Privacy-Preserving Ontology Publishing for \mathcal{EL} Instance Stores

Franz Baader Francesco Kriegel Adrian Nuradiansyah

Technische Universität Dresden

Published in JELIA 2019 and Submitted to Künstliche Intelligenz (KI) 2019

August 20, 2019
Privacy-Preserving Ontology Publishing

Privacy policies

Ontology

compliant
Privacy-Preserving Ontology Publishing

Privacy policies

compliant

Ontology

compliant

Other sources
Privacy-Preserving Ontology Publishing

- Privacy policies
 - compliant
 - not compliant

Ontology

- integrated

Other sources

- integrated

Adrian Nuradiansyah
The ontology is compliant, but not safe w.r.t policies.
What people already did:

In \textit{(Cuenca Grau \& Kostylev, 2016)}:

- Privacy-Preserving Data Publishing
- Information to be published: a relational dataset with (labeled) nulls
- Policy is a conjunctive query.
- Considering three privacy properties when publishing datasets: \textit{policy-compliant, policy-safety, and optimality}.
- Published information does not have background knowledge.
What people already did:

In (Cuenca Grau & Kostylev, 2016):

- Privacy-Preserving Data Publishing
- Information to be published: a relational dataset with (labeled) nulls
- Policy is a conjunctive query.
- Considering three privacy properties when publishing datasets: policy-compliant, policy-safety, and optimality.
- Published information does not have background knowledge.

What we want to do:

- Privacy-Preserving Ontology Publishing (PPOP)
- Addressed in the context of Description Logic Ontologies
Starting point: \mathcal{EL} Ontologies with **role-free ABoxes** (instance stores) and empty TBoxes.

An ABox \mathcal{A} is **role-free** if all the axioms $\beta \in \mathcal{A}$ are only in the form of $D(a)$.

Safe Ontologies

Information to be published for an individual a: an \mathcal{EL} concept $C_1(a), C_2(a) \in \mathcal{A}$ implies $(C_1 \sqcap C_2)(a) \in \mathcal{A}$

Policy is a finite set of \mathcal{EL} concepts D_1, \ldots, D_p, such that $D_i \not\equiv \top$ for all $i \in \{1, \ldots, p\}$.

Adrianna Nuradiansyah
Starting point: \mathcal{EL} Ontologies with role-free ABoxes (instance stores) and empty TBoxes.

An ABox \mathcal{A} is role-free if all the axioms $\beta \in \mathcal{A}$ are only in the form of $D(a)$.

Why no TBox? For instance,

- in SNOMED CT \rightarrow Acyclic TBox \rightarrow the TBox can be reduced away
- Even in SNOMED, patient data are usually annotated with SNOMED concepts, not with SNOMED roles.
Starting point: \mathcal{EL} Ontologies with **role-free ABoxes** (instance stores) and empty TBoxes.

An ABox \mathcal{A} is **role-free** if all the axioms $\beta \in \mathcal{A}$ are only in the form of $D(a)$.

Why no TBox? For instance,

- in SNOMED CT \rightarrow **Acyclic TBox** \rightarrow the TBox can be reduced away
- Even in SNOMED, patient data are usually annotated with SNOMED concepts, not with SNOMED roles.

W.l.o.g., only **one concept assertion** in \mathcal{A} speaks about one individual $C_1(a), C_2(a) \in \mathcal{A}$ implies $(C_1 \sqcap C_2)(a) \in \mathcal{A}$

Safe Ontologies $\xrightarrow{\text{reduced}}$ **Safe Concepts**
PPOP for \(\mathcal{EL} \) instance stores

- **Starting point**: \(\mathcal{EL} \) Ontologies with role-free ABoxes (instance stores) and empty TBoxes.

- An ABox \(\mathcal{A} \) is **role-free** if all the axioms \(\beta \in \mathcal{A} \) are only in the form of \(D(a) \).

- Why no TBox? For instance,
 - in SNOMED CT \(\rightarrow \) **Acyclic TBox** \(\rightarrow \) the TBox can be reduced away
 - Even in SNOMED, patient data are usually annotated with SNOMED concepts, not with SNOMED roles.

- W.l.o.g., only **one concept assertion** in \(\mathcal{A} \) speaks about one individual \(C_1(a), C_2(a) \in \mathcal{A} \) implies \((C_1 \sqcap C_2)(a) \in \mathcal{A} \)

- Safe Ontologies \(\xrightarrow{reduced} \) Safe Concepts

- **Information to be published** for an individual \(a \): an \(\mathcal{EL} \) concept \(C \)

- **Policy** is a finite set of \(\mathcal{EL} \) concepts \(D_1, \ldots, D_p \), such that \(D_i \not\equiv \top \) for all \(i \in \{1, \ldots, p\} \).
Given a policy $\mathcal{P} = \{D_1, \ldots, D_p\}$ and an $\mathcal{E}\mathcal{L}$ concept C, the $\mathcal{E}\mathcal{L}$ concept C' is

- **compliant** with \mathcal{P} if $C' \not\sqsubseteq D_i$ for all $i \in \{1, \ldots, p\}$.

