Algorithms for Computing Least Common Subsumers in General $\mathcal{FL}_0\text{-}\mathsf{TBoxes}$

Adrian Nuradiansyah

International Center for Computational Logic TU Dresden

Master's Thesis

Supervisor: Dr. Anni-Yasmin Turhan Advisor: Benjamin Zarriess

September 27, 2016

A Bottom-up Approach for Ontology Construction

1. Supporting knowledge engineers to construct ontology by bottom-up approach

Image: Image:

э

A Bottom-up Approach for Ontology Construction

1. Supporting knowledge engineers to construct ontology by bottom-up approach

- 2. [Zarriess and Turhan, 2013] have found:
 - A decision procedure to decide the existence of the lcs w.r.t. general \mathcal{EL} -TBoxes
 - An algorithm for computing least common subsumers in general \mathcal{EL} -TBoxes

A Bottom-up Approach for Ontology Construction

1. Supporting knowledge engineers to construct ontology by bottom-up approach

- 2. [Zarriess and Turhan, 2013] have found:
 - A decision procedure to decide the existence of the lcs w.r.t. general \mathcal{EL} -TBoxes
 - An algorithm for computing least common subsumers in general $\mathcal{EL}\text{-}\mathsf{TBoxes}$
- 3. How about \mathcal{FL}_0 ?
 - No decision procedures for the problem of the existence of the lcs w.r.t. general \mathcal{FL}_0 -TBoxes.
 - No algorithms for computing least common subsumers in general \mathcal{FL}_0 -TBoxes.

1. Example 1: The lcs does not exist

 $\mathsf{TBox} \ \mathcal{T}_1 :=$

{Songwriter ⊑ Artist⊓∀composes.Song
Poet ⊑ Artist⊓∀composes.Poem
Song ⊑ Art⊓∀madeUpBy.Songwriter
Poem ⊑ Art⊓∀madeUpBy.Poet}

э

Image: A matrix

1. Example 1: The lcs does not exist TBox $T_1 :=$

{Songwriter	⊑	Artist⊓∀ <i>composes</i> .Song
Poet	⊑	Artist⊓∀ <i>composes</i> .Poem
Song	⊑	Art⊓∀ <i>madeUpBy</i> .Songwriter
Poem	\subseteq	Art⊓∀ <i>madeUpBy</i> .Poet}

- The lcs of <code>Songwriter</code> and <code>Poet</code> w.r.t. \mathcal{T}_1 does not exist.
- Their cyclic definitions allow us to always find a more specific common subsumer of them.

э

- ∢ ≣ →

Image: A match a ma

1. Example 1: The lcs does not exist TBox $T_1 :=$

{Songwriter	⊑	Artist⊓∀ <i>composes</i> .Song
Poet	⊑	Artist⊓∀ <i>composes</i> .Poem
Song	⊑	Art⊓∀ <i>madeUpBy</i> .Songwriter
Poem	⊑	Art⊓∀ <i>madeUpBy</i> .Poet}

- The lcs of <code>Songwriter</code> and <code>Poet</code> w.r.t. \mathcal{T}_1 does not exist.
- Their cyclic definitions allow us to always find a more specific common subsumer of them.
- Common subsumers of Songwriter and Poet w.r.t. \mathcal{T}_1 :
 - Artist;

. . .

- 2. Artist⊓∀*composes*.Art;
- 3. Artist ⊓ ∀ composes.(Art ⊓ ∀ madeUpBy.Artist);

Image: A matrix

1. Example 1: The lcs does not exist TBox $\mathcal{T}_1 :=$

{Songwriter	⊑	Artist⊓∀ <i>composes</i> .Song
Poet	⊑	Artist⊓∀ <i>composes</i> .Poem
Song	⊑	Art⊓∀ <i>madeUpBy</i> .Songwriter
Poem	⊑	Art⊓∀ <i>madeUpBy</i> .Poet}

- The lcs of <code>Songwriter</code> and <code>Poet</code> w.r.t. \mathcal{T}_1 does not exist.
- Their cyclic definitions allow us to always find a more specific common subsumer of them.
- Common subsumers of <code>Songwriter</code> and <code>Poet</code> w.r.t. \mathcal{T}_1 :
 - 1. Artist;
 - Artist ⊓ ∀ composes.Art;
 - 3. Artist⊓∀*composes*.(Art⊓∀*madeUpBy*.Artist);
- 2. Example 2: The lcs exists $\mathcal{T}_2 := \mathcal{T}_1 \cup$

{Artist ⊑ ∀*composes*.Art Art ⊑ ∀*madeUpBy*.Artist}

The lcs of Songwriter and Poet w.r.t. \mathcal{T}_2 is Artist.

Adrian Nuradiansyah	M
---------------------	---

Let C, D, E be \mathcal{FL}_0 -concepts and \mathcal{T} be a general \mathcal{FL}_0 -TBox. 1. Research Problem I (RP I):

Is concept *E* the lcs of *C* and *D* w.r.t. T?

2. Research Problem II (RP II):

Does the lcs of C and D w.r.t. T exist?

3. Research Problem III (RP III):

If the lcs of C and D w.r.t. \mathcal{T} exists, then what is the lcs? And how big is the size of the lcs?

- N_C : set of concept names with $A \in N_C \rightarrow$ Songwriter, Poet, Song, Poem, ...
- N_R : set of role names with $r \in N_R \rightarrow$ writes, composes, madeUpBy, arranges, ...

- N_C : set of concept names with $A \in N_C \rightarrow$ Songwriter, Poet, Song, Poem, ...
- N_R : set of role names with $r \in N_R \rightarrow$ writes, composes, madeUpBy, arranges, ...
- \mathcal{FL}_0 concepts are built by using the following structures:

 $C,D ::= \top \mid A \mid C \sqcap D \mid \forall r.C$

- N_C : set of concept names with $A \in N_C \rightarrow$ Songwriter, Poet, Song, Poem, ...
- N_R : set of role names with $r \in N_R \rightarrow$ writes, composes, madeUpBy, arranges, ...
- \mathcal{FL}_0 concepts are built by using the following structures:

 $C,D ::= \top \mid A \mid C \sqcap D \mid \forall r.C$

- An interpretation $\mathcal{I} = (\Delta^{\mathcal{I}}, \cdot^{\mathcal{I}})$ consists of:
 - $\Delta^{\mathcal{I}}$: a non-empty domain. Here we define $\Delta^{\mathcal{I}} = N_R^*$
 - $\cdot^{\mathcal{I}}$ with $A^{\mathcal{I}} \subseteq \Delta^{\mathcal{I}}$ and $r^{\mathcal{I}} \subseteq \Delta^{\mathcal{I}} \times \Delta^{\mathcal{I}}$

