Algorithms for Computing Least Common Subsumers in General \mathcal{FL}_0-TBoxes

Adrian Nuradiansyah

International Center for Computational Logic TU Dresden

Master’s Thesis

Supervisor:
Dr. Anni-Yasmin Turhan

Advisor:
Benjamin Zarriess

September 27, 2016
1. Supporting knowledge engineers to **construct ontology by bottom-up approach**
1. Supporting knowledge engineers to **construct ontology by bottom-up approach**

2. [Zarriess and Turhan, 2013] have found:
 - **A decision procedure** to decide the existence of the lcs w.r.t. general \mathcal{EL}-TBoxes
 - **An algorithm** for computing least common subsumers in general \mathcal{EL}-TBoxes
1. Supporting knowledge engineers to **construct ontology by bottom-up approach**

![Diagram](image)

2. [Zarriess and Turhan, 2013] have found:
 - A **decision procedure** to decide the existence of the lcs w.r.t. general \mathcal{EL}-TBoxes
 - An **algorithm** for computing least common subsumers in general \mathcal{EL}-TBoxes

3. How about \mathcal{FL}_0?
 - **No decision procedures** for the problem of the existence of the lcs w.r.t. general \mathcal{FL}_0-TBoxes.
 - **No algorithms** for computing least common subsumers in general \mathcal{FL}_0-TBoxes.
1. **Example 1: The lcs does not exist**

 TBox $T_1 :=$

 \[
 \begin{align*}
 \{ & \text{Songwriter } \sqsubseteq \text{Artist} \sqcap \forall \text{composes}.\text{Song} \\
 & \text{Poet } \sqsubseteq \text{Artist} \sqcap \forall \text{composes}.\text{Poem} \\
 & \text{Song } \sqsubseteq \text{Art} \sqcap \forall \text{madeUpBy}.\text{Songwriter} \\
 & \text{Poem } \sqsubseteq \text{Art} \sqcap \forall \text{madeUpBy}.\text{Poet}\}
 \end{align*}
 \]

 - The lcs of Songwriter and Poet w.r.t. T_1 does not exist.
 - Their cyclic definitions allow us to always find a more specific common subsumer of them.
 - Common subsumers of Songwriter and Poet w.r.t. T_1:
 1. Artist;
 2. Artist $\sqcap \forall$ composes.Art;
 3. Artist $\sqcap \forall$ madeUpBy.Songwriter;

2. **Example 2: The lcs exists**

 \[
 T_2 := T_1 \cup \{ \text{Artist} \sqcap \forall \text{composes}.\text{Art} \sqcap \forall \text{madeUpBy}.\text{Artist} \} \]

 The lcs of Songwriter and Poet w.r.t. T_2 is Artist.
A Poet Composes A Poem

1. **Example 1: The lcs does not exist**

TBox $\mathcal{T}_1 :=$

\[
\begin{align*}
\text{Songwriter} & \subseteq \text{Artist} \sqcap \forall \text{composes}.\text{Song} \\
\text{Poet} & \subseteq \text{Artist} \sqcap \forall \text{composes}.\text{Poem} \\
\text{Song} & \subseteq \text{Art} \sqcap \forall \text{madeUpBy}.\text{Songwriter} \\
\text{Poem} & \subseteq \text{Art} \sqcap \forall \text{madeUpBy}.\text{Poet}
\end{align*}
\]

- The lcs of Songwriter and Poet w.r.t. \mathcal{T}_1 does not exist.
- Their cyclic definitions allow us to always find a more specific common subsumer of them.
A Poet Composes A Poem

1. Example 1: The lcs does not exist

TBox $\mathcal{T}_1 :=$

\begin{align*}
\{ & \text{Songwriter} \sqsubseteq \text{Artist} \sqcap \forall \text{composes}.\text{Song} \\
& \text{Poet} \sqsubseteq \text{Artist} \sqcap \forall \text{composes}.\text{Poem} \\
& \text{Song} \sqsubseteq \text{Art} \sqcap \forall \text{madeUpBy}.\text{Songwriter} \\
& \text{Poem} \sqsubseteq \text{Art} \sqcap \forall \text{madeUpBy}.\text{Poet} \} \\
\end{align*}

- The lcs of Songwriter and Poet w.r.t. \mathcal{T}_1 does not exist.
- Their cyclic definitions allow us to always find a more specific common subsumer of them.
- Common subsumers of Songwriter and Poet w.r.t. \mathcal{T}_1:
 1. Artist;
 2. Artist $\sqcap \forall \text{composes}.\text{Art}$;
 3. Artist $\sqcap \forall \text{composes}.(\text{Art} \sqcap \forall \text{madeUpBy}.\text{Artist})$;
 ...

...
A Poet Composes A Poem

1. **Example 1: The lcs does not exist**

 \[\text{TBox } T_1 := \]

 \[
 \{ \text{Songwriter} \subseteq \text{Artist} \land \forall \text{composes.Song} \\
 \text{Poet} \subseteq \text{Artist} \land \forall \text{composes.Poem} \\
 \text{Song} \subseteq \text{Art} \land \forall \text{madeUpBy.Songwriter} \\
 \text{Poem} \subseteq \text{Art} \land \forall \text{madeUpBy.Poet} \}
 \]

 - The lcs of Songwriter and Poet w.r.t. \(T_1 \) does not exist.
 - Their cyclic definitions allow us to always find a more specific common subsumer of them.
 - Common subsumers of Songwriter and Poet w.r.t. \(T_1 \):

 1. Artist;
 2. Artist \(\land \forall \text{composes.Art} \);
 3. Artist \(\land \forall \text{composes.(Art} \land \forall \text{madeUpBy.Artist)} \);

 ...

2. **Example 2: The lcs exists**

 \[T_2 := T_1 \cup \]

 \[
 \{ \text{Artist} \subseteq \forall \text{composes.Art} \\
 \text{Art} \subseteq \forall \text{madeUpBy.Artist} \}
 \]

 The lcs of Songwriter and Poet w.r.t. \(T_2 \) is Artist.
Let C, D, E be \mathcal{FL}_0-concepts and T be a general \mathcal{FL}_0-TBox.

1. **Research Problem I (RP I):**

 Is concept E the lcs of C and D w.r.t. T?

2. **Research Problem II (RP II):**

 Does the lcs of C and D w.r.t. T exist?