- **safe** for \mathcal{P} if $C' \cap C''$ is compliant with \mathcal{P} for all $\mathcal{E}\mathcal{L}$-concepts C'' that are compliant with \mathcal{P}.
Given a policy $\mathcal{P} = \{D_1, \ldots, D_p\}$ and an $\mathcal{E}\mathcal{L}$ concept C, the $\mathcal{E}\mathcal{L}$ concept C' is

- **compliant** with \mathcal{P} if $C' \not\subseteq D_i$ for all $i \in \{1, \ldots, p\}$.

- **safe** for \mathcal{P} if $C' \cap C''$ is compliant with \mathcal{P} for all $\mathcal{E}\mathcal{L}$-concepts C'' that are compliant with \mathcal{P}.

- a \mathcal{P}-compliant (safe) generalization of C if
 - $C \subseteq C'$ and
 - C' is compliant with (safe for) \mathcal{P}.
Given a policy $\mathcal{P} = \{D_1, \ldots, D_p\}$ and an \mathcal{EL} concept C, the \mathcal{EL} concept C' is

- **compliant** with \mathcal{P} if $C' \not\sqsubseteq D_i$ for all $i \in \{1, \ldots, p\}$.

- **safe** for \mathcal{P} if $C' \sqcap C''$ is compliant with \mathcal{P} for all \mathcal{EL}-concepts C'' that are compliant with \mathcal{P}.

- a \mathcal{P}-compliant (safe) generalization of C if
 - $C \sqsubseteq C'$ and
 - C' is compliant with (safe for) \mathcal{P}.

- a \mathcal{P}-optimal compliant (safe) generalization of C if
 - C' is a \mathcal{P}-compliant (safe) generalization of C, and
 - there is no \mathcal{P}-compliant (safe) generalization C'' of C s.t. $C'' \sqsubseteq C'$.
Consider a policy $\mathcal{P} = \{D\}$ specifying what information should be kept “secret” about *linda*

\[D = Patient \cap \exists \text{seen}_\text{by}.(\text{Doctor} \cap \exists \text{works}_\text{in}.\text{Cardiology}) \]

Assume information C is published about *linda*

\[C = Patient \cap Female \cap \exists \text{seen}_\text{by}.(\text{Doctor} \cap Male \cap \exists \text{works}_\text{in}.\text{Cardiology}) \]

Note C is not compliant with D, i.e., $C \subseteq D$.
Consider a **policy** $P = \{D\}$ specifying what information should be kept “secret” about *linda*

$$D = Patient \sqcap \exists \text{seen}_\text{by}. (Doctor \sqcap \exists \text{works}_\text{in}. \text{Cardiology})$$

Assume information C is published about *linda*

$$C = Patient \sqcap Female \sqcap \exists \text{seen}_\text{by}. (Doctor \sqcap Male \sqcap \exists \text{works}_\text{in}. \text{Cardiology})$$

Note C is not compliant with D, i.e., $C \subseteq D$.

Generalizing C to yield a compliant concept

$$C_1 = Female \sqcap \exists \text{seen}_\text{by}. (Doctor \sqcap Male \sqcap \exists \text{works}_\text{in}. \text{Cardiology})$$

But, C_1 is **not safe for** D since if the attacker knows $Patient(linda)$, then $C_1 \sqcap Patient \subseteq D$ is revealed.
Consider a **policy** $\mathcal{P} = \{D\}$ specifying what information should be kept “secret” about *linda*

$$D = Patient \sqcap \exists \text{seen}_by.(Doctor \sqcap \exists \text{works}_in.\text{Cardiology})$$

Assume information C is published about *linda*

$$C = Patient \sqcap Female \sqcap \exists \text{seen}_by.(Doctor \sqcap Male \sqcap \exists \text{works}_in.\text{Cardiology})$$

Note C is not compliant with D, i.e., $C \subseteq D$.

Let us **make it safe**!

$$C_2 = Female \sqcap \exists \text{seen}_by.(Doctor \sqcap Male \sqcap \exists \text{works}_in.\top)$$

But, C_2 is still not optimal since more information than necessary is removed.
Illustration on Compliance, Safety, and Optimality

- Consider a policy $\mathcal{P} = \{D\}$ specifying what information should be kept “secret” about *linda*

 $$D = \text{Patient} \land \exists \text{seen}_\text{by}.(\text{Doctor} \land \exists \text{works}_\text{in. Cardiology})$$

- Assume information C is published about *linda*

 $$C = \text{Patient} \land \text{Female} \land \exists \text{seen}_\text{by}.(\text{Doctor} \land \text{Male} \land \exists \text{works}_\text{in. Cardiology})$$

 Note C is not compliant with D, i.e., $C \not\subseteq D$.

- Let us make it safe!

 $$C_2 = \text{Female} \land \exists \text{seen}_\text{by}.(\text{Doctor} \land \text{Male} \land \exists \text{works}_\text{in. Cardiology} \land \top)$$

 But, C_2 is still not optimal since more information than necessary is removed.

- Make it optimal!

 $$C_3 = \text{Female} \land \exists \text{seen}_\text{by}.(\text{Doctor} \land \text{Male} \land \exists \text{works}_\text{in. Cardiology} \land \top) \land \exists \text{seen}_\text{by}.(\text{Male} \land \exists \text{works}_\text{in. Cardiology})$$
Let $\text{con}(C)$ be the set of all atoms A or $\exists r.E$ occurring in the top-level conjunction of C.