- N_C : set of concept names with $A \in N_C \rightarrow$ Songwriter, Poet, Song, Poem, ...
- N_R : set of role names with $r \in N_R \rightarrow$ writes, composes, madeUpBy, arranges, ...
- \mathcal{FL}_0 concepts are built by using the following structures:

 $C,D ::= \top \mid A \mid C \sqcap D \mid \forall r.C$

- An interpretation $\mathcal{I} = (\Delta^{\mathcal{I}}, \cdot^{\mathcal{I}})$ consists of:
 - $\Delta^{\mathcal{I}}$: a non-empty domain. Here we define $\Delta^{\mathcal{I}} = N_{R}^{*}$
 - $\cdot^{\mathcal{I}}$ with $A^{\mathcal{I}} \subseteq \Delta^{\mathcal{I}}$ and $r^{\mathcal{I}} \subseteq \Delta^{\mathcal{I}} \times \Delta^{\mathcal{I}}$
- The mapping $\cdot^{\mathcal{I}}$ is extended to $\mathcal{FL}_0\text{-concepts}$

Syntax	Semantic
т (Тор)	$\Delta^{\mathcal{I}}$
$C \sqcap D$ (Conjunction)	$\mathcal{C}^{\mathcal{I}} \cap \mathcal{D}^{\mathcal{I}}$
$\forall r.C$ (Value Restriction)	$\{d \in \Delta^{\mathcal{I}} \mid e \in C^{\mathcal{I}} \text{ for all } (d, e) \in r^{\mathcal{I}}\}$

- N_C : set of concept names with $A \in N_C \rightarrow$ Songwriter, Poet, Song, Poem, ...
- N_R : set of role names with $r \in N_R \rightarrow$ writes, composes, madeUpBy, arranges, ...
- \mathcal{FL}_0 concepts are built by using the following structures:

 $C,D ::= \top \mid A \mid C \sqcap D \mid \forall r.C$

- An interpretation $\mathcal{I} = (\Delta^{\mathcal{I}}, \cdot^{\mathcal{I}})$ consists of:
 - $\Delta^{\mathcal{I}}$: a non-empty domain. Here we define $\Delta^{\mathcal{I}} = N_R^*$
 - $\cdot^{\mathcal{I}}$ with $A^{\mathcal{I}} \subseteq \Delta^{\mathcal{I}}$ and $r^{\mathcal{I}} \subseteq \Delta^{\mathcal{I}} \times \Delta^{\mathcal{I}}$
- The mapping $\cdot^{\mathcal{I}}$ is extended to $\mathcal{FL}_0\text{-concepts}$

Syntax	Semantic
т (Тор)	$\Delta^{\mathcal{I}}$
$C \sqcap D$ (Conjunction)	$\mathcal{C}^{\mathcal{I}} \cap D^{\mathcal{I}}$
$\forall r.C$ (Value Restriction)	$\{d \in \Delta^{\mathcal{I}} \mid e \in C^{\mathcal{I}} \text{ for all } (d, e) \in r^{\mathcal{I}}\}$

Conventions:

•
$$\forall r_1. \forall r_2... \forall r_n A \equiv \forall w. A$$
, where $w = r_1 r_2... r_n \in N_R^*$.

• $A \equiv \forall \varepsilon. A$

- A (general) \mathcal{FL}_0 TBox \mathcal{T} is a finite set of General Concept Inclusions (GCIs) of the form of $C \subseteq D$.
- $N_{C,T}$: set of concept names occurring in T.

- A (general) \mathcal{FL}_0 TBox \mathcal{T} is a finite set of General Concept Inclusions (GCIs) of the form of $C \subseteq D$.
- $N_{C,T}$: set of concept names occurring in T.

Normalization in \mathcal{FL}_0 -TBoxes [Pensel,2015]

• A concept is in *concept-conjunction-normal-form* (CCNF) iff it is of the form $\forall w_1.A_1 \sqcap ... \sqcap \forall w_n.A_n$,

where $A_i \in N_C$ and $w_i \in N_R^*$, for all $1 \le i \le n$.

- An *FL*₀-TBox *T* is in *plane-axiom-normal-form* (PANF) iff
 - All left- and right-hand sides of all GCIs in \mathcal{T} are in CCNF;
 - Every $\forall w.A$, occurring in \mathcal{T} , has $|w| \leq 1$

Models, Subsumption, and Least Common Subsumer

- An interpretation \mathcal{I} satisfies a GCI $C \subseteq D$ iff $C^{\mathcal{I}} \subseteq D^{\mathcal{I}}$.
- \mathcal{I} is a *model* of \mathcal{T} iff it satisfies all GCIs in \mathcal{T} .
- *C* is subsumed by *D* w.r.t. \mathcal{T} (denoted by $C \equiv_{\mathcal{T}} D$) iff $C^{\mathcal{I}} \subseteq D^{\mathcal{I}}$ for all models \mathcal{I} of \mathcal{T} . This relationship is called subsumption.

Models, Subsumption, and Least Common Subsumer

- An interpretation \mathcal{I} satisfies a GCI $C \subseteq D$ iff $C^{\mathcal{I}} \subseteq D^{\mathcal{I}}$.
- \mathcal{I} is a *model* of \mathcal{T} iff it satisfies all GCIs in \mathcal{T} .
- C is subsumed by D w.r.t. \mathcal{T} (denoted by $C \equiv_{\mathcal{T}} D$) iff $C^{\mathcal{I}} \subseteq D^{\mathcal{I}}$ for all models \mathcal{I} of \mathcal{T} . This relationship is called subsumption.
- An \mathcal{FL}_0 -concept *E* is the least common subsumer(lcs_T(*C*, *D*)) of *C* and *D* w.r.t. \mathcal{T} iff:
 - $C \subseteq_{\mathcal{T}} E \text{ and } D \subseteq_{\mathcal{T}} E$
 - For all concepts F such that $C \subseteq_{\mathcal{T}} F$ and $D \subseteq_{\mathcal{T}} F$, then $E \subseteq_{\mathcal{T}} F$.

Models, Subsumption, and Least Common Subsumer

- An interpretation \mathcal{I} satisfies a GCI $C \subseteq D$ iff $C^{\mathcal{I}} \subseteq D^{\mathcal{I}}$.
- I is a model of T iff it satisfies all GCIs in T.
- C is subsumed by D w.r.t. \mathcal{T} (denoted by $C \equiv_{\mathcal{T}} D$) iff $C^{\mathcal{I}} \subseteq D^{\mathcal{I}}$ for all models \mathcal{I} of \mathcal{T} . This relationship is called subsumption.
- An \mathcal{FL}_0 -concept *E* is the least common subsumer(lcs_{\mathcal{T}}(*C*, *D*)) of *C* and *D* w.r.t. \mathcal{T} iff:
 - $C \sqsubseteq_{\mathcal{T}} E \text{ and } D \sqsubseteq_{\mathcal{T}} E$
 - For all concepts F such that $C \subseteq_{\mathcal{T}} F$ and $D \subseteq_{\mathcal{T}} F$, then $E \subseteq_{\mathcal{T}} F$.