3. **Research Problem III (RP III):**

 If the lcs of C and D w.r.t. T exists, then what is the lcs? And how big is the size of the lcs?
Description Logic \mathcal{FL}_0

- N_C: set of concept names with $A \in N_C \rightarrow$ Songwriter, Poet, Song, Poem, . . .
- N_R: set of role names with $r \in N_R \rightarrow$ writes, composes, madeUpBy, arranges, . . .
Description Logic \mathcal{FL}_0

- N_C: set of concept names with $A \in N_C \rightarrow$ Songwriter, Poet, Song, Poem, ...
- N_R: set of role names with $r \in N_R \rightarrow$ writes, composes, madeUpBy, arranges, ...
- \mathcal{FL}_0 concepts are built by using the following structures:

$$C, D ::= \top | A | C \sqcap D | \forall r. C$$
Description Logic \mathcal{FL}_0

- N_C: set of concept names with $A \in N_C \rightarrow$ Songwriter, Poet, Song, Poem, ...
- N_R: set of role names with $r \in N_R \rightarrow$ writes, composes, madeUpBy, arranges, ...
- \mathcal{FL}_0 concepts are built by using the following structures:

$$C,D ::= \top \mid A \mid C \cap D \mid \forall r.C$$

- An interpretation $\mathcal{I} = (\Delta^\mathcal{I}, \cdot^\mathcal{I})$ consists of:
 - $\Delta^\mathcal{I}$: a non-empty domain.
 Here we define $\Delta^\mathcal{I} = N_R^*$
 - $\cdot^\mathcal{I}$ with $A^\mathcal{I} \subseteq \Delta^\mathcal{I}$ and $r^\mathcal{I} \subseteq \Delta^\mathcal{I} \times \Delta^\mathcal{I}$
Description Logic \mathcal{FL}_0

- N_C: set of concept names with $A \in N_C \rightarrow$ Songwriter, Poet, Song, Poem, . . .
- N_R: set of role names with $r \in N_R \rightarrow$ writes, composes, madeUpBy, arranges, . . .
- \mathcal{FL}_0 concepts are built by using the following structures:

$$ C, D ::= \top | A | C \cap D | \forall r. C $$

- An interpretation $\mathcal{I} = (\Delta^\mathcal{I}, \cdot^\mathcal{I})$ consists of:
 - $\Delta^\mathcal{I}$: a non-empty domain. Here we define $\Delta^\mathcal{I} = N^*_R$
 - $\cdot^\mathcal{I}$ with $A^\mathcal{I} \subseteq \Delta^\mathcal{I}$ and $r^\mathcal{I} \subseteq \Delta^\mathcal{I} \times \Delta^\mathcal{I}$

- The mapping $\cdot^\mathcal{I}$ is extended to \mathcal{FL}_0-concepts

<table>
<thead>
<tr>
<th>Syntax</th>
<th>Semantic</th>
</tr>
</thead>
<tbody>
<tr>
<td>\top (Top)</td>
<td>$\Delta^\mathcal{I}$</td>
</tr>
<tr>
<td>$C \cap D$ (Conjunction)</td>
<td>$C^\mathcal{I} \cap D^\mathcal{I}$</td>
</tr>
<tr>
<td>$\forall r. C$ (Value Restriction)</td>
<td>${d \in \Delta^\mathcal{I}</td>
</tr>
</tbody>
</table>
Description Logic \mathcal{FL}_0

- N_C: set of concept names with $A \in N_C \rightarrow$ Songwriter, Poet, Song, Poem, ...
- N_R: set of role names with $r \in N_R \rightarrow$ writes, composes, madeUpBy, arranges, ...
- \mathcal{FL}_0 concepts are built by using the following structures:

$$C, D ::= \top | A | C \cap D | \forall r. C$$

- An interpretation $\mathcal{I} = (\Delta^\mathcal{I}, \cdot^\mathcal{I})$ consists of:
 - $\Delta^\mathcal{I}$: a non-empty domain.
 Here we define $\Delta^\mathcal{I} = N^*_R$
 - $\cdot^\mathcal{I}$ with $A^\mathcal{I} \subseteq \Delta^\mathcal{I}$ and $r^\mathcal{I} \subseteq \Delta^\mathcal{I} \times \Delta^\mathcal{I}$

- The mapping $\cdot^\mathcal{I}$ is extended to \mathcal{FL}_0-concepts

<table>
<thead>
<tr>
<th>Syntax</th>
<th>Semantic</th>
</tr>
</thead>
<tbody>
<tr>
<td>\top (Top)</td>
<td>$\Delta^\mathcal{I}$</td>
</tr>
<tr>
<td>$C \cap D$ (Conjunction)</td>
<td>$C^\mathcal{I} \cap D^\mathcal{I}$</td>
</tr>
<tr>
<td>$\forall r. C$ (Value Restriction)</td>
<td>${d \in \Delta^\mathcal{I} \mid e \in C^\mathcal{I}$ for all $(d, e) \in r^\mathcal{I}}$</td>
</tr>
</tbody>
</table>

Conventions:
- $\forall r_1.\forall r_2\ldots\forall r_n A \equiv \forall w. A$, where $w = r_1r_2\ldots r_n \in N^*_R$.
- $A \equiv \forall \epsilon. A$
A (general) \mathcal{FL}_0 TBox \mathcal{T} is a finite set of General Concept Inclusions (GCIs) of the form of $C \sqsubseteq D$.

$N_{C,\mathcal{T}}$: set of concept names occurring in \mathcal{T}.

Normalization in \mathcal{FL}_0-TBoxes \cite{Pensel2015} A concept is in concept-conjunction-normal-form (CCNF) iff it is of the form $\forall w_1. A_1 \sqsubseteq \ldots \sqsubseteq \forall w_n. A_n$, where $A_i \in N_C$ and $w_i \in N^*_R$, for all $1 \leq i \leq n$.

An \mathcal{FL}_0-TBox \mathcal{T} is in plane-axiom-normal-form (PANF) iff all left- and right-hand sides of all GCIs in \mathcal{T} are in CCNF; every $\forall w. A$, occurring in \mathcal{T}, has $\text{divides}(w) \leq 1$.

A (general) \mathcal{FL}_0 TBox T is a finite set of General Concept Inclusions (GCIs) of the form of $C \subseteq D$.

N_C, T: set of concept names occurring in T.

Normalization in \mathcal{FL}_0-TBoxes [Pensel, 2015]

A concept is in **concept-conjunction-normal-form (CCNF)** iff it is of the form
\[
\forall w_1.A_1 \cap \ldots \cap \forall w_n.A_n,
\]
where $A_i \in N_C$ and $w_i \in N^*_R$, for all $1 \leq i \leq n$.

An \mathcal{FL}_0-TBox T is in **plane-axiom-normal-form (PANF)** iff
- All left- and right-hand sides of all GCIs in T are in CCNF;
- Every $\forall w.A$, occurring in T, has $|w| \leq 1$.
An interpretation \mathcal{I} satisfies a GCI $C \subseteq D$ iff $C^\mathcal{I} \subseteq D^\mathcal{I}$.

\mathcal{I} is a model of \mathcal{T} iff it satisfies all GCIs in \mathcal{T}.

C is subsumed by D w.r.t. \mathcal{T} (denoted by $C \sqsubseteq_T D$) iff $C^\mathcal{I} \subseteq D^\mathcal{I}$ for all models \mathcal{I} of \mathcal{T}. This relationship is called subsumption.
An interpretation \mathcal{I} satisfies a GCI $C \sqsubseteq D$ iff $C^\mathcal{I} \subseteq D^\mathcal{I}$.

\mathcal{I} is a model of \mathcal{T} iff it satisfies all GCIs in \mathcal{T}.

C is subsumed by D w.r.t. \mathcal{T} (denoted by $C \sqsubseteq_\mathcal{T} D$) iff $C^\mathcal{I} \subseteq D^\mathcal{I}$ for all models \mathcal{I} of \mathcal{T}. This relationship is called subsumption.