Complexity for Compliance

Deciding whether C' is compliant w.r.t. P is in PTime. One optimal P-compliant generalization can be computed in ExpTime. The set of all optimal P-compliant generalizations can be computed in ExpTime.
Let $\text{con}(C)$ be the set of all atoms A or $\exists r. E$ occurring in the top-level conjunction of C.

$\text{con}(C)$ covers $\text{con}(D)$ iff for all $F \in \text{con}(D)$, there is $E \in \text{con}(C)$ such that $E \sqsubseteq F$.
Characterizing Compliance

- Let $\text{con}(C)$ be the set of all atoms A or $\exists r.E$ occurring in the top-level conjunction of C.

- $\text{con}(C)$ covers $\text{con}(D)$ iff for all $F \in \text{con}(D)$, there is $E \in \text{con}(C)$ such that $E \sqsubseteq F \Rightarrow$ Characterizing $C \sqsubseteq D$.
Characterizing Compliance

- Let $\text{con}(C)$ be the set of all atoms A or $\exists r. E$ occurring in the top-level conjunction of C.

- $\text{con}(C)$ covers $\text{con}(D)$ iff for all $F \in \text{con}(D)$, there is $E \in \text{con}(C)$ such that $E \sqsubseteq F \Rightarrow$ Characterizing $C \sqsubseteq D$.

Compliance

C is compliant with \mathcal{P} iff $\text{con}(C)$ does not cover $\text{con}(D_i)$ for any $i \in \{1, \ldots, p\}$.
Characterizing Compliance

- Let $\text{con}(C)$ be the set of all atoms A or $\exists r. E$ occurring in the top-level conjunction of C.

- $\text{con}(C)$ covers $\text{con}(D)$ iff for all $F \in \text{con}(D)$, there is $E \in \text{con}(C)$ such that $E \preceq F \Rightarrow \text{Characterizing } C \preceq D$.

Compliance

C is compliant with \mathcal{P} iff $\text{con}(C)$ does not cover $\text{con}(D_i)$ for any $i \in \{1, \ldots, p\}$.

Complexity for Compliance

- Deciding whether C' is compliant w.r.t. \mathcal{P} is in PTime.
Characterizing Compliance

- Let $\text{con}(C)$ be the set of all atoms A or $\exists r. E$ occurring in the top-level conjunction of C.

- $\text{con}(C)$ covers $\text{con}(D)$ iff for all $F \in \text{con}(D)$, there is $E \in \text{con}(C)$ such that $E \sqsubseteq F \Rightarrow \text{Characterizing } C \sqsubseteq D$.

Compliance

C is compliant with \mathcal{P} iff $\text{con}(C)$ does not cover $\text{con}(D_i)$ for any $i \in \{1, \ldots, p\}$.

Complexity for Compliance

- Deciding whether C' is compliant w.r.t. \mathcal{P} is in PTime.
- One optimal \mathcal{P}-compliant generalization can be computed in ExpTime.
- The set of all optimal \mathcal{P}-compliant generalizations can be computed in ExpTime.
Assume \mathcal{P} is redundant-free: every $D_i, D_j \in \mathcal{P}$ are incomparable w.r.t. subsumption.
Characterizing Safety

Assume \(\mathcal{P} \) is redundant-free: every \(D_i, D_j \in \mathcal{P} \) are incomparable w.r.t. subsumption.

Safety

\(C' \) is safe for \(\mathcal{P} \) iff there is no pair of atoms \((E, F) \) such that

\[
E \in \text{con}(C'), \ F \in \text{con}(D_1) \cup \ldots \cup \text{con}(D_p) \text{ and } E \subseteq F
\]

Deciding whether \(C' \) is safe for \(\mathcal{P} \) is in PTime.
Assume \mathcal{P} is redundant-free: every $D_i, D_j \in \mathcal{P}$ are incomparable w.r.t. subsumption.

Safety

C' is safe for \mathcal{P} iff there is no pair of atoms (E, F) such that

$$E \in \text{con}(C'), \; F \in \text{con}(D_1) \cup \ldots \cup \text{con}(D_p) \text{ and } E \sqsubseteq F$$

Deciding whether C' is safe for \mathcal{P} is in PTime.

The Optimal \mathcal{P}-Safe Generalization

- If C'_1, C'_2 are \mathcal{P}-safe generalizations of C, then $C'_1 \sqcap C'_2$ is also a \mathcal{P}-safe generalization of C.

 \Rightarrow Optimal \mathcal{P}-safe generalization is unique up to equivalence.
Characterizing Safety

Assume \mathcal{P} is **redundant-free**: every $D_i, D_j \in \mathcal{P}$ are **incomparable w.r.t. subsumption**.

Safety

\mathcal{C}' is safe for \mathcal{P} iff there is **no pair of atoms** (E, F) such that

$$E \in \text{con}(\mathcal{C}'), \ F \in \text{con}(D_1) \cup \ldots \cup \text{con}(D_p) \text{ and } E \sqsubseteq F$$

Deciding whether \mathcal{C}' is safe for \mathcal{P} is in **PTime**.