Assumptions

In the following, w.l.o.g., we assume that the inputs are **A PANF TBox** T and concept names $C, D \in N_{C,T}$.

• \mathcal{I} is a functional model of a concept C w.r.t. a TBox \mathcal{T} iff

- Complete *n*-ary tree, where $n = |N_R|$ (*tree-structured*);
- For all r in N_R , $(u, v) \in r^{\mathcal{I}}$ iff v = ur (tree-structured);
- Satisfying all GCIs in \mathcal{T} (model of \mathcal{T});
- Satisfying C at the root $(\varepsilon \in C^{\mathcal{I}})$.

• For all $w \in \Delta^{\mathcal{I}}$, the label of w in \mathcal{I} is a set of concept names $A \in N_{\mathcal{C}}$, where $w \in A^{\mathcal{I}}$.

• \mathcal{I} is a functional model of a concept C w.r.t. a TBox \mathcal{T} iff

- Complete *n*-ary tree, where $n = |N_R|$ (*tree-structured*);
- For all r in N_R , $(u, v) \in r^{\mathcal{I}}$ iff v = ur (tree-structured);
- Satisfying all GCIs in T (model of T);
- Satisfying C at the root $(\varepsilon \in C^{\mathcal{I}})$.

• For all $w \in \Delta^{\mathcal{I}}$, the label of w in \mathcal{I} is a set of concept names $A \in N_{\mathcal{C}}$, where $w \in A^{\mathcal{I}}$.

- Let \mathcal{I}_1 and \mathcal{I}_2 be over the same domain elements.
 - Subset relation between two functional models.

 $\mathcal{I}_1 \subseteq \mathcal{I}_2$ iff $A^{\mathcal{I}_1} \subseteq A^{\mathcal{I}_2}$ for all $A \in N_C$

• Intersection $\mathcal{I}_1 \cap \mathcal{I}_2$ between two functional models.

 $A^{\mathcal{I}_1 \cap \mathcal{I}_2}$ iff $A^{\mathcal{I}_1} \cap A^{\mathcal{I}_2}$ for all $A \in N_C$

• \mathcal{I} is a functional model of a concept C w.r.t. a TBox \mathcal{T} iff

- Complete *n*-ary tree, where $n = |N_R|$ (*tree-structured*);
- For all r in N_R , $(u, v) \in r^{\mathcal{I}}$ iff v = ur (tree-structured);
- Satisfying all GCIs in T (model of T);
- Satisfying C at the root $(\varepsilon \in C^{\mathcal{I}})$.

• For all $w \in \Delta^{\mathcal{I}}$, the label of w in \mathcal{I} is a set of concept names $A \in N_{\mathcal{C}}$, where $w \in A^{\mathcal{I}}$.

- Let \mathcal{I}_1 and \mathcal{I}_2 be over the same domain elements.
 - Subset relation between two functional models.

 $\mathcal{I}_1 \subseteq \mathcal{I}_2$ iff $A^{\mathcal{I}_1} \subseteq A^{\mathcal{I}_2}$ for all $A \in N_C$

• Intersection $\mathcal{I}_1 \cap \mathcal{I}_2$ between two functional models.

 $A^{\mathcal{I}_1 \cap \mathcal{I}_2}$ iff $A^{\mathcal{I}_1} \cap A^{\mathcal{I}_2}$ for all $A \in N_C$

• Let \mathcal{I} be a functional model of a TBox. (\mathcal{I}, u) is a subtree of \mathcal{I} defined as follows:

- It has the same domain elements as I;
- $A^{(\mathcal{I},u)} := \{ w \in N_R^* \mid uw \in A^\mathcal{I} \}$, for all $A \in N_C$.

• $\mathcal{I}_{C,\mathcal{T}}$ is the **least functional model (LFM)** of a concept C w.r.t. a TBox \mathcal{T} iff $\mathcal{I}_{C,\mathcal{T}} \subseteq \mathcal{I}$ for all functional models \mathcal{I} of C w.r.t. \mathcal{T} .

Image: Image:

Least Functional Model

• $\mathcal{I}_{C,\mathcal{T}}$ is the least functional model (LFM) of a concept C w.r.t. a TBox \mathcal{T} iff

 $\mathcal{I}_{C,\mathcal{T}} \subseteq \mathcal{I} \text{ for all functional models } \mathcal{I} \text{ of } C \text{ w.r.t. } \mathcal{T}.$

• Example 3: TBox T_2

⊑	$Ar \sqcap \forall c.Sg;$
⊑	$Ar \sqcap \forall c.Pm;$
⊑	$At \sqcap \forall m.Sw;$
⊑	$At \sqcap \forall m.Pt;$
⊑	$\forall c.At;$
⊑	∀m.Ar}
write	er Ar = Artist

Least Functional Model

• $\mathcal{I}_{C,\mathcal{T}}$ is the least functional model (LFM) of a concept C w.r.t. a TBox \mathcal{T} iff

 $\mathcal{I}_{C,\mathcal{T}} \subseteq \mathcal{I}$ for all functional models \mathcal{I} of C w.r.t. \mathcal{T} .

• Example 3: TBox T_2

Why do we need LFMs? [Pensel, 2015]

 $C \subseteq_{\mathcal{T}} D$ iff $\mathcal{I}_{D,\mathcal{T}} \subseteq \mathcal{I}_{C,\mathcal{T}}$ (*Characterizing subsumption*)

- A 🖻

< □ > < /□ >

For all $w \in \Delta^{\mathcal{I}_{\mathcal{C},\mathcal{T}}}$, we have a labeling function $\mathcal{I}_{C,\mathcal{T}}(w) \coloneqq \{A \in N_{C,\mathcal{T}} \mid w \in A^{\mathcal{I}_{C,\mathcal{T}}}\}$

Image: Image:

3

For all $w \in \Delta^{\mathcal{I}_{\mathcal{C},\mathcal{T}}}$, we have a labeling function $\mathcal{I}_{\mathcal{C},\mathcal{T}}(w) := \{A \in N_{\mathcal{C},\mathcal{T}} \mid w \in A^{\mathcal{I}_{\mathcal{C},\mathcal{T}}}\}$

Equivalence Relation

Let $u, v \in \Delta^{\mathcal{I}_{\mathcal{C},\mathcal{T}}}$. An equivalence relation $\sim_{\mathcal{I}_{\mathcal{C},\mathcal{T}}}$ on $\Delta^{\mathcal{I}_{\mathcal{C},\mathcal{T}}}$ is defined as: $u \sim_{\mathcal{I}_{\mathcal{C},\mathcal{T}}} v$ iff $\mathcal{I}_{\mathcal{C},\mathcal{T}}(u) = \mathcal{I}_{\mathcal{C},\mathcal{T}}(v)$