An \mathcal{FL}_0-concept E is the least common subsumer ($\text{lcs}_\mathcal{T}(C, D)$) of C and D w.r.t. \mathcal{T} iff:
- $C \sqsubseteq_\mathcal{T} E$ and $D \sqsubseteq_\mathcal{T} E$
- For all concepts F such that $C \sqsubseteq_\mathcal{T} F$ and $D \sqsubseteq_\mathcal{T} F$, then $E \sqsubseteq_\mathcal{T} F$.

Assumptions In the following, w.l.o.g., we assume that the inputs are a \mathbb{PAN} TBox \mathcal{T} and concept names $C, D \in \mathbb{N}_C, \mathbb{T}$.

Adrian Nuradiansyah
Master's Thesis
September 27, 2016 7 / 1
An interpretation \mathcal{I} satisfies a GCI $C \subseteq D$ iff $C^\mathcal{I} \subseteq D^\mathcal{I}$.

\mathcal{I} is a model of \mathcal{T} iff it satisfies all GCIs in \mathcal{T}.

C is subsumed by D w.r.t. \mathcal{T} (denoted by $C \sqsubseteq_\mathcal{T} D$) iff $C^\mathcal{I} \subseteq D^\mathcal{I}$ for all models \mathcal{I} of \mathcal{T}. This relationship is called subsumption.

An \mathcal{FL}_0-concept E is the least common subsumer ($\text{lcs}_\mathcal{T}(C, D)$) of C and D w.r.t. \mathcal{T} iff:
- $C \sqsubseteq_\mathcal{T} E$ and $D \sqsubseteq_\mathcal{T} E$
- For all concepts F such that $C \sqsubseteq_\mathcal{T} F$ and $D \sqsubseteq_\mathcal{T} F$, then $E \sqsubseteq_\mathcal{T} F$.

Assumptions

In the following, w.l.o.g., we assume that the inputs are a PANF TBox \mathcal{T} and concept names $C, D \in N_{C, \mathcal{T}}$.
\(I \) is a **functional model of a concept** \(C \) w.r.t. a TBox \(T \) iff

- Complete \(n \)-ary tree, where \(n = |N_R| \) (tree-structured);
- For all \(r \in N_R \), \((u, v) \in r^I \) iff \(v = ur \) (tree-structured);
- Satisfying all GCIs in \(T \) (model of \(T \));
- Satisfying \(C \) at the root (\(\varepsilon \in C^I \)).

For all \(w \in \Delta^I \), the **label of** \(w \) in \(I \) is a set of concept names \(A \in N_C \), where \(w \in A^I \).
\mathcal{I} is a **functional model of a concept C w.r.t. a TBox \mathcal{T}** iff

- Complete n-ary tree, where $n = |N_R|$ (*tree-structured*);
- For all r in N_R, $(u,v) \in r^\mathcal{I}$ iff $v = ur$ (*tree-structured*);
- Satisfying all GCIs in \mathcal{T} (*model of \mathcal{T}*);
- Satisfying C at the root ($\varepsilon \in C^\mathcal{I}$).

For all $w \in \Delta^\mathcal{I}$, the **label of w** in \mathcal{I} is a set of concept names $A \in N_C$, where $w \in A^\mathcal{I}$.

Let \mathcal{I}_1 and \mathcal{I}_2 be over the same domain elements.

- **Subset relation between two functional models.**
 $$\mathcal{I}_1 \subseteq \mathcal{I}_2 \text{ iff } A^{\mathcal{I}_1} \subseteq A^{\mathcal{I}_2} \text{ for all } A \in N_C$$

- **Intersection $\mathcal{I}_1 \cap \mathcal{I}_2$ between two functional models.**
 $$A^{\mathcal{I}_1 \cap \mathcal{I}_2} \text{ iff } A^{\mathcal{I}_1} \cap A^{\mathcal{I}_2} \text{ for all } A \in N_C$$
\[I \] is a **functional model of a concept** \(C \) w.r.t. a TBox \(\mathcal{T} \) iff

- Complete \(n \)-ary tree, where \(n = |N_R| \) (tree-structured);
- For all \(r \) in \(N_R \), \((u, v) \in r^I \) iff \(v = ur \) (tree-structured);
- Satisfying all GCIs in \(\mathcal{T} \) (model of \(\mathcal{T} \));
- Satisfying \(C \) at the root (\(\epsilon \in C^I \)).

For all \(w \in \Delta^I \), the **label** of \(w \) in \(I \) is a set of concept names \(A \in N_C \), where \(w \in A^I \).

Let \(I_1 \) and \(I_2 \) be over the same domain elements.

- **Subset relation between two functional models.**
 \[I_1 \subseteq I_2 \] iff \(A^{I_1} \subseteq A^{I_2} \) for all \(A \in N_C \)

- **Intersection** \(I_1 \cap I_2 \) **between two functional models.**
 \[A^{I_1} \cap I_2 \] iff \(A^{I_1} \cap A^{I_2} \) for all \(A \in N_C \)

Let \(I \) be a functional model of a TBox. \((I, u)\) is a **subtree** of \(I \) defined as follows:

- It has the **same domain elements** as \(I \);
- \(A^{(I,u)} := \{ w \in N^*_R \mid uw \in A^I \} \), for all \(A \in N_C \).
Least Functional Model

- $\mathcal{I}_{C,T}$ is the **least functional model (LFM)** of a concept C w.r.t. a TBox T iff $\mathcal{I}_{C,T} \subseteq \mathcal{I}$ for all functional models \mathcal{I} of C w.r.t. T.

Example 3: TBox T_2:

- $\text{Sw} \sqsubseteq \text{Ar}$
- $\forall c. \text{Sg} \sqsubseteq \text{Pt}$
- $\forall m. \text{Sw} \sqsubseteq \text{Pm}$
- $\forall c. \text{At} \sqsubseteq \text{Ar}$
- $\forall m. \text{Pt} \sqsubseteq \text{Ar}$

$\text{Sw} = \text{Songwriter}, \text{Ar} = \text{Artist}, \text{Sg} = \text{Song}, \text{At} = \text{Art}, \text{Pt} = \text{Poet}, \text{Pm} = \text{Poem}$

$\forall c. \text{compose} \in \{\text{Sw}, \text{Ar}\}$

Why do we need LFMs? [Pensel, 2015]
Least Functional Model

- $\mathcal{I}_{C,T}$ is the **least functional model (LFM)** of a concept C w.r.t. a TBox \mathcal{T} iff $\mathcal{I}_{C,T} \subseteq \mathcal{I}$ for all functional models \mathcal{I} of C w.r.t. \mathcal{T}.

Example 3: TBox \mathcal{T}_2

\[
\begin{align*}
\{S\text{w} & \subseteq \text{A}r \cap \forall c.\text{Sg}; \\
\text{Pt} & \subseteq \text{A}r \cap \forall c.\text{Pm}; \\
\text{Sg} & \subseteq \text{A}t \cap \forall m.\text{Sw}; \\
\text{Pm} & \subseteq \text{A}t \cap \forall m.\text{Pt}; \\
\text{Ar} & \subseteq \forall c.\text{At}; \\
\text{At} & \subseteq \forall m.\text{Ar}\}
\end{align*}
\]

Sw = Songwriter \quad Ar = Artist \quad Sg = Song \quad At = Art \quad Pt = Poet \quad Pm = Poem \quad m = madeUpBy \quad c = compose
Least Functional Model

- $I_{C,T}$ is the **least functional model (LFM)** of a concept C w.r.t. a TBox T iff $I_{C,T} \subseteq I$ for all functional models I of C w.r.t. T.