The Optimal \mathcal{P}-Safe Generalization

- If $\mathcal{C}_1', \mathcal{C}_2'$ are \mathcal{P}-safe generalizations of \mathcal{C}, then $\mathcal{C}_1' \cap \mathcal{C}_2'$ is also a \mathcal{P}-safe generalization of \mathcal{C}.
 - \Rightarrow Optimal \mathcal{P}-safe generalization is **unique up to equivalence**.
- The \mathcal{P}-optimal safe generalization of \mathcal{C} can be **computed in ExpTime**.
 - \Rightarrow Requiring the computation of \mathcal{P}-optimal compliant generalizations.
Deciding Optimality

- **Deciding** whether C' a \mathcal{P}-optimal compliant (safe) generalization of C.

- It can be done in ExpTime
 - Compute the set of all \mathcal{P}-optimal compliant (safe) generalization of C.
 - Check whether C' belongs to the set.
Deciding Optimality

- **Deciding** whether C' is a \mathcal{P}-optimal compliant (safe) generalization of C.

- It can be done in ExpTime
 - Compute the set of all \mathcal{P}-optimal compliant (safe) generalization of C.
 - Check whether C' belongs to the set.

- It can be improved to **coNP**.

- **Idea**: Design an NP algorithm for deciding non-optimality
 1. Guess a **lower neighbor** C'' of C' subsuming C.
 $C \sqsubseteq C'' \sqsubseteq C'$ and there is no C''' such that $C'' \sqsubset C''' \sqsubset C'$.
 2. Check whether C'' is a compliant (safe)-generalization of C.
Deciding Optimality

- **Deciding** whether C' a P-optimal compliant (safe) generalization of C.

- It can be done in ExpTime
 - Compute the set of all P-optimal compliant (safe) generalization of C.
 - Check whether C' belongs to the set.

- It can be improved to \textbf{coNP}.

- **Idea**: Design an NP algorithm for deciding non-optimality
 1. Guess a \textit{lower neighbor} C'' of C' subsuming C.

 $C \sqsubseteq C'' \sqsubseteq C'$ and there is no C''' such that $C'' \sqsubseteq C''' \sqsubseteq C'$.

 2. Check whether C'' is a compliant (safe)-generalization of C.

- The converse of lower neighbor: \textbf{Upper Neighbor} \sqsubseteq_1 (Baader, et. al., 2018).

- Only \textbf{polynomially many} upper neighbors of \mathcal{EL}-concepts and each of them is of \textbf{polynomial size} (Kriegel, 2018).
Deciding Optimality

- **Deciding** whether C' a P-optimal compliant (safe) generalization of C.

 It can be done in ExpTime
 - Compute the set of all P-optimal compliant (safe) generalization of C.
 - Check whether C' belongs to the set.

- It can be improved to coNP.

- **Idea**: Design an NP algorithm for deciding non-optimality
 1. Guess a lower neighbor C'' of C' subsuming C.

 $C \sqsubseteq C'' \sqsubseteq C'$ and there is no C''' such that $C'' \sqsubset C''' \sqsubset C'$.
 2. Check whether C'' is a compliant (safe)-generalization of C.

- The converse of lower neighbor: **Upper Neighbor** \sqsubseteq_1 (Baader, et. al., 2018).

- Only polynomially many upper neighbors of EL-concepts and each of them is of polynomial size (Kriegel, 2018).

- The next task: **computing lower neighbors**!
Lower neighbors C'' of C' can be obtained by conjoining an atom not implied by C' to C'.
Lower neighbors C'' of C' can be obtained by conjoining an atom not implied by C' to C'.

Let Σ be a finite set of concept and role names. We define the set $LA_{\Sigma}(C')$ of lowering atoms for C' w.r.t. Σ.

Lemma C'' is a lower neighbor of C' w.r.t. Σ iff there is an atom $At \in LA_{\Sigma}(C')$ such that $C'' \equiv C' \sqcap At$.
Lower neighbors C'' of C' can be obtained by conjoining an atom not implied by C' to C'.

Let Σ be a finite set of concept and role names. We define the set $LA_\Sigma(C')$ of lowering atoms for C' w.r.t. Σ.

$L A_\Sigma(C') := \{A \in \Sigma \cap N_C \mid A \notin con(C')\} \cup$
Characterizing Lower Neighbors

- Lower neighbors C'' of C' can be obtained by **conjoining an atom** not implied by C' to C'.

- Let Σ be a **finite set** of concept and role names. We define the set $LA_\Sigma(C')$ of **lowering atoms** for C' w.r.t. Σ.

$$LA_\Sigma(C') := \{A \in \Sigma \cap N_C | A \not\in \text{con}(C')\} \cup \{\exists r.D | r \in N_R \cap \Sigma, \text{sig}(D) \subseteq \Sigma, C' \not\subseteq \exists r.D \text{ and}$$
Lower neighbors C'' of C' can be obtained by \textit{conjoining an atom} not implied by C' to C'.

Let Σ be a \textbf{finite set} of concept and role names. We define the set $\text{LA}_\Sigma(C')$ of \textbf{lowering atoms} for C' w.r.t. Σ.

$$\text{LA}_\Sigma(C') := \{ A \in \Sigma \cap N_C \mid A \not\in \text{con}(C') \} \cup \{ \exists r.D \mid r \in N_R \cap \Sigma, \ \text{sig}(D) \subseteq \Sigma, \ C' \not\subseteq \exists r.D \text{ and } C' \subseteq \exists r.E \text{ for all } E \text{ with } D \sqsubseteq_1 E \}$$
Characterizing Lower Neighbors

- Lower neighbors C'' of C' can be obtained by conjoining an atom not implied by C' to C'.