3

For all $w \in \Delta^{\mathcal{I}_{\mathcal{C},\mathcal{T}}}$, we have a labeling function $\mathcal{I}_{\mathcal{C},\mathcal{T}}(w) \coloneqq \{A \in N_{\mathcal{C},\mathcal{T}} \mid w \in A^{\mathcal{I}_{\mathcal{C},\mathcal{T}}}\}$

Equivalence Relation

Let
$$u, v \in \Delta^{\mathcal{I}_{C,\mathcal{T}}}$$
. An equivalence relation $\sim_{\mathcal{I}_{C,\mathcal{T}}}$ on $\Delta^{\mathcal{I}_{C,\mathcal{T}}}$ is defined as:
 $u \sim_{\mathcal{I}_{C,\mathcal{T}}} v$ iff $\mathcal{I}_{C,\mathcal{T}}(u) = \mathcal{I}_{C,\mathcal{T}}(v)$

Equivalence Class of Words

Let $u \in \Delta^{\mathcal{I}_{\mathcal{C},\mathcal{T}}}$. The equivalence class of words u is defined as follows: $[u]^{\sim \mathcal{I}_{\mathcal{C},\mathcal{T}}} := \{ v \in \Delta^{\mathcal{I}_{\mathcal{C},\mathcal{T}}} \mid u \sim_{\mathcal{I}_{\mathcal{C},\mathcal{T}}} v \}$

Convention: Sometimes, to simplify the notation, we may omit $\sim_{\mathcal{I}_{\mathcal{C},\mathcal{T}}}$ in $[u]^{\sim_{\mathcal{I}_{\mathcal{C},\mathcal{T}}}}$.

10/1

For all $w \in \Delta^{\mathcal{I}_{\mathcal{C},\mathcal{T}}}$, we have a labeling function $\mathcal{I}_{C\mathcal{T}}(w) \coloneqq \{A \in N_{C\mathcal{T}} \mid w \in A^{\mathcal{I}_{C,\mathcal{T}}}\}$

Equivalence Relation

Let
$$u, v \in \Delta^{\mathcal{I}_{\mathcal{C},\mathcal{T}}}$$
. An equivalence relation $\sim_{\mathcal{I}_{\mathcal{C},\mathcal{T}}}$ on $\Delta^{\mathcal{I}_{\mathcal{C},\mathcal{T}}}$ is defined as:
 $u \sim_{\mathcal{I}_{\mathcal{C},\mathcal{T}}} v$ iff $\mathcal{I}_{\mathcal{C},\mathcal{T}}(u) = \mathcal{I}_{\mathcal{C},\mathcal{T}}(v)$

Equivalence Class of Words

Let $u \in \Delta^{\mathcal{I}_{\mathcal{C},\mathcal{T}}}$. The equivalence class of words u is defined as follows: $\left[u\right]^{\sim \mathcal{I}_{C,\mathcal{T}}} \coloneqq \left\{v \in \Delta^{\mathcal{I}_{C,\mathcal{T}}} \mid u \sim_{\mathcal{I}_{C,\mathcal{T}}} v\right\}$

Convention: Sometimes, to simplify the notation, we may omit $\sim_{\mathcal{I}_{C,\mathcal{T}}}$ in $[u]^{\sim_{\mathcal{I}_{C,\mathcal{T}}}}$.

- The LEMs still have **infinite number** of elements with the same label
- We construct the LFMs that only have a **finite number of elements** and ...
- ... change the form into a cyclic fashion \rightarrow graph of functional model.

10/1

Graph of Least Functional Model

Example 4:

1. We have $\mathcal{I}_{Sw,\mathcal{T}_2}$

 Equivalence class of words:
 - [ε] = {ε, cm...} ∀w ∈ [ε], I(w) = {Sw, Ar};

-
$$[c] = \{c, cmc, \ldots\}$$

 $\forall w \in [c], \mathcal{I}(w) = \{Sg, At\};$

- $[m] = \{m, cc, mc, \ldots\}$ $\forall w \in [m], \mathcal{I}(w) = \emptyset.$ 3. Construct the graph model $\mathcal{J}_{Sw,\mathcal{T}_2}$ (computing quotient structure $\Delta^{\mathcal{I}_{Sw,\mathcal{T}_2}}/\sim_{\mathcal{I}_{Sw,\mathcal{T}_2}}$)

11/1

Graph of Least Functional Model

- $\mathcal{J}_{C,\mathcal{T}}$ is effectively computable in a finite time.
 - $\Delta^{\mathcal{J}_{C,\mathcal{T}}} \subseteq 2^{N_{C,\mathcal{T}}}$

(subsets of concept names occurring in T are finite)

- ▶ Initially, we have $[\varepsilon]^{\sim \mathcal{I}_{C,T}}$ with $\mathcal{I}(\varepsilon) = \{B \in N_{C,T} \mid C \equiv_{\mathcal{T}} B\}$ (It is computable to find a maximal set from $N_{C,T}$ s.t. all elements of the set subsume C w.r.t. \mathcal{T})
- For each $r \in N_R$, we have

 $([u]^{\sim \mathcal{I}_{C,T}}, [v]^{\sim \mathcal{I}_{C,T}}) \in r^{\mathcal{J}_{C,T}} \text{ iff for all } B \in \mathcal{I}(v), \text{ it holds } \Box \mathcal{I}(u) \vDash_{\mathcal{T}} \forall r.B$

(It is computable to find a maximal set from $N_{C,T}$ s.t. for all elements B of the set, we have $\forall r.B$ subsumes $\Box I(u)$ w.r.t. T)

Graph of Least Functional Model

- $\mathcal{J}_{C,\mathcal{T}}$ is effectively computable in a finite time.
 - $\Delta^{\mathcal{J}_{C,\mathcal{T}}} \subseteq 2^{N_{C,\mathcal{T}}}$

(subsets of concept names occurring in T are finite)

- Initially, we have [ε]^{~IC,T} with I(ε) = {B ∈ N_{C,T} | C ⊑_T B} (It is computable to find a maximal set from N_{C,T} s.t. all elements of the set subsume C w.r.t. T)
- For each $r \in N_R$, we have

 $([u]^{^{\sim}\mathcal{I}_{C,T}},[v]^{^{\sim}\mathcal{I}_{C,T}}) \in r^{\mathcal{J}_{C,T}} \text{ iff for all } B \in \mathcal{I}(v), \text{ it holds } \Box \mathcal{I}(u) \sqsubseteq_{\mathcal{T}} \forall r.B$

