((Z1, d1) is simulated (5) by (Z2, d2))
r

{B} ‘
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Simulation between Interpretations

@ Let 77 and Z, be interpretations.
S c AT1 x AZ2 s defined as a simulation from Zy to Zo.

@ Example 5:
7, {A}

{A} I2 ((Il, dl) is simulated (S) by (12, d2))

r r

{B} ‘ ‘ {AB}
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Simulation between Interpretations

@ Let 77 and Z, be interpretations.
S c AT1 x AZ2 s defined as a simulation from Zy to Zo.

@ Example 5:
7, {A}

{A} I2 ((Il, dl) is simulated (S) by (12, d2))

r r

{B} ‘___)‘ {A B} ((Z1, d3) is simulated () by (Z2, da))

@ (Z,,d) is simulation-equivalent to (Z,e) (denoted by (Z1,d) ~ (Z2,€)) if (Z1.d) S (Z2.€)
and (Zz,e) S (Z1.d).
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@ Let 77 and Z, be interpretations.
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7, {A}

{A} I2 ((Il, dl) is simulated (S) by (12, d2))

r r

{B} ‘___)‘ {A B} ((Z1, d3) is simulated () by (Z2, da))

@ (Z,,d) is simulation-equivalent to (Z,e) (denoted by (Z1,d) ~ (Z2,€)) if (Z1.d) S (Z2.€)
and (Zz,e) S (Z1.d).

@ This notion is applied analogously to functional models and graph models
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Simulation between Interpretations

@ Let 77 and Z, be interpretations.
S c AT1 x AZ2 s defined as a simulation from Zy to Zo.

@ Example 5:
7, {A}

{A} I2 ((Il, dl) is simulated (S) by (12, d2))

r r

{B} ‘___)‘ {A B} ((Z1, d3) is simulated () by (Z2, da))

@ (Z,,d) is simulation-equivalent to (Z,e) (denoted by (Z1,d) ~ (Z2,€)) if (Z1.d) S (Z2.€)
and (Zz,e) S (Z1.d).

@ This notion is applied analogously to functional models and graph models

Why do we need a simulation?

Ce7 D iff Ip 7 5 Jc 7 (Characterizing subsumption)
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RP I: Is a Concept the LCS of C and D w.rt. T

A Condition whether a Concept is the LCS
Let E be an FLp-concept.

E is the lcs7(C,D) iff Zg 7 =Zc 7 nIp T
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== Zg 7 and Z¢c 7 nZIp 1 are infinite models!
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A Condition whether a Concept is the LCS

Let E be an FLp-concept.
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RP I: Is a Concept the LCS of C and D w.rt. T

A Condition whether a Concept is the LCS
Let E be an FLp-concept.

E is the lcs7(C,D) iff Zg 7 =Zc 7 nIp T

== Zg 7 and Z¢c 7 nZIp 1 are infinite models!

A Condition whether a Concept is the LCS

Let E be an FLp-concept.

E is the lcs7(C,D) iff Jg7~G

= RP | is decidable!

Adrian Nuradiansyah Master's Thesis

September 27, 2016

14/1



F Lo-Characteristic Concept

@ The role-depth of a concept C (rd(C)) is the maximum number of V-quantifier in C.

@ A characteristic concept K with rd(K) = k can be obtained from a functional or graph
model by traversing them until the depth k.
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F Lo-Characteristic Concept

@ The role-depth of a concept C (rd(C)) is the maximum number of V-quantifier in C.

@ A characteristic concept K with rd(K) = k can be obtained from a functional or graph
model by traversing them until the depth k.

@ Example 6: Js, 7

{Sw. Ar}

(6.4t} >
< c,m

> O-characteristic concept of Js,, 7+ = SwnAr;

> 1-characteristic concept of Js, 7+ = SwnArnVec.SgnVc. AtnvVm.T;

> 2-characteristic concept of Js, 7 = SwnArnVec.5gnVc. AtnvVym.mn
Vec.TAVem.SwnvVem.ArnVee.TnVem.T

Adrian Nuradiansyah Master's Thesis September 27, 2016 15/1



F Lo-Characteristic Concept

@ The role-depth of a concept C (rd(C)) is the maximum number of V-quantifier in C.

@ A characteristic concept K with rd(K) = k can be obtained from a functional or graph
model by traversing them until the depth k.

@ Example 6: Js, 7

{Sw. Ar}

(6.4t} >
< c,m

> O-characteristic concept of Js,, 7+ = SwnAr;

> 1-characteristic concept of Js, 7+ = SwnArnVec.SgnVc. AtnvVm.T;

> 2-characteristic concept of Js, 7 = SwnArnVec.5gnVc. AtnvVym.mn
Vec.TAVem.SwnvVem.ArnVee.TnVem.T

@ Convention: XX is the k-characteristic concept of ZcrnIp g or G, for keN.
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Label-Synchronous Elements

@ Let we ATCT and Q=M{BeNcr|BeZcr(w)}.