- Let Σ be a finite set of concept and role names. We define the set $LA_\Sigma(C')$ of lowering atoms for C' w.r.t. Σ.

$$LA_\Sigma(C') := \{ A \in \Sigma \cap N_C \mid A \notin \text{con}(C') \} \cup \{ \exists r. D \mid r \in N_R \cap \Sigma, \text{sig}(D) \subseteq \Sigma, C' \not\sqsubseteq \exists r. D \text{ and } C' \sqsubseteq \exists r. E \text{ for all } E \text{ with } D \sqsubseteq E \}$$

Lemma

C'' is a lower neighbor of C' w.r.t. Σ iff there is an atom $At \in LA_\Sigma(C')$ such that $C'' \equiv C' \cap At$.

Adrian Nuradiansyah
Thursday Seminar
August 20, 2019 10 / 20
Example of Lower Neighbors

Example

\[\Sigma := \{ r, A_1, A_2, B_1, B_2, C_1, C_2 \} \] and

\[C' := \exists r. (A_1 \cap A_2 \cap B_1 \cap B_2) \cap \exists r. (A_1 \cap A_2 \cap C_1 \cap C_2) \cap \exists r. (B_1 \cap B_2 \cap C_1 \cap C_2). \]
Example of Lower Neighbors

Example

\(\Sigma := \{ r, A_1, A_2, B_1, B_2, C_1, C_2 \} \) and

\(C' := \exists r. (A_1 \cap A_2 \cap B_1 \cap B_2) \cap \exists r. (A_1 \cap A_2 \cap C_1 \cap C_2) \cap \exists r. (B_1 \cap B_2 \cap C_1 \cap C_2) \).

- if \(D := A_i \cap B_j \cap C_k \) for \(i, j, k \in \{1, 2\} \), then \(\exists r. D \in LA_\Sigma(C'') \).
Example of Lower Neighbors

Example

\[\Sigma := \{ r, A_1, A_2, B_1, B_2, C_1, C_2 \} \text{ and } \]

\[C' := \exists r. (A_1 \cap A_2 \cap B_1 \cap B_2) \cap \exists r. (A_1 \cap A_2 \cap C_1 \cap C_2) \cap \exists r. (B_1 \cap B_2 \cap C_1 \cap C_2). \]

- if \(D := A_i \cap B_j \cap C_k \) for \(i, j, k \in \{1, 2\} \), then \(\exists r. D \in LA_\Sigma (C'') \).
- For all upper neighbors \(E \) of \(D \), where \(E \) is only either \(A_i \cap B_j \), \(B_j \cap C_k \), or \(A_i \cap C_k \), we have \(C \sqsubseteq \exists r. E. \)
Example of Lower Neighbors

Example

\[\Sigma := \{ r, A_1, A_2, B_1, B_2, C_1, C_2 \} \] and

\[C' := \exists r. (A_1 \cap A_2 \cap B_1 \cap B_2) \cap \exists r. (A_1 \cap A_2 \cap C_1 \cap C_2) \cap \exists r. (B_1 \cap B_2 \cap C_1 \cap C_2). \]

- If \(D := A_i \cap B_j \cap C_k \) for \(i, j, k \in \{1, 2\} \), then \(\exists r. D \in \text{LA}_\Sigma(C'') \).
- For all upper neighbors \(E \) of \(D \), where \(E \) is only either \(A_i \cap B_j \), \(B_j \cap C_k \), or \(A_i \cap C_k \), we have \(C \subseteq \exists r. E \).
- \(C' \cap \exists r. D \) is a lower neighbor of \(C' \).
Example of Lower Neighbors

<table>
<thead>
<tr>
<th>Example</th>
</tr>
</thead>
<tbody>
<tr>
<td>$\Sigma := {r, A_1, A_2, B_1, B_2, C_1, C_2}$ and $C' := \exists r. (A_1 \cap A_2 \cap B_1 \cap B_2) \cap \exists r. (A_1 \cap A_2 \cap C_1 \cap C_2) \cap \exists r. (B_1 \cap B_2 \cap C_1 \cap C_2)$.</td>
</tr>
</tbody>
</table>

- If $D := A_i \cap B_j \cap C_k$ for $i, j, k \in \{1, 2\}$, then $\exists r. D \in LA_\Sigma(C'')$.
- For all upper neighbors E of D, where E is only either $A_i \cap B_j$, $B_j \cap C_k$, or $A_i \cap C_k$, we have $C \subseteq \exists r. E$.
- $C' \cap \exists r. D$ is a lower neighbor of C'

Given C and Σ, in general, $|LA_\Sigma(C)|$ can be **exponential** in the size of C and Σ.
Example

$\Sigma := \{r, A_1, A_2, B_1, B_2, C_1, C_2\}$ and $C' := \exists r. (A_1 \cap A_2 \cap B_1 \cap B_2) \sqcap \exists r. (A_1 \cap A_2 \cap C_1 \cap C_2) \sqcap \exists r. (B_1 \cap B_2 \cap C_1 \cap C_2)$.