(It is computable to find a maximal set from $N_{C,T}$ s.t. for all elements B of the set, we have $\forall r.B$ subsumes $\Box I(u)$ w.r.t. T)

Graph of Intersection Models

- Let $\mathcal{J}_{C,\mathcal{T}}$ and $\mathcal{J}_{D,\mathcal{T}}$ be the graph models of $\mathcal{I}_{C,\mathcal{T}}$ and $\mathcal{I}_{D,\mathcal{T}}$;
- Compute the product $\mathcal{J}_{C,\mathcal{T}} \times \mathcal{J}_{D,\mathcal{T}}$ of $\mathcal{J}_{C,\mathcal{T}}$ and $\mathcal{J}_{D,\mathcal{T}}$;
- We take a subgraph \mathcal{G} of $\mathcal{J}_{\mathcal{C},\mathcal{T}} \times \mathcal{J}_{\mathcal{D},\mathcal{T}}$, where all elements of \mathcal{G} are reachable from $([\varepsilon]^{\sim \mathcal{I}_{\mathcal{C},\mathcal{T}}}, [\varepsilon]^{\sim \mathcal{I}_{\mathcal{D},\mathcal{T}}})$
- \mathcal{G} is the graph model of $\mathcal{I}_{C,\mathcal{T}} \cap \mathcal{I}_{D,\mathcal{T}}$;

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

• Let \mathcal{I}_1 and \mathcal{I}_2 be interpretations. $\mathcal{S} \subseteq \Delta^{\mathcal{I}_1} \times \Delta^{\mathcal{I}_2}$ is defined as a simulation from \mathcal{I}_1 to \mathcal{I}_2 .

• Example 5:

- Let \mathcal{I}_1 and \mathcal{I}_2 be interpretations. $\mathcal{S} \subseteq \Delta^{\mathcal{I}_1} \times \Delta^{\mathcal{I}_2}$ is defined as a simulation from \mathcal{I}_1 to \mathcal{I}_2 .
- Example 5:

- Let \mathcal{I}_1 and \mathcal{I}_2 be interpretations. $\mathcal{S} \subseteq \Delta^{\mathcal{I}_1} \times \Delta^{\mathcal{I}_2}$ is defined as a simulation from \mathcal{I}_1 to \mathcal{I}_2 .
- Example 5:

• (\mathcal{I}_1,d) is simulation-equivalent to (\mathcal{I}_2,e) (denoted by $(\mathcal{I}_1,d) \simeq (\mathcal{I}_2,e)$) if $(\mathcal{I}_1,d) \lesssim (\mathcal{I}_2,e)$ and $(\mathcal{I}_2,e) \lesssim (\mathcal{I}_1,d)$.

- Let \mathcal{I}_1 and \mathcal{I}_2 be interpretations. $\mathcal{S} \subseteq \Delta^{\mathcal{I}_1} \times \Delta^{\mathcal{I}_2}$ is defined as a simulation from \mathcal{I}_1 to \mathcal{I}_2 .
- Example 5:

- (\mathcal{I}_1,d) is simulation-equivalent to (\mathcal{I}_2,e) (denoted by $(\mathcal{I}_1,d) \simeq (\mathcal{I}_2,e)$) if $(\mathcal{I}_1,d) \lesssim (\mathcal{I}_2,e)$ and $(\mathcal{I}_2,e) \lesssim (\mathcal{I}_1,d)$.
- This notion is applied analogously to functional models and graph models

- Let \mathcal{I}_1 and \mathcal{I}_2 be interpretations. $\mathcal{S} \subseteq \Delta^{\mathcal{I}_1} \times \Delta^{\mathcal{I}_2}$ is defined as a simulation from \mathcal{I}_1 to \mathcal{I}_2 .
- Example 5:

- (\mathcal{I}_1,d) is simulation-equivalent to (\mathcal{I}_2,e) (denoted by $(\mathcal{I}_1,d) \simeq (\mathcal{I}_2,e)$) if $(\mathcal{I}_1,d) \lesssim (\mathcal{I}_2,e)$ and $(\mathcal{I}_2,e) \lesssim (\mathcal{I}_1,d)$.
- This notion is applied analogously to functional models and graph models

Why do we need a simulation?

 $C \sqsubseteq_{\mathcal{T}} D$ iff $\mathcal{J}_{D,\mathcal{T}} \leq \mathcal{J}_{C,\mathcal{T}}$ (*Characterizing subsumption*)

RP I: Is a Concept the LCS of C and D w.r.t. $\mathcal{T}^{'}$

A Condition whether a Concept is the LCS

Let *E* be an \mathcal{FL}_0 -concept.

E is the $lcs_{\mathcal{T}}(C,D)$ iff $\mathcal{I}_{E,\mathcal{T}} = \mathcal{I}_{C,\mathcal{T}} \cap \mathcal{I}_{D,\mathcal{T}}$

A Condition whether a Concept is the LCS

Let *E* be an \mathcal{FL}_0 -concept.

E is the $lcs_{\mathcal{T}}(C,D)$ iff $\mathcal{I}_{E,\mathcal{T}} = \mathcal{I}_{C,\mathcal{T}} \cap \mathcal{I}_{D,\mathcal{T}}$

 $\implies \mathcal{I}_{E,\mathcal{T}} \text{ and } \mathcal{I}_{C,\mathcal{T}} \cap \mathcal{I}_{D,\mathcal{T}} \text{ are infinite models!}$

A Condition whether a Concept is the LCS

Let *E* be an \mathcal{FL}_0 -concept.

E is the $lcs_{\mathcal{T}}(C,D)$ iff $\mathcal{I}_{E,\mathcal{T}} = \mathcal{I}_{C,\mathcal{T}} \cap \mathcal{I}_{D,\mathcal{T}}$

 $\implies \mathcal{I}_{E,\mathcal{T}} \text{ and } \mathcal{I}_{C,\mathcal{T}} \cap \mathcal{I}_{D,\mathcal{T}} \text{ are infinite models!}$

A Condition whether a Concept is the LCS

Let *E* be an \mathcal{FL}_0 -concept.

E is the $lcs_{\mathcal{T}}(C,D)$ iff $\mathcal{J}_{E,\mathcal{T}} \simeq \mathcal{G}$

A Condition whether a Concept is the LCS

Let *E* be an \mathcal{FL}_0 -concept.

E is the $lcs_{\mathcal{T}}(C,D)$ iff $\mathcal{I}_{E,\mathcal{T}} = \mathcal{I}_{C,\mathcal{T}} \cap \mathcal{I}_{D,\mathcal{T}}$

 $\implies \mathcal{I}_{E,\mathcal{T}} \text{ and } \mathcal{I}_{C,\mathcal{T}} \cap \mathcal{I}_{D,\mathcal{T}} \text{ are infinite models!}$

A Condition whether a Concept is the LCS

Let *E* be an \mathcal{FL}_0 -concept.