Example 3: TBox T_2

$\{Sw \subseteq Ar \cap \forall c.Sg;
Pt \subseteq Ar \cap \forall c.Pm;
Sg \subseteq At \cap \forall m.Sw;
Pm \subseteq At \cap \forall m.Pt;
Ar \subseteq \forall c.At;
At \subseteq \forall m.Ar\}$

$Sw = Songwriter \quad Ar = Artist
Sg = Song \quad At = Art
Pt = Poet \quad Pm = Poem
m = madeUpBy \quad c = compose$

Why do we need LFMs? [Pensel, 2015]

$C \sqsubseteq_T D$ iff $I_{D,T} \subseteq I_{C,T}$ (Characterizing subsumption)
Equivalence Class of Words

Labeling Function

For all $w \in \Delta^{\mathcal{I}_C,\mathcal{T}}$, we have a labeling function

$$\mathcal{I}_{C,T}(w) := \{ A \in N_{C,T} \mid w \in A^{\mathcal{I}_C,\mathcal{T}} \}$$
Equivalence Class of Words

Labeling Function

For all $w \in \Delta^{I_C,T}$, we have a **labeling function**

$$I_{C,T}(w) := \{ A \in N_{C,T} \mid w \in A^{I_C,T} \}$$

Equivalent Class of Words

Let $u, v \in \Delta^{I_C,T}$. An **equivalence relation** $\sim_{I_C,T}$ on $\Delta^{I_C,T}$ is defined as:

$$u \sim_{I_C,T} v \text{ iff } I_{C,T}(u) = I_{C,T}(v)$$
Labeling Function

For all $w \in \Delta^{I_C, T}$, we have a **labeling function**

$$I_{C,T}(w) := \{ A \in N_{C,T} \mid w \in A^{I_C,T} \}$$

Equivalence Relation

Let $u, v \in \Delta^{I_C, T}$. An **equivalence relation** $\sim^{I_C, T}$ on $\Delta^{I_C, T}$ is defined as:

$$u \sim^{I_C, T} v \text{ iff } I_{C,T}(u) = I_{C,T}(v)$$

Equivalence Class of Words

Let $u \in \Delta^{I_C, T}$. The **equivalence class of words** u is defined as follows:

$$[u]^{I_C, T} := \{ v \in \Delta^{I_C, T} \mid u \sim^{I_C, T} v \}$$

Convention: Sometimes, to simplify the notation, we may omit $\sim^{I_C, T}$ in $[u]^{I_C, T}$.

The LFMs still have infinite number of elements with the same label. We construct the LFMs that only have a finite number of elements and change the form into a cyclic fashion to graph of functional model.
Equivalence Class of Words

Labeling Function

For all \(w \in \Delta^I \), we have a **labeling function**

\[
I_C,T(w) := \{ A \in N_C,T \mid w \in A^I \}
\]

Equivalence Relation

Let \(u, v \in \Delta^I \). An **equivalence relation** \(\sim_{I_C,T} \) on \(\Delta^I \) is defined as:

\[
u \sim_{I_C,T} v \text{ iff } I_C,T(u) = I_C,T(v)\]

Equivalence Class of Words

Let \(u \in \Delta^I \). The **equivalence class of words** \(u \) is defined as follows:

\[
[u]_{I_C,T} := \{ v \in \Delta^I \mid u \sim_{I_C,T} v \}
\]

Convention: Sometimes, to simplify the notation, we may omit \(\sim_{I_C,T} \) in \([u]_{I_C,T}\).

- The LFM still have **infinite number** of elements with the same label.
- We construct the LFM that only have a **finite number of elements** and . . .
- . . . change the form into a **cyclic fashion** → **graph of functional model**.
Example 4:

1. We have \mathcal{I}_{Sw,T_2}

 \[\begin{array}{c}
 \{ Sw, Ar \} \\
 \{ Sg, At \} \\
 \{ c, cmc, ... \} \\
 \{ m, cc, mc, ... \} \\
 \end{array} \]

2. Equivalence class of words:
 - $[\varepsilon] = \{ \varepsilon, cm, ... \}$
 \[\forall w \in [\varepsilon], \mathcal{I}(w) = \{ Sw, Ar \}; \]
 - $[c] = \{ c, cmc, ... \}$
 \[\forall w \in [c], \mathcal{I}(w) = \{ Sg, At \}; \]
 - $[m] = \{ m, cc, mc, ... \}$
 \[\forall w \in [m], \mathcal{I}(w) = \emptyset. \]

3. Construct the graph model \mathcal{J}_{Sw,T_2} (computing quotient structure $\Delta^{\mathcal{I}_{Sw,T_2}} / \sim^{\mathcal{I}_{Sw,T_2}}$)
\(J_{C,T} \) is **effectively computable in a finite time.**

- \(\Delta^{J_{C,T}} \subseteq 2^{N_{C,T}} \)
 (subsets of concept names occurring in \(T \) are finite)
- Initially, we have \([\varepsilon]^\sim_{I_{C,T}} \) with \(I(\varepsilon) = \{ B \in N_{C,T} \mid C \subseteq_T B \} \)
 (It is computable to find a maximal set from \(N_{C,T} \) s.t. all elements of the set subsume \(C \) w.r.t. \(T \))
- For each \(r \in N_{R} \), we have
 \[
 ([u]^\sim_{I_{C,T}}, [v]^\sim_{I_{C,T}}) \in r^{J_{C,T}} \text{ iff for all } B \in I(v), \text{ it holds } \sqcap I(u) \subseteq_T \forall r.B
 \]
 (It is computable to find a maximal set from \(N_{C,T} \) s.t. for all elements \(B \) of the set, we have \(\forall r.B \) subsumes \(\sqcap I(u) \) w.r.t. \(T \))
Graph of Least Functional Model

- $\mathcal{J}_{C,T}$ is effectively computable in a finite time.
 - $\Delta^{\mathcal{J}_{C,T}} \subseteq 2^{\mathcal{N}_{C,T}}$
 (subsets of concept names occurring in \mathcal{T} are finite)
 - Initially, we have $[\varepsilon]^{\mathcal{I}_{C,T}}$ with $\mathcal{I}(\varepsilon) = \{ B \in \mathcal{N}_{C,T} \mid C \sqsubseteq_T B \}$
 (It is computable to find a maximal set from $\mathcal{N}_{C,T}$ s.t. all elements of the set subsume C w.r.t. \mathcal{T})
 - For each $r \in \mathcal{N}_R$, we have $([u]^{\mathcal{I}_{C,T}}, [v]^{\mathcal{I}_{C,T}}) \in r^{\mathcal{J}_{C,T}}$ iff for all $B \in \mathcal{I}(v)$, it holds $\cap \mathcal{I}(u) \sqsubseteq_T \forall r.B$
 (It is computable to find a maximal set from $\mathcal{N}_{C,T}$ s.t. for all elements B of the set, we have $\forall r.B$ subsumes $\cap \mathcal{I}(u)$ w.r.t. \mathcal{T})