- if $D := A_i \cap B_j \cap C_k$ for $i, j, k \in \{1, 2\}$, then $\exists r. D \in LA_\Sigma(C'')$.
- For all upper neighbors E of D, where E is only either $A_i \cap B_j$, $B_j \cap C_k$, or $A_i \cap C_k$, we have $C \sqsubseteq \exists r. E$.
- $C' \sqcap \exists r. D$ is a lower neighbor of C'

Given C and Σ, in general, $|LA_\Sigma(C)|$ can be **exponential** in the size of C and Σ.

To produce exactly the lower neighbors of C' that subsume C, let us

- **generate** all $At \in LA_\Sigma(C')$ w.r.t. $\Sigma := \text{sig}(C)$, and
- **remove** the ones that do not subsume C.
But $LA_{\Sigma}(C')$ does not show directly how appropriate $\exists r. D$ can be found!
Generating Lower Neighbors

But $LA_{\Sigma}(C')$ does not show directly how appropriate $\exists r.D$ can be found!

The NP-algorithm generating exactly the elements of $LA_{\Sigma}(C')$ works as follows

1. **Choose** $A \in \Sigma \setminus \text{con}(C')$ and **output** A. If there is no such A, fail.
But $L_{\Sigma}(C')$ does not show directly how appropriate $\exists r. D$ can be found!

The NP-algorithm generating exactly the elements of $L_{\Sigma}(C')$ works as follows

1. Choose $A \in \Sigma \setminus \text{con}(C')$ and output A. If there is no such A, fail.

2. Choose $r \in N_R \cap \Sigma$, a set $\{\exists r.F'_1, \ldots, \exists r.F'_k\} \subseteq \text{con}(C')$, and recursively guess $F_1 \in L_{\Sigma}(F'_1), \ldots, F_k \in L_{\Sigma}(F'_k)$.
Generating Lower Neighbors

But $LA_\Sigma(C')$ does not show directly how appropriate $\exists r.D$ can be found!

The NP-algorithm generating exactly the elements of $LA_\Sigma(C')$ works as follows

1. **Choose** $A \in \Sigma \setminus \text{con}(C')$ and **output** A. If there is no such A, fail.

2. **Choose** $r \in N_R \cap \Sigma$, a set $\{\exists r.F'_1, \ldots, \exists r.F'_k\} \subseteq \text{con}(C')$, and recursively **guess** $F_1 \in LA_\Sigma(F'_1), \ldots, F_k \in LA_\Sigma(F'_k)$.
 - If for some $i, 1 \leq i \leq k$, it fails to produce $F_i \in LA_\Sigma(F'_i)$, or
 - If $C' \subseteq \exists r.(F_1 \cap \ldots \cap F_k)$, or
 - If $F_1 \cap \ldots \cap F_k$ has an upper neighbor E such that $C' \not\supseteq \exists r.E$, then fail.

Generating Lower Neighbors

But $LA_{\Sigma}(C')$ \textbf{does not show directly} how appropriate $\exists r . D$ can be found!

The NP-algorithm \textit{generating exactly the elements} of $LA_{\Sigma}(C')$ works as follows

1. \textbf{Choose} $A \in \Sigma \setminus \text{con}(C')$ and \textbf{output} A. If there is no such A, fail.

2. \textbf{Choose} $r \in N_R \cap \Sigma$, a set $\{\exists r . F'_1, \ldots, \exists r . F'_k\} \subseteq \text{con}(C')$, and recursively guess $F_1 \in LA_{\Sigma}(F'_1), \ldots, F_k \in LA_{\Sigma}(F'_k)$.
 - If for some $i, 1 \leq i \leq k$, it fails to produce $F_i \in LA_{\Sigma}(F'_i)$, or
 - If $C' \subseteq \exists r . (F_1 \sqcap \ldots \sqcap F_k)$, or
 - If $F_1 \sqcap \ldots \sqcap F_k$ has an upper neighbor E such that $C' \not\subseteq \exists r . E$, then fail. Otherwise, \textbf{output} $\exists r . (F_1 \sqcap \ldots \sqcap F_k) \equiv \exists r . D$.
Theorem

The optimality problem is in \(\text{coNP} \) for compliance and for safety in \(\mathcal{EL} \).
The optimality problem is in coNP for compliance and for safety in EL.

We do not know if these problems are also coNP-hard.

The Hypergraph Duality Problem (Dual) can be reduced to them.

Given two families of inclusion-comparable sets G and H, Dual asks whether H consists exactly of the minimal hitting sets of G.
The optimality problem is in \textit{coNP} for compliance and for safety in \textit{EL}.

- We \textbf{do not know} if these problems are also \textit{coNP}-hard.
- The Hypergraph Duality Problem (Dual) \textbf{can be reduced} to them.
- Given two \textit{families of inclusion-comparable sets} \mathcal{G} and \mathcal{H}, Dual asks whether \mathcal{H} consists exactly of the minimal hitting sets of \mathcal{G}.

\textbf{Proposition}

There is a \textit{polynomial reduction} of Dual to the optimality problem for compliance and safety.
What we considered before:

- Knowledge about individuals
- Privacy policies
- Background knowledge of attackers

are represented by \mathcal{EL} concepts.
Considering Different Attacker’s Knowledge

- What we considered before:
 - Knowledge about individuals
 - Privacy policies
 - Background knowledge of attackers

are represented by \mathcal{EL} concepts.

- Background Knowledge of Attackers: \mathcal{FL}_0 or \mathcal{FLE} concepts?