E is the $lcs_{\mathcal{T}}(C,D)$ iff $\mathcal{J}_{E,\mathcal{T}} \simeq \mathcal{G}$

 \implies RP I is decidable!

- The role-depth of a concept C(rd(C)) is the maximum number of \forall -quantifier in C.
- A characteristic concept K with rd(K) = k can be obtained from a functional or graph model by traversing them until the depth k.

\mathcal{FL}_0 -Characteristic Concept

- The role-depth of a concept C(rd(C)) is the maximum number of \forall -quantifier in C.
- A characteristic concept K with rd(K) = k can be obtained from a functional or graph model by traversing them until the depth k.
- Example 6: $\mathcal{J}_{Sw,\mathcal{T}_2}$

- 0-characteristic concept of $\mathcal{J}_{Sw,\mathcal{T}} = Sw \sqcap Ar$;
- ▶ 1-characteristic concept of $\mathcal{J}_{Sw,\mathcal{T}} = Sw \sqcap Ar \sqcap \forall c.Sg \sqcap \forall c.At \sqcap \forall m.\top;$
- 2-characteristic concept of $\mathcal{J}_{Sw,\mathcal{T}} = Sw \sqcap Ar \sqcap \forall c.Sg \sqcap \forall c.At \sqcap \forall m. \top \sqcap$

 $\forall cc. \top \sqcap \forall cm. Sw \sqcap \forall cm. Ar \sqcap \forall cc. \top \sqcap \forall cm. \top$

- The role-depth of a concept C(rd(C)) is the maximum number of \forall -quantifier in C.
- A characteristic concept K with rd(K) = k can be obtained from a functional or graph model by traversing them until the depth k.
- Example 6: $\mathcal{J}_{Sw,\mathcal{T}_2}$

- 0-characteristic concept of $\mathcal{J}_{Sw,\mathcal{T}} = Sw \sqcap Ar$;
- ▶ 1-characteristic concept of $\mathcal{J}_{Sw,\mathcal{T}} = Sw \sqcap Ar \sqcap \forall c.Sg \sqcap \forall c.At \sqcap \forall m.\intercal$;
- ▶ 2-characteristic concept of $\mathcal{J}_{Sw,\mathcal{T}} = Sw \sqcap Ar \sqcap \forall c.Sg \sqcap \forall c.At \sqcap \forall m. \top \sqcap \forall cc. \top \sqcap \forall cm.Sw \sqcap \forall cm.Ar \sqcap \forall cc. \top \sqcap \forall cm. \top$

• **Convention:** X^k is the *k*-characteristic concept of $\mathcal{I}_{C,\mathcal{T}} \cap \mathcal{I}_{D,\mathcal{T}}$ or \mathcal{G} , for $k \in \mathbb{N}$.

Label-Synchronous Elements

- Let $w \in \Delta^{\mathcal{I}_{\mathcal{C},\mathcal{T}}}$ and $Q = \prod \{B \in N_{\mathcal{C},\mathcal{T}} \mid B \in \mathcal{I}_{\mathcal{C},\mathcal{T}}(w)\}.$
 - $w \in \Delta^{\mathcal{I}_{C,\mathcal{T}}}$ is label-synchronous in $\mathcal{I}_{C,\mathcal{T}}$ iff $(\mathcal{I}_{C,\mathcal{T}}, w) = (\mathcal{I}_{Q,\mathcal{T}}, \varepsilon)$
 - [w] is label-synchronous in $\mathcal{J}_{C,\mathcal{T}}$ iff $(\mathcal{J}_{C,\mathcal{T}},[w]) \simeq (\mathcal{J}_{Q,\mathcal{T}},[\varepsilon])$

Label-Synchronous Elements

• Let $w \in \Delta^{\mathcal{I}_{C,\mathcal{T}}}$ and $Q = \prod \{B \in N_{C,\mathcal{T}} \mid B \in \mathcal{I}_{C,\mathcal{T}}(w)\}.$

- $w \in \Delta^{\mathcal{I}_{C,\mathcal{T}}}$ is label-synchronous in $\mathcal{I}_{C,\mathcal{T}}$ iff $(\mathcal{I}_{C,\mathcal{T}}, w) = (\mathcal{I}_{Q,\mathcal{T}}, \varepsilon)$
- [w] is label-synchronous in $\mathcal{J}_{C,\mathcal{T}}$ iff $(\mathcal{J}_{C,\mathcal{T}},[w]) \simeq (\mathcal{J}_{Q,\mathcal{T}},[\varepsilon])$
- Example 7:

 $[c] \text{ is label-synchronous in } \mathcal{J}_{Sw,\mathcal{T}_2} \text{ because } (\mathcal{J}_{Sw,\mathcal{T}_2},[c]) \simeq (\mathcal{J}_{Sg \sqcap At,\mathcal{T}_2},[\epsilon])$

16/1

Conditions for the Existence of the LCS

The $lcs_{\mathcal{T}}(C,D)$ exists iff there is a $k \in \mathbb{N}$ s.t.

- $\mathcal{I}_{C,\mathcal{T}} \cap \mathcal{I}_{D,\mathcal{T}} = \mathcal{I}_{X^k,\mathcal{T}}$ iff
- $(\mathcal{G}, [\varepsilon]) \simeq (\mathcal{J}_{X^k, \mathcal{T}}, [\varepsilon]).$

э

Conditions for the Existence of the LCS

The $lcs_{\mathcal{T}}(C,D)$ exists iff there is a $k \in \mathbb{N}$ s.t.

- $\mathcal{I}_{C,\mathcal{T}} \cap \mathcal{I}_{D,\mathcal{T}} = \mathcal{I}_{X^k,\mathcal{T}}$ iff
- $(\mathcal{G}, [\varepsilon]) \simeq (\mathcal{J}_{X^k, \mathcal{T}}, [\varepsilon]).$

 \implies infinitely many k; $\mathcal{I}_{C,\mathcal{T}} \cap \mathcal{I}_{D,\mathcal{T}}$ and $\mathcal{I}_{X^k,\mathcal{T}}$ are infinite models.

Conditions for the Existence of the LCS

The $lcs_{\mathcal{T}}(C,D)$ exists iff there is a $k \in \mathbb{N}$ s.t.

- $\mathcal{I}_{C,\mathcal{T}} \cap \mathcal{I}_{D,\mathcal{T}} = \mathcal{I}_{X^k,\mathcal{T}}$ iff
- $(\mathcal{G}, [\varepsilon]) \simeq (\mathcal{J}_{X^k, \mathcal{T}}, [\varepsilon]).$

 \implies infinitely many k; $\mathcal{I}_{C,\mathcal{T}} \cap \mathcal{I}_{D,\mathcal{T}}$ and $\mathcal{I}_{X^k,\mathcal{T}}$ are infinite models.