Graph of Intersection Models

- Let $\mathcal{J}_{C,T}$ and $\mathcal{J}_{D,T}$ be the graph models of $\mathcal{I}_{C,T}$ and $\mathcal{I}_{D,T}$;
- Compute the product $\mathcal{J}_{C,T} \times \mathcal{J}_{D,T}$ of $\mathcal{J}_{C,T}$ and $\mathcal{J}_{D,T}$;
- We take a subgraph \mathcal{G} of $\mathcal{J}_{C,T} \times \mathcal{J}_{D,T}$, where all elements of \mathcal{G} are reachable from $([\varepsilon]^{\mathcal{I}_{C,T}}, [\varepsilon]^{\mathcal{I}_{D,T}})$
- \mathcal{G} is the graph model of $\mathcal{I}_{C,T} \cap \mathcal{I}_{D,T}$;
Let \mathcal{I}_1 and \mathcal{I}_2 be interpretations. $S \subseteq \Delta^{\mathcal{I}_1} \times \Delta^{\mathcal{I}_2}$ is defined as a simulation from \mathcal{I}_1 to \mathcal{I}_2.

Why do we need a simulation?
Let \mathcal{I}_1 and \mathcal{I}_2 be interpretations. $S \subseteq \Delta^{\mathcal{I}_1} \times \Delta^{\mathcal{I}_2}$ is defined as a simulation from \mathcal{I}_1 to \mathcal{I}_2.

Example 5:

\[
\begin{array}{c}
\mathcal{I}_1 \{A\} \xrightarrow{d_1} \{A\} \mathcal{I}_2 \quad ((\mathcal{I}_1, d_1) \text{ is simulated } (\preceq) \text{ by } (\mathcal{I}_2, d_2)) \\
\{B\} \xrightarrow{r} \{B\}
\end{array}
\]
Let \mathcal{I}_1 and \mathcal{I}_2 be interpretations. $S \subseteq \Delta^{\mathcal{I}_1} \times \Delta^{\mathcal{I}_2}$ is defined as a simulation from \mathcal{I}_1 to \mathcal{I}_2.

Example 5:

\[\mathcal{I}_1 \{A\} \rightarrow d_1 \rightarrow d_2 \rightarrow \mathcal{I}_2 \{A\} \]

\[((\mathcal{I}_1, d_1) \text{ is simulated } (\subseteq) \text{ by } (\mathcal{I}_2, d_2)) \]

\[\mathcal{I}_1 \{B\} \rightarrow d_3 \rightarrow d_4 \rightarrow \mathcal{I}_2 \{A,B\} \]
Let \(\mathcal{I}_1 \) and \(\mathcal{I}_2 \) be interpretations.

\[S \subseteq \Delta^{\mathcal{I}_1} \times \Delta^{\mathcal{I}_2} \]

is defined as a simulation from \(\mathcal{I}_1 \) to \(\mathcal{I}_2 \).

Example 5:

\[
\begin{align*}
\mathcal{I}_1 & \{A\} \quad \downarrow \quad \{A\} \quad \mathcal{I}_2 \\
\{B\} & \quad \downarrow \quad \{A, B\}
\end{align*}
\]

\((\mathcal{I}_1, d_1)\) is simulated \((\subseteq)\) by \((\mathcal{I}_2, d_2)\)

\((\mathcal{I}_1, d_3)\) is simulated \((\subseteq)\) by \((\mathcal{I}_2, d_4)\)
Let \mathcal{I}_1 and \mathcal{I}_2 be interpretations. $S \subseteq \Delta^{\mathcal{I}_1} \times \Delta^{\mathcal{I}_2}$ is defined as a simulation from \mathcal{I}_1 to \mathcal{I}_2.

Example 5:

$\mathcal{I}_1 \{A\}$ $\xrightarrow{d_1} \mathcal{I}_2 \{A\}$ ((\mathcal{I}_1, d_1) is simulated (\preceq) by (\mathcal{I}_2, d_2))

$\mathcal{I}_1 \{A\}$ $\xrightarrow{d_3} \mathcal{I}_2 \{A,B\}$ ((\mathcal{I}_1, d_3) is simulated (\preceq) by (\mathcal{I}_2, d_4))

(\mathcal{I}_1,d) is simulation-equivalent to (\mathcal{I}_2,e) (denoted by $(\mathcal{I}_1,d) \simeq (\mathcal{I}_2,e)$) if $(\mathcal{I}_1,d) \preceq (\mathcal{I}_2,e)$ and $(\mathcal{I}_2,e) \preceq (\mathcal{I}_1,d)$.
Let \mathcal{I}_1 and \mathcal{I}_2 be interpretations. $S \subseteq \Delta^{\mathcal{I}_1} \times \Delta^{\mathcal{I}_2}$ is defined as a simulation from \mathcal{I}_1 to \mathcal{I}_2.

Example 5:

(\mathcal{I}_1, d_1) is simulated (\subseteq) by (\mathcal{I}_2, d_2)

(\mathcal{I}_1, d_3) is simulated (\subseteq) by (\mathcal{I}_2, d_4)

(\mathcal{I}_1, d) is simulation-equivalent to (\mathcal{I}_2, e) (denoted by $(\mathcal{I}_1, d) \simeq (\mathcal{I}_2, e)$) if $(\mathcal{I}_1, d) \subseteq (\mathcal{I}_2, e)$ and $(\mathcal{I}_2, e) \subseteq (\mathcal{I}_1, d)$.

This notion is applied analogously to functional models and graph models.
Simulation between Interpretations

Let \mathcal{I}_1 and \mathcal{I}_2 be interpretations. $S \subseteq \Delta^{\mathcal{I}_1} \times \Delta^{\mathcal{I}_2}$ is defined as a simulation from \mathcal{I}_1 to \mathcal{I}_2.

Example 5:

\[
\begin{align*}
\mathcal{I}_1 & \{A\} \quad d_1 \quad d_2 \quad \{A\} \quad \mathcal{I}_2 \quad ((\mathcal{I}_1, d_1) \text{ is simulated } \preceq \text{ by } (\mathcal{I}_2, d_2)) \\
& \downarrow r \quad \quad \quad \downarrow r \\
\{B\} & \quad d_3 \quad d_4 \quad \{A,B\} \\
& ((\mathcal{I}_1, d_3) \text{ is simulated } \preceq \text{ by } (\mathcal{I}_2, d_4))
\end{align*}
\]

(\mathcal{I}_1,d) is simulation-equivalent to (\mathcal{I}_2,e) (denoted by $(\mathcal{I}_1,d) \simeq (\mathcal{I}_2,e)$) if $(\mathcal{I}_1,d) \preceq (\mathcal{I}_2,e)$ and $(\mathcal{I}_2,e) \preceq (\mathcal{I}_1,d)$.

This notion is applied analogously to functional models and graph models.