Subsumption without general TBoxes:
in \mathcal{FL}_0: PTime
in \mathcal{FLE}: NP-complete

In SNOMED CT, the roles have implicit typing constraints, that may be known to an attacker.
Considering Different Attacker’s Knowledge

- What we considered before:
 - Knowledge about individuals
 - Privacy policies
 - Background knowledge of attackers

 are represented by \mathcal{EL} concepts.

- Background Knowledge of Attackers: \mathcal{FL}_0 or \mathcal{FLE} concepts?

- \mathcal{FL}_0 concepts:
 $$C, D ::= \top | A | C \sqcap D | \forall r. C$$

- \mathcal{FLE} concepts:
 $$C, D ::= \top | A | C \sqcap D | \exists r. C | \forall r. D$$
Considering Different Attacker’s Knowledge

- What we considered before:
 - Knowledge about individuals
 - Privacy policies
 - Background knowledge of attackers

Background knowledge of attackers are represented by \mathcal{EL} concepts.

- Background Knowledge of Attackers: \mathcal{FL}_0 or \mathcal{FLE} concepts?

 \mathcal{FL}_0 concepts:

 $$C, D ::= \top | A | C \sqcap D | \forall r.C$$

 \mathcal{FLE} concepts:

 $$C, D ::= \top | A | C \sqcap D | \exists r.C | \forall r.D$$

- Subsumption without general TBoxes:

 - in \mathcal{FL}_0: PTime
 - in \mathcal{FLE}: NP-complete

- In SNOMED CT, the roles have implicit typing constraints, that may be known to an attacker.
Let C be an \mathcal{EL} concept, \mathcal{P} be an \mathcal{EL} policy, $Q \in \{\forall, \forall\exists\}$, and $\mathcal{L}_\forall = \mathcal{FL}_0, \mathcal{L}_\forall\exists = \mathcal{FL}_E$.

The \mathcal{L}_Q concept C' is **compliant** with \mathcal{P} if $C' \not\sqsubseteq D$ for all $D \in \mathcal{P}$.

The \mathcal{EL} concept C' is

- **Q-safe** for \mathcal{P} if $C' \sqcap C''$ is compliant with \mathcal{P} for all \mathcal{L}_Q concepts C'' that are compliant with \mathcal{P}.
- a **Q-safe generalization** of C for \mathcal{P} if $C \sqsubseteq C'$ and C' is Q-safe for \mathcal{P},
- an **optimal Q-safe generalization** of C for \mathcal{P} if
 - it is a Q-safe generalization of C for \mathcal{P} and
 - there is no Q-safe generalization of C for \mathcal{P} such that $C'' \sqsubseteq C'$.

We now focus on \forall-safety and $\forall\exists$-safety.
Illustrations on \forall-Safety and $\forall\exists$-Safety

Let us consider again

$$D = Patient \land \exists\text{seen_by.}(Doctor \land \exists\text{works_in.\text{Cardiology}})$$

...and the published information C about linda

$$C = Patient \land Female \land \exists\text{seen_by.}(Doctor \land Male \land \exists\text{works_in.\text{Cardiology}})$$

Note C is not compliant with D, i.e., $C \subset D$.

Compute the optimal safe generalization

$$C_3 = Female \land \exists\text{seen_by.}(Doctor \land Male \land \exists\text{works_in.\top})$$
$$\land \exists\text{seen_by.}(Male \land \exists\text{works_in.\text{Cardiology}})$$

But then, if the attacker's knowledge is given by an \mathcal{FL}_0 concept

$$F_1 = \forall\text{seen_by.}\forall\text{works_in.\text{Cardiology}}$$

then $C_3 \land F_1 \subset D$.
Illustrations on \forall-Safety and $\forall\exists$-Safety

Let us consider again

$$D = Patient \cap \exists\text{seen}_\text{by}. (Doctor \cap \exists\text{works}_\text{in}.\text{Cardiology})$$

...and the published information C about linda

$$C = Patient \cap Female \cap \exists\text{seen}_\text{by}. (Doctor \cap Male \cap \exists\text{works}_\text{in}.\text{Cardiology})$$

Note C is not compliant with D, i.e., $C \subseteq D$.

Compute an optimal \forall-safe generalization

$$C_4 = Male \cap Patient \cap \exists\text{seen}_\text{by}. (Doctor \cap Female)$$

However, if the attacker’s knowledge is given by an \mathcal{FLE} concept $F_2 = \forall\text{seen}_\text{by}. \exists\text{works}_\text{in}.\text{Cardiology}$, then $C_4 \cap F_2 \subseteq D$.
Illustrations on \forall-Safety and $\forall\exists$-Safety

Let us consider again

$$D = Patient \sqcap \exists \text{seen_by.}\,(Doctor \sqcap \exists \text{works_in.Cardiology})$$

... and the published information C about linda

$$C = Patient \sqcap Female \sqcap \exists \text{seen_by.}\,(Doctor \sqcap Male \sqcap \exists \text{works_in.Cardiology})$$

Note C is not compliant with D, i.e., $C \subseteq D$.

Compute an optimal \forall-safe generalization

$$C_4 = Male \sqcap Patient \sqcap \exists \text{seen_by.}\,(Doctor \sqcap Female)$$

However, if the attacker’s knowledge is given by an \mathcal{FLE} concept $F_2 = \forall \text{seen_by.}\exists \text{works_in.Cardiology}$, then $C_4 \sqcap F_2 \subseteq D$.