Relationship between the LFM of X^k and Label-Synchronous Elements

 $\mathcal{I}_{C,\mathcal{T}} \cap \mathcal{I}_{D,\mathcal{T}} = \mathcal{I}_{X^k,\mathcal{T}}$ iff for all $w \in N_R^*$ with $|w| \ge k$, it holds that

w is label-synchronous in $\mathcal{I}_{C,\mathcal{T}} \cap \mathcal{I}_{D,\mathcal{T}}$ and $\mathcal{I}_{X^k,\mathcal{T}}$

Conditions for the Existence of the LCS

The $lcs_{\mathcal{T}}(C,D)$ exists iff there is a $k \in \mathbb{N}$ s.t.

- $\mathcal{I}_{C,\mathcal{T}} \cap \mathcal{I}_{D,\mathcal{T}} = \mathcal{I}_{X^k,\mathcal{T}}$ iff
- $(\mathcal{G}, [\varepsilon]) \simeq (\mathcal{J}_{X^k, \mathcal{T}}, [\varepsilon]).$

 \implies infinitely many k; $\mathcal{I}_{C,\mathcal{T}} \cap \mathcal{I}_{D,\mathcal{T}}$ and $\mathcal{I}_{X^k,\mathcal{T}}$ are infinite models.

Relationship between the LFM of X^k and Label-Synchronous Elements

 $\mathcal{I}_{C,\mathcal{T}} \cap \mathcal{I}_{D,\mathcal{T}} = \mathcal{I}_{X^k,\mathcal{T}}$ iff for all $w \in N_R^*$ with $|w| \ge k$, it holds that

w is label-synchronous in $\mathcal{I}_{C,\mathcal{T}} \cap \mathcal{I}_{D,\mathcal{T}}$ and $\mathcal{I}_{X^k,\mathcal{T}}$

Main Theorem

The $lcs_{\mathcal{T}}(C,D)$ exists iff all cycles in \mathcal{G} only contains label-synchronous elements.

Conditions for the Existence of the LCS

The $lcs_{\mathcal{T}}(C,D)$ exists iff there is a $k \in \mathbb{N}$ s.t.

- $\mathcal{I}_{C,\mathcal{T}} \cap \mathcal{I}_{D,\mathcal{T}} = \mathcal{I}_{X^k,\mathcal{T}}$ iff
- $(\mathcal{G}, [\varepsilon]) \simeq (\mathcal{J}_{X^k, \mathcal{T}}, [\varepsilon]).$

 \implies infinitely many k; $\mathcal{I}_{C,\mathcal{T}} \cap \mathcal{I}_{D,\mathcal{T}}$ and $\mathcal{I}_{X^k,\mathcal{T}}$ are infinite models.

Relationship between the LFM of X^k and Label-Synchronous Elements

 $\mathcal{I}_{C,\mathcal{T}} \cap \mathcal{I}_{D,\mathcal{T}} = \mathcal{I}_{X^k,\mathcal{T}}$ iff for all $w \in N_R^*$ with $|w| \ge k$, it holds that

w is label-synchronous in $\mathcal{I}_{C,\mathcal{T}} \cap \mathcal{I}_{D,\mathcal{T}}$ and $\mathcal{I}_{X^k,\mathcal{T}}$

Main Theorem

The $lcs_{\mathcal{T}}(\mathcal{C}, D)$ exists iff all cycles in \mathcal{G} only contains label-synchronous elements.

⇒ RP II is decidable!

- G is computable in a finite time;
- Finitely many cycles in \mathcal{G} ;
- It is decidable whether [w] is label-synchronous in \mathcal{G} .

Adrian Nuradiansyah

- 34

・ロト ・ 四ト ・ ヨト ・ ヨト

How to compute the LCS? And What is the Size of the LCS?

Let $n = |\Delta^{\mathcal{G}}|$. It holds that

- The $lcs_{\mathcal{T}}(C,D)$ exists iff $(\mathcal{G},[\varepsilon]) \simeq (\mathcal{J}_{X^{n+1},\mathcal{T}},[\varepsilon]);$
 - X^{n+1} is the $lcs_{\mathcal{T}}(C,D)$.
- $rd(lcs_{\mathcal{T}}(C,D)) \leq 2^{2\times |N_{C,\mathcal{T}}|+1}$.

How to compute the LCS? And What is the Size of the LCS?

Let $n = |\Delta^{\mathcal{G}}|$. It holds that

- The $lcs_{\mathcal{T}}(C,D)$ exists iff $(\mathcal{G},[\varepsilon]) \simeq (\mathcal{J}_{X^{n+1},\mathcal{T}},[\varepsilon]);$
 - X^{n+1} is the $lcs_{\mathcal{T}}(C,D)$.
- $rd(lcs_{\mathcal{T}}(C,D)) \leq 2^{2\times |N_{C,\mathcal{T}}|+1}$.

→ RP III is computable!

1. Given \mathcal{T}_2 in PANF and $Sw, Pt \in N_{C, \mathcal{T}_2}$;

- 1. Given \mathcal{T}_2 in PANF and $Sw, Pt \in N_{C, \mathcal{T}_2}$;
- 2. Compute $\mathcal{J}_{Sw,\mathcal{T}_2}$ and $\mathcal{J}_{Pt,\mathcal{T}_2}$;

- 1. Given \mathcal{T}_2 in PANF and $Sw, Pt \in N_{C, \mathcal{T}_2}$;
- 2. Compute $\mathcal{J}_{Sw,\mathcal{T}_2}$ and $\mathcal{J}_{Pt,\mathcal{T}_2}$;

3. Compute the product $\mathcal{J}_{Sw,\mathcal{T}_2} \times \mathcal{J}_{Pt,\mathcal{T}_2}$ of $\mathcal{J}_{Sw,\mathcal{T}_2}$ and $\mathcal{J}_{Pt,\mathcal{T}_2}$;

- 1. Given \mathcal{T}_2 in PANF and $Sw, Pt \in N_{C, \mathcal{T}_2}$;
- 2. Compute $\mathcal{J}_{Sw,\mathcal{T}_2}$ and $\mathcal{J}_{Pt,\mathcal{T}_2}$;

3. Compute the product $\mathcal{J}_{Sw,\mathcal{T}_2} \times \mathcal{J}_{Pt,\mathcal{T}_2}$ of $\mathcal{J}_{Sw,\mathcal{T}_2}$ and $\mathcal{J}_{Pt,\mathcal{T}_2}$;