Why do we need a simulation?

$C \subseteq_{T} D$ iff $\mathcal{J}_{D,T} \preceq \mathcal{J}_{C,T}$ (Characterizing subsumption)
A Condition whether a Concept is the LCS

Let E be an \mathcal{FL}_0-concept.

E is the $\text{lcs}_T(C, D)$ iff $\mathcal{I}_{E,T} = \mathcal{I}_{C,T} \cap \mathcal{I}_{D,T}$
A Condition whether a Concept is the LCS

Let E be an \mathcal{FL}_0-concept.

E is the $\text{lcs}_T(C, D)$ iff $\mathcal{I}_{E,T} = \mathcal{I}_{C,T} \cap \mathcal{I}_{D,T}$

$\implies \mathcal{I}_{E,T}$ and $\mathcal{I}_{C,T} \cap \mathcal{I}_{D,T}$ are infinite models!
A Condition whether a Concept is the LCS

Let E be an \mathcal{FL}_0-concept.

E is the $lcs_T(C, D)$ iff $\mathcal{I}_{E,T} = \mathcal{I}_{C,T} \cap \mathcal{I}_{D,T}$

$\implies \mathcal{I}_{E,T}$ and $\mathcal{I}_{C,T} \cap \mathcal{I}_{D,T}$ are infinite models!

A Condition whether a Concept is the LCS

Let E be an \mathcal{FL}_0-concept.

E is the $lcs_T(C, D)$ iff $\mathcal{J}_{E,T} \sim \mathcal{G}$
A Condition whether a Concept is the LCS

Let \(E \) be an FL\(_0\)-concept.

\[E \text{ is the } lcs_T(C, D) \text{ iff } I_{E,T} = I_{C,T} \cap I_{D,T} \]

\[\implies I_{E,T} \text{ and } I_{C,T} \cap I_{D,T} \text{ are infinite models!} \]

A Condition whether a Concept is the LCS

Let \(E \) be an FL\(_0\)-concept.

\[E \text{ is the } lcs_T(C, D) \text{ iff } J_{E,T} \simeq G \]

\[\implies \text{RP I is decidable!} \]
The **role-depth** of a concept C ($rd(C)$) is the maximum number of \forall-quantifier in C.

A **characteristic concept** K with $rd(K) = k$ can be obtained from a functional or graph model by traversing them until the depth k.

Convention: X_k is the k-characteristic concept of I_C, $T \cap I_D$, T or G, for $k \in \mathbb{N}$.
The **role-depth** of a concept C ($rd(C)$) is the maximum number of \forall-quantifier in C.

A **characteristic concept** K with $rd(K) = k$ can be obtained from a functional or graph model by traversing them until the depth k.

Example 6: \mathcal{J}_{Sw,T_2}

- 0-characteristic concept of $\mathcal{J}_{Sw,T} = Sw \cap Ar$;
- 1-characteristic concept of $\mathcal{J}_{Sw,T} = Sw \cap Ar \cap \forall c.Sg \cap \forall c.At \cap \forall m.T$;
- 2-characteristic concept of $\mathcal{J}_{Sw,T} = Sw \cap Ar \cap \forall c.Sg \cap \forall c.At \cap \forall m.T \cap \forall cc.T \cap \forall cm.Sw \cap \forall cm.Ar \cap \forall cc.T \cap \forall cm.T$
The **role-depth** of a concept C ($rd(C)$) is the maximum number of \forall-quantifier in C.

A **characteristic concept** K with $rd(K) = k$ can be obtained from a functional or graph model by traversing them until the depth k.

Example 6: \mathcal{J}_{Sw,T_2}

- 0-characteristic concept of $\mathcal{J}_{Sw,T} = Sw \cap Ar$;
- 1-characteristic concept of $\mathcal{J}_{Sw,T} = Sw \cap Ar \cap \forall c.Sg \cap \forall c.At \cap \forall m.T$;
- 2-characteristic concept of $\mathcal{J}_{Sw,T} = Sw \cap Ar \cap \forall c.Sg \cap \forall c.At \cap \forall m.T \cap \forall cc.T \cap \forall cm.Sw \cap \forall cm.Ar \cap \forall cc.T \cap \forall cm.T$

Convention: X^k is the k-characteristic concept of $\mathcal{I}_{C,T} \cap \mathcal{I}_{D,T}$ or \mathcal{G}, for $k \in \mathbb{N}$.
Label-Synchronous Elements

Let \(w \in \Delta^{\mathcal{I}_C, \mathcal{T}} \) and \(Q = \bigcap \{ B \in \mathcal{N}_{C, \mathcal{T}} \mid B \in \mathcal{I}_{C, \mathcal{T}}(w) \} \).

- \(w \in \Delta^{\mathcal{I}_C, \mathcal{T}} \) is **label-synchronous in** \(\mathcal{I}_{C, \mathcal{T}} \) iff \((\mathcal{I}_{C, \mathcal{T}}, w) = (\mathcal{I}_Q, \mathcal{T}, e) \)
- \(\lfloor w \rfloor \) is **label-synchronous in** \(\mathcal{J}_{C, \mathcal{T}} \) iff \((\mathcal{J}_{C, \mathcal{T}}, \lfloor w \rfloor) \simeq (\mathcal{J}_Q, \mathcal{T}, \lfloor e \rfloor) \)
Let \(w \in \Delta^{I_{C,T}} \) and \(Q = \bigcap \{ B \in N_{C,T} \mid B \in I_{C,T}(w) \} \).

- \(w \in \Delta^{I_{C,T}} \) is \textbf{label-synchronous in} \(I_{C,T} \) iff \((I_{C,T}, w) = (I_Q,T,\varepsilon) \)
- \([w] \) is \textbf{label-synchronous in} \(J_{C,T} \) iff \((J_{C,T}, [w]) \simeq (J_Q,T,[\varepsilon]) \)

Example 7:

\(J_{Sw,T} \)

\[\{Sw, Ar\} \]

\[[\varepsilon] \]

\[\{Sg, At\} \]

\[[c] \]

\(c \)

\(m \)

\(m \)

\(\emptyset \)

\(c \)

\(c,m \)

\(c \)

\(c,m \)

\([m] \)

\([c] \) is label-synchronous in \(J_{Sw,T_2} \) because \((J_{Sw,T_2}, [c]) \simeq (J_{Sg\cap At,T_2}, [\varepsilon]) \)
Conditions for the Existence of the LCS

The $\text{lcs}_T(C, D)$ exists iff there is a $k \in \mathbb{N}$ s.t.

1. $\mathcal{I}_{C, T} \cap \mathcal{I}_{D, T} = \mathcal{I}_{X^k, T}$ iff
2. $(G, [\varepsilon]) \simeq (\mathcal{J}_{X^k, T}, [\varepsilon])$.

RP II: Does the LCS of C and D w.r.t. T exist?
RP II: Does the LCS of C and D w.r.t. \mathcal{T} exist?

Conditions for the Existence of the LCS

The $\text{lcs}_{\mathcal{T}}(C, D)$ exists iff there is a $k \in \mathbb{N}$ s.t.