» weAZCT is label-synchronous in Zc - iff (Zc7,w) = (Zg.7€)
> [w] is label-synchronous in J¢ 1 iff (Jc7,[w]) = (Jo,1.[€])
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Label-Synchronous Elements

@ Let we ATCT and Q=M{BeNcr|BeZcr(w)}.
» weAZCT is label-synchronous in Zc - iff (Zc7,w) = (Zg.7€)
> [w] is label-synchronous in J¢ 1 iff (Jc7,[w]) = (Jo,1.[€])
@ Example 7:
Tsw. Tz TsgnAt, Ta

{Sw.Ar} (Sg. At}

[c] is label-synchronous in s, 7, because (Tsw, 73,[c]) = (Tsgnat, 72, [€])
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RP Il: Does the LCS of C and D w.r.t. T exist?

Conditions for the Existence of the LCS
The les7(C, D) exists iff there is a ke N s.t.
(] IC,T nID,'T=IXk,T iff
° (g7[€]) = (ij,Tv[e])‘
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== infinitely many k; Zc 7nZp 7 and Iy« 1 are infinite models.
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Conditions for the Existence of the LCS
The les7(C, D) exists iff there is a ke N s.t.
(] IC,T nID,T=IXk,T iff
° (gv[e]) = (jX“,Tv[e])‘

== infinitely many k; Zc 7nZp 7 and Iy« 1 are infinite models.

Relationship between the LFM of Xk and Label-Synchronous Elements
Zc70Ip1 =ZIxx 7 iff for all we N with |w| >k, it holds that
w is label-synchronous in Z¢ 7 nZp7 and Zyk

Main Theorem

The les(C, D) exists iff all cycles in G only contains label-synchronous elements.

= RP Il is decidable!
@ G is computable in a finite time;
@ Finitely many cycles in G;
@ It is decidable whether [w] is label-synchronous in G.
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RP 1II: If the LCS exists, what is the LCS?

How to compute the LCS? And What is the Size of the LCS?
Let n= |Ag|. It holds that
@ The lest(C, D) exists iff (G,[€]) = (Txn+1 1 [€]);
» X™1is the lcs7(C, D).
@ rd(lesy(C,D)) <22xINerl+t,
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== RP Ill is computable!
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An Algorithm to Compute the LCS, if it Exists

1. Given T3 in PANF and Sw, Pt e N¢ 73;
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An Algorithm to Compute the LCS, if it Exists

1. Given 72 in PANF and Sw,Pte Nc 73;
2. Compute Jsy 75 and Jpt 15;
{Sw, Ar} {Pt,Ar}

c m (o m

{Sg, At } Y {Pm, At } @
— (>, — (>,

3. Compute the product Jsu 73 X Ipt, 75 of Tsw,1» and Jpt,73;
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(Sg.At } 2 (Pm. At } —~F N7
— (>, — (>,
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{Ar}

C m

{At} o
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C m

{At} o

5. Since |Ag| =3, we compute the 4-characteristic concept X* of G and construct TIxa 13
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An Algorithm to Compute the LCS, if it Exists

1. Given 72 in PANF and Sw,Pte Nc 73;
2. Compute Jsy 75 and Jpt 15;
{Sw, Ar} {Pt,Ar}

(S At } 2 (Pm. At } —~F N7
— (>, — (>,

3. Compute the product Jsu 73 X Ipt, 75 of Tsw,1» and Jpt,73;

4. Compute the subgraph G of Jsw 75 X Tpt 72
{Ar}
c m
{At} o
¢ c,m
5. Since |Ag| =3, we compute the 4-characteristic concept X* of G and construct TIxa 13
6. Check whether (G,[€]) = (Txa T,[€]). Yes, X* is the lcst, (Sw, Pt)!

Otherwise, the lcsy, (Sw, Pt) does not exist.
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Conclusions and Future Works

Conclusions

@ RP I: An FLp-concept E is the lcs7(C,D) iff

> Ie 7 =ZIc 701D TS
> (Jer[e]) = (G.[e])-
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Conclusions

@ RP I: An FLp-concept E is the lcs7(C,D) iff

> Ie 7 =ZIc 701D TS

> (Je7,[€]) = (G, [€]).
@ RP II: The lcst(C,D) exists iff

> Thereisa keNs.t. Zc7nIp 7 =Zxk ri

> Thereis a keNs.t. (G,[e]) = Tyk 7

> All cycles in G only contains label-synchronous elements.
@ RP IlII: Let n=|AY|. If the /cs(C,D) exists, then
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v

@ Practical implementation for the results above;

@ Computing the lcs w.r.t. general FLE-TBox;

@ Computing the most specific concept of an individual w.r.t. general FLo-TBox.
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Thank You
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