4. Compute the subgraph \mathcal{G} of $\mathcal{J}_{Sw,\mathcal{T}_2} \times \mathcal{J}_{Pt,\mathcal{T}_2}$;

- 1. Given \mathcal{T}_2 in PANF and $Sw, Pt \in N_{C, \mathcal{T}_2}$;
- 2. Compute $\mathcal{J}_{Sw,\mathcal{T}_2}$ and $\mathcal{J}_{Pt,\mathcal{T}_2}$; $\{Sw, Ar\}$

С

 $\{Sg, At$

3. Compute the product $\mathcal{J}_{Sw,\mathcal{T}_2} \times \mathcal{J}_{Pt,\mathcal{T}_2}$ of $\mathcal{J}_{Sw,\mathcal{T}_2}$ and $\mathcal{J}_{Pt,\mathcal{T}_2}$;

4. Compute the subgraph \mathcal{G} of $\mathcal{J}_{Sw,\mathcal{T}_2} \times \mathcal{J}_{Pt,\mathcal{T}_2}$;

m

5. Since $|\Delta^{\mathcal{G}}| = 3$, we compute the 4-characteristic concept X^4 of \mathcal{G} and construct $\mathcal{J}_{X^4,\mathcal{T}_2}$;

19/1

- 1. Given \mathcal{T}_2 in PANF and $Sw, Pt \in N_{C, \mathcal{T}_2}$;
- 2. Compute $\mathcal{J}_{Sw,\mathcal{T}_2}$ and $\mathcal{J}_{Pt,\mathcal{T}_2}$; $\{Sw, Ar\}$

 $\{Sg, At$

3. Compute the product $\mathcal{J}_{Sw,\mathcal{T}_2} \times \mathcal{J}_{Pt,\mathcal{T}_2}$ of $\mathcal{J}_{Sw,\mathcal{T}_2}$ and $\mathcal{J}_{Pt,\mathcal{T}_2}$;

4. Compute the subgraph \mathcal{G} of $\mathcal{J}_{Sw,\mathcal{T}_2} \times \mathcal{J}_{Pt,\mathcal{T}_2}$;

m

5. Since $|\Delta^{\mathcal{G}}| = 3$, we compute the 4-characteristic concept X^4 of \mathcal{G} and construct $\mathcal{J}_{X^4,\mathcal{T}_2}$;

 Check whether (G, [ε]) ≃ (J_{X⁴,τ}, [ε]). Yes, X⁴ is the lcs_{T₂}(Sw, Pt)! Otherwise, the lcs_{T₂}(Sw, Pt) does not exist.

Adrian Nuradiansyah

19/1

Conclusions

- **RP I:** An \mathcal{FL}_0 -concept *E* is the $lcs_{\mathcal{T}}(C,D)$ iff
 - • $(\mathcal{J}_{E,\mathcal{T}},[\varepsilon]) \simeq (\mathcal{G},[\varepsilon]).$

- b

< A[™]

э

Conclusions

• **RP I:** An \mathcal{FL}_0 -concept *E* is the $lcs_{\mathcal{T}}(C,D)$ iff

- $\mathcal{I}_{E,\mathcal{T}} = \mathcal{I}_{C,\mathcal{T}} \cap \mathcal{I}_{D,\mathcal{T}};$
- $(\mathcal{J}_{E,\mathcal{T}},[\varepsilon]) \simeq (\mathcal{G},[\varepsilon]).$
- **RP II: The** $lcs_{\mathcal{T}}(C,D)$ exists iff
 - There is a $k \in \mathbb{N}$ s.t. $\mathcal{I}_{C,\mathcal{T}} \cap \mathcal{I}_{D,\mathcal{T}} = \mathcal{I}_{X^k,\mathcal{T}}$;
 - There is a $k \in \mathbb{N}$ s.t. $(\mathcal{G}, [\varepsilon]) \simeq \mathcal{J}_{X^k, \mathcal{T}};$
 - All cycles in G only contains label-synchronous elements.

Conclusions

• **RP I:** An \mathcal{FL}_0 -concept *E* is the $lcs_{\mathcal{T}}(C,D)$ iff

- $I_{E,\mathcal{T}} = \mathcal{I}_{C,\mathcal{T}} \cap \mathcal{I}_{D,\mathcal{T}};$
- $(\mathcal{J}_{E,\mathcal{T}},[\varepsilon]) \simeq (\mathcal{G},[\varepsilon]).$
- **RP II: The** $lcs_{\mathcal{T}}(C,D)$ **exists** iff
 - There is a $k \in \mathbb{N}$ s.t. $\mathcal{I}_{C,\mathcal{T}} \cap \mathcal{I}_{D,\mathcal{T}} = \mathcal{I}_{X^k,\mathcal{T}};$
 - There is a $k \in \mathbb{N}$ s.t. $(\mathcal{G}, [\varepsilon]) \simeq \mathcal{J}_{X^k, \mathcal{T}};$
 - All cycles in G only contains label-synchronous elements.
- RP III: Let $n = |\Delta^{\mathcal{G}}|$. If the $lcs_{\mathcal{T}}(C,D)$ exists, then
 - X^{n+1} is the $lcs_{\mathcal{T}}(C,D)$, and
 - $rd(lcs_{\mathcal{T}}(C,D)) \leq 2^{2 \times |N_{C,\mathcal{T}}|+1}$.

Conclusions

• **RP I:** An \mathcal{FL}_0 -concept *E* is the $lcs_{\mathcal{T}}(C,D)$ iff

- $\mathcal{I}_{E,\mathcal{T}} = \mathcal{I}_{C,\mathcal{T}} \cap \mathcal{I}_{D,\mathcal{T}};$
- $(\mathcal{J}_{E,\mathcal{T}},[\varepsilon]) \simeq (\mathcal{G},[\varepsilon]).$
- **RP II: The** $lcs_{\mathcal{T}}(C,D)$ **exists** iff
 - There is a $k \in \mathbb{N}$ s.t. $\mathcal{I}_{C,\mathcal{T}} \cap \mathcal{I}_{D,\mathcal{T}} = \mathcal{I}_{X^k,\mathcal{T}}$;
 - There is a $k \in \mathbb{N}$ s.t. $(\mathcal{G}, [\mathcal{E}]) \simeq \mathcal{J}_{X^k, \mathcal{T}};$
 - All cycles in G only contains label-synchronous elements.
- RP III: Let $n = |\Delta^{\mathcal{G}}|$. If the $lcs_{\mathcal{T}}(C,D)$ exists, then
 - X^{n+1} is the $lcs_{\mathcal{T}}(C,D)$, and
 - $rd(lcs_{\mathcal{T}}(C,D)) \leq 2^{2 \times |N_{C,\mathcal{T}}|+1}$.

Future Works

- Practical implementation for the results above;
- Computing the lcs w.r.t. general *FLE*-TBox;
- Computing the most specific concept of an individual w.r.t. general \mathcal{FL}_0 -TBox.

(I) < ((()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) <

Thank You

Image: A matrix

æ