- $\mathcal{I}_{C, \mathcal{T}} \cap \mathcal{I}_{D, \mathcal{T}} = \mathcal{I}_{X^k, \mathcal{T}}$ iff
- $(\mathcal{G}, [\varepsilon]) \simeq (\mathcal{J}_{X^k, \mathcal{T}}, [\varepsilon])$.

\implies infinitely many k; $\mathcal{I}_{C, \mathcal{T}} \cap \mathcal{I}_{D, \mathcal{T}}$ and $\mathcal{I}_{X^k, \mathcal{T}}$ are infinite models.
RP II: Does the LCS of C and D w.r.t. \mathcal{T} exist?

Conditions for the Existence of the LCS

The $lcs_{\mathcal{T}}(C, D)$ exists iff there is a $k \in \mathbb{N}$ s.t.

- $\mathcal{I}_{C,\mathcal{T}} \cap \mathcal{I}_{D,\mathcal{T}} = \mathcal{I}_{X^k,\mathcal{T}}$ iff
- $(\mathcal{G}, [\mathcal{E}]) \simeq (\mathcal{I}_{X^k,\mathcal{T}}, [\mathcal{E}])$.

\implies infinitely many k; $\mathcal{I}_{C,\mathcal{T}} \cap \mathcal{I}_{D,\mathcal{T}}$ and $\mathcal{I}_{X^k,\mathcal{T}}$ are infinite models.

Relationship between the LFM of X^k and Label-Synchronous Elements

$\mathcal{I}_{C,\mathcal{T}} \cap \mathcal{I}_{D,\mathcal{T}} = \mathcal{I}_{X^k,\mathcal{T}}$ iff for all $w \in \mathbb{N}_R^*$ with $|w| \geq k$, it holds that

- w is label-synchronous in $\mathcal{I}_{C,\mathcal{T}} \cap \mathcal{I}_{D,\mathcal{T}}$ and $\mathcal{I}_{X^k,\mathcal{T}}$.
RP II: Does the LCS of C and D w.r.t. \mathcal{T} exist?

Conditions for the Existence of the LCS

The $lcs_\mathcal{T}(C, D)$ exists iff there is a $k \in \mathbb{N}$ s.t.

- $\mathcal{I}_{C,\mathcal{T}} \cap \mathcal{I}_{D,\mathcal{T}} = \mathcal{I}_{X^k,\mathcal{T}}$ iff
- $(\mathcal{G}, [\varepsilon]) \simeq (\mathcal{J}_{X^k,\mathcal{T}}, [\varepsilon])$.

\implies infinitely many k; $\mathcal{I}_{C,\mathcal{T}} \cap \mathcal{I}_{D,\mathcal{T}}$ and $\mathcal{I}_{X^k,\mathcal{T}}$ are infinite models.

Relationship between the LFM of X^k and Label-Synchronous Elements

$\mathcal{I}_{C,\mathcal{T}} \cap \mathcal{I}_{D,\mathcal{T}} = \mathcal{I}_{X^k,\mathcal{T}}$ iff for all $w \in \mathbb{N}_R^*$ with $|w| \geq k$, it holds that

- w is label-synchronous in $\mathcal{I}_{C,\mathcal{T}} \cap \mathcal{I}_{D,\mathcal{T}}$ and $\mathcal{I}_{X^k,\mathcal{T}}$.

Main Theorem

The $lcs_\mathcal{T}(C, D)$ exists iff all cycles in \mathcal{G} only contains label-synchronous elements.
RP II: Does the LCS of C and D w.r.t. \mathcal{T} exist?

Conditions for the Existence of the LCS

The $lcs_{\mathcal{T}}(C, D)$ exists iff there is a $k \in \mathbb{N}$ s.t.

- $\mathcal{I}_{C, \mathcal{T}} \cap \mathcal{I}_{D, \mathcal{T}} = \mathcal{I}_{X^k, \mathcal{T}}$ iff
- $(\mathcal{G}, [\varepsilon]) \cong (\mathcal{J}_{X^k, \mathcal{T}}, [\varepsilon])$.

\implies infinitely many k; $\mathcal{I}_{C, \mathcal{T}} \cap \mathcal{I}_{D, \mathcal{T}}$ and $\mathcal{I}_{X^k, \mathcal{T}}$ are infinite models.

Relationship between the LFM of X^k and Label-Synchronous Elements

$\mathcal{I}_{C, \mathcal{T}} \cap \mathcal{I}_{D, \mathcal{T}} = \mathcal{I}_{X^k, \mathcal{T}}$ iff for all $w \in \mathbb{N}_R^*$ with $|w| \geq k$, it holds that

- w is label-synchronous in $\mathcal{I}_{C, \mathcal{T}} \cap \mathcal{I}_{D, \mathcal{T}}$ and $\mathcal{I}_{X^k, \mathcal{T}}$.

Main Theorem

The $lcs_{\mathcal{T}}(C, D)$ exists iff all cycles in \mathcal{G} only contains label-synchronous elements.

\implies **RP II is decidable!**

- \mathcal{G} is computable in a finite time;
- Finitely many cycles in \mathcal{G};
- It is decidable whether $[w]$ is label-synchronous in \mathcal{G}.
RP III: If the LCS exists, what is the LCS?

How to compute the LCS? And What is the Size of the LCS?

Let \(n = |\Delta^G| \). It holds that

- The \(lcs_T(C, D) \) exists iff \((G, [\varepsilon]) \simeq (J_{X^{n+1}}, T, [\varepsilon]) \);
 - \(X^{n+1} \) is the \(lcs_T(C, D) \).
- \(rd(lcs_T(C, D)) \leq 2^{2^{|N_C, T|+1}} \).
How to compute the LCS? And What is the Size of the LCS?

Let $n = |\Delta^G|$. It holds that

- The $lcs_T(C, D)$ exists iff $(G, [\varepsilon]) \simeq (J_{X_{n+1}}, T, [\varepsilon])$;
 - X^{n+1} is the $lcs_T(C, D)$.
- $rd(lcs_T(C, D)) \leq 2^{2^{|N_{C,T}|+1}}$.

\implies RP III is computable!
An Algorithm to Compute the LCS, if it Exists

1. Given \mathcal{T}_2 in PANF and $Sw, Pt \in N_{C, \mathcal{T}_2}$;
An Algorithm to Compute the LCS, if it Exists

1. Given T_2 in PANF and $Sw, Pt \in N_{C,T_2}$;
2. Compute J_{Sw, T_2} and J_{Pt, T_2};

3. Compute the product $J_{Sw, T_2} \times J_{Pt, T_2}$ of J_{Sw, T_2} and J_{Pt, T_2};
4. Compute the subgraph G of $J_{Sw, T_2} \times J_{Pt, T_2}$;

5. Since $\Delta G = 3$, we compute the 4-characteristic concept X_4 of G and construct J_{X_4, T_2};
6. Check whether (G, ε) isomorphic $(J_{X_4, T_2}, \varepsilon)$. Yes, X_4 is the lcs $T_2(Sw, Pt)$.
Otherwise, the lcs $T_2(Sw, Pt)$ does not exist.
An Algorithm to Compute the LCS, if it Exists

1. Given T_2 in PANF and $Sw, Pt \in N_{C,T_2}$;
2. Compute J_{Sw,T_2} and J_{Pt,T_2};
3. Compute the product $J_{Sw,T_2} \times J_{Pt,T_2}$ of J_{Sw,T_2} and J_{Pt,T_2};
4. Compute the subgraph G of $J_{Sw,T_2} \times J_{Pt,T_2}$;
5. Since $\Delta G = 3$, we compute the 4-characteristic concept X_4 of G and construct J_{X_4,T_2};
6. Check whether $(G, \varepsilon) \equiv (J_{X_4,T_2}, \varepsilon)$. Yes, X_4 is the lcs $T_2(Sw, Pt)$! Otherwise, the lcs $T_2(Sw, Pt)$ does not exist.
An Algorithm to Compute the LCS, if it Exists

1. Given T_2 in PANF and $Sw, Pt \in N_{C,T_2}$;
2. Compute J_{Sw,T_2} and J_{Pt,T_2};
3. Compute the product $J_{Sw,T_2} \times J_{Pt,T_2}$ of J_{Sw,T_2} and J_{Pt,T_2};
4. Compute the subgraph G of $J_{Sw,T_2} \times J_{Pt,T_2}$;
5. Since G divides $\Delta = 3$, we compute the 4-characteristic concept X_4 of G and construct J_{X_4,T_2};
6. Check whether (G, ε) divides $(J_{X_4,T_2}, \varepsilon)$. Yes, X_4 is the LCS of (Sw, Pt)! Otherwise, the LCS of (Sw, Pt) does not exist.
An Algorithm to Compute the LCS, if it Exists

1. Given T_2 in PANF and $Sw, Pt \in N_{C,T_2}$;
2. Compute J_{Sw,T_2} and J_{Pt,T_2};
3. Compute the product $J_{Sw,T_2} \times J_{Pt,T_2}$ of J_{Sw,T_2} and J_{Pt,T_2};
4. Compute the subgraph G of $J_{Sw,T_2} \times J_{Pt,T_2}$;
5. Since $|\Delta^G| = 3$, we compute the 4-characteristic concept X^4 of G and construct J_{X^4,T_2};
An Algorithm to Compute the LCS, if it Exists

1. Given T_2 in PANF and $Sw, Pt \in N_{C,T_2}$;
2. Compute J_{Sw,T_2} and J_{Pt,T_2};
3. Compute the product $J_{Sw,T_2} \times J_{Pt,T_2}$ of J_{Sw,T_2} and J_{Pt,T_2};
4. Compute the subgraph G of $J_{Sw,T_2} \times J_{Pt,T_2}$;
5. Since $|\Delta^G| = 3$, we compute the 4-characteristic concept X^4 of G and construct J_{X^4,T_2};
6. Check whether $(G, [\varepsilon]) \simeq (J_{X^4,T}, [\varepsilon])$. Yes, X^4 is the $lcs_{T_2}(Sw, Pt)$! Otherwise, the $lcs_{T_2}(Sw, Pt)$ does not exist.
Conclusions

RP I: An \mathcal{FL}_0-concept E is the $lcs_T(C,D)$ iff

1. $I_{E,T} = I_{C,T} \cap I_{D,T}$;
2. $(J_{E,T},[\varepsilon]) \simeq (G,[\varepsilon])$.

Future Works

- Practical implementation for the results above;
- Computing the lcs w.r.t. general \mathcal{FL}_0-TBox;
- Computing the most specific concept of an individual w.r.t. general \mathcal{FL}_0-TBox.
Conclusions and Future Works

Conclusions

- **RP I:** An \mathcal{FL}_0-concept E is the $\text{lcs}_T(C,D)$ iff
 - $\mathcal{I}_{E,T} = \mathcal{I}_{C,T} \cap \mathcal{I}_{D,T}$;
 - $(\mathcal{J}_{E,T},[\varepsilon]) \simeq (\mathcal{G},[\varepsilon])$.

- **RP II:** The $\text{lcs}_T(C,D)$ exists iff
 - There is a $k \in \mathbb{N}$ s.t. $\mathcal{I}_{C,T} \cap \mathcal{I}_{D,T} = \mathcal{I}_{X^k,T}$;
 - There is a $k \in \mathbb{N}$ s.t. $(\mathcal{G},[\varepsilon]) \simeq \mathcal{J}_{X^k,T}$;
 - All cycles in \mathcal{G} only contains label-synchronous elements.

Future Works

Practical implementation for the results above;
Computing the lcs_T w.r.t. general \mathcal{FL}_0-TBox;
Computing the most specific concept of an individual w.r.t. general \mathcal{FL}_0-TBox.
Conclusions and Future Works

Conclusions

RP I: An \mathcal{FL}_0-concept E is the $lcs_T(C, D)$ iff

- $I_{E,T} = I_{C,T} \cap I_{D,T}$;
- $(J_{E,T} , [\varepsilon]) \simeq (G , [\varepsilon])$.

RP II: The $lcs_T(C, D)$ exists iff

- There is a $k \in \mathbb{N}$ s.t. $I_{C,T} \cap I_{D,T} = I_{X_k,T}$;
- There is a $k \in \mathbb{N}$ s.t. $(G , [\varepsilon]) \simeq J_{X_k,T}$;
- All cycles in G only contains label-synchronous elements.

RP III: Let $n = |\Delta^G|$. If the $lcs_T(C, D)$ exists, then

- X^{n+1} is the $lcs_T(C, D)$, and
- $rd(lcs_T(C, D)) \leq 2^{2x|N_{C,T}|+1}$.

Future Works

- Practical implementation for the results above;
- Computing the lcs w.r.t. general \mathcal{FL}_0-TBox;
- Computing the most specific concept of an individual w.r.t. general \mathcal{FL}_0-TBox.
Conclusions and Future Works

Conclusions

- **RP I:** An \mathcal{FL}_0-concept E is the $lcs_T(C,D)$ iff
 - $\mathcal{I}_{E,T} = \mathcal{I}_{C,T} \cap \mathcal{I}_{D,T}$;
 - $(\mathcal{J}_{E,T},[\varepsilon]) \simeq (\mathcal{G},[\varepsilon])$.
- **RP II:** The $lcs_T(C,D)$ exists iff
 - There is a $k \in \mathbb{N}$ s.t. $\mathcal{I}_{C,T} \cap \mathcal{I}_{D,T} = \mathcal{I}_{X^k,T}$;
 - There is a $k \in \mathbb{N}$ s.t. $(\mathcal{G},[\varepsilon]) \simeq \mathcal{J}_{X^k,T}$;
 - All cycles in \mathcal{G} only contains label-synchronous elements.
- **RP III:** Let $n = |\Delta^G|$. If the $lcs_T(C,D)$ exists, then
 - X^{n+1} is the $lcs_T(C,D)$, and
 - $rd(lcs_T(C,D)) \leq 2^{2^{|N_{C,T}|+1}}$.

Future Works

- Practical implementation for the results above;
- Computing the lcs w.r.t. general \mathcal{FL}_E-TBox;
- Computing the most specific concept of an individual w.r.t. general \mathcal{FL}_0-TBox.
Thank You