Compute the optimal $\forall\exists$-safe generalization $C_5 = Male$
Characterizing \forall-Safety

\forall-Safety

C' is \forall-safe for \mathcal{P} iff for all $D \in \mathcal{P}$:

1. if $rd(D) = 0$, then $\text{con}(C) \cap \text{con}(D) = \emptyset$.

Complexity for \forall-Safety

Deciding whether C' is \forall-safe for \mathcal{P} is in PTime.

One optimal \forall-safe generalization for \mathcal{P} can be computed in ExpTime.

The set of all optimal \forall-safe generalizations for \mathcal{P} can be computed in ExpTime.

\forall-optimality is in coNP.

Adrian Nuradiansyah
Thursday Seminar
August 20, 2019 17 / 20
Characterizing \forall-Safety

\forall-Safety

C' is \forall-safe for \mathcal{P} iff for all $D \in \mathcal{P}$:

1. if $rd(D) = 0$, then $\text{con}(C) \cap \text{con}(D) = \emptyset$.

2. if $rd(D) > 0$, then there is $\exists r.D' \in \text{con}(D)$ such that
 a. if $rd(D') = 0$, then there is no concept of the form $\exists r.C' \in \text{con}(C)$,
 b. if $rd(D') > 0$, then for all $\exists r.C' \in \text{con}(C)$, C' is \forall-safe for $\{D'\}$.

Complexity for \forall-Safety
Deciding whether C' is \forall-safe for \mathcal{P} is in PTime.

One optimal \forall-safe generalization for \mathcal{P} can be computed in ExpTime.

The set of all optimal \forall-safe generalizations for \mathcal{P} can be computed in ExpTime.

\forall-optimality is in coNP.
Characterizing \forall-Safety

\forall-Safety

C' is \forall-safe for \mathcal{P} iff for all $D \in \mathcal{P}$:

1. if $rd(D) = 0$, then $\text{con}(C) \cap \text{con}(D) = \emptyset$.
2. if $rd(D) > 0$, then there is $\exists r.D' \in \text{con}(D)$ such that
 a. if $rd(D') = 0$, then there is no concept of the form $\exists r.C' \in \text{con}(C)$,
 b. if $rd(D') > 0$, then for all $\exists r.C' \in \text{con}(C)$, C' is \forall-safe for $\{D\}$.

Complexity for \forall-Safety

- Deciding whether C' is \forall-safe for \mathcal{P} is in $PTime$.
- One optimal \forall-safe generalization for \mathcal{P} can be computed in $ExpTime$.
- The set of all optimal \forall-safe generalizations for \mathcal{P} can be computed in $ExpTime$.
- \forall-optimality is in $coNP$.

Adrian Nuradiansyah
Thursday Seminar
August 20, 2019 17 / 20
Characterizing \(\forall \exists \)-Safety

\(\forall \exists \)-Safety

\(C \) is \(\forall \exists \)-safe for \(\mathcal{P} \) iff

1. \(A \notin \text{con}(C) \) for all concept names \(A \in \text{con}(D_1) \cup \ldots \cup \text{con}(D_p) \), and
2. for all existential restrictions \(\exists r.D' \in \text{con}(D_1) \cup \ldots \cup \text{con}(D_p) \), there is no concept of the form \(\exists r.E \in \text{con}(C) \)
Characterizing $\forall\exists$-Safety

$\forall\exists$-Safety

C is $\forall\exists$-safe for \mathcal{P} iff

1. $A \notin \text{con}(C)$ for all concept names $A \in \text{con}(D_1) \cup \ldots \cup \text{con}(D_p)$, and
2. for all existential restrictions $\exists r.D' \in \text{con}(D_1) \cup \ldots \cup \text{con}(D_p)$, there is no concept of the form $\exists r.E \in \text{con}(C)$

Complexity for \forall-Safety

Given \mathcal{EL} concepts C, C'' and a redundancy-free \mathcal{EL} policy \mathcal{P}, we

- can decide if C is $\forall\exists$-safe for \mathcal{P},
- can compute the unique optimal $\forall\exists$-safe generalization of C for \mathcal{P}, and
- can decide if C'' is an optimal $\forall\exists$-safe generalization of C for \mathcal{P}

in polynomial time
Conclusions and Future Work

Conclusions:

- Define and provide characterizations for compliance, safety, and optimality in privacy-preserving ontology publishing for \mathcal{EL} instance stores.
- Computing \mathcal{P}-optimal compliant (safe) generalizations of \mathcal{EL} concepts.
- Deciding the optimality problem via computing lower neighbors of \mathcal{EL} concepts.
- Considering attacker’s knowledge to be given by an \mathcal{FL}_0 or \mathcal{FLE} concept.

Future Work:

- \mathcal{P}POP in \mathcal{EL} Instance Stores w.r.t. General TBoxes
- \mathcal{P}POP in \mathcal{EL} ABoxes
- Representing attacker’s knowledge with more different DLs
Conclusions and Future Work

Conclusions:

- Define and provide characterizations for compliance, safety, and optimality in privacy-preserving ontology publishing for \mathcal{EL} instance stores.
- Computing \mathcal{P}-optimal compliant (safe) generalizations of \mathcal{EL} concepts.
- Deciding the optimality problem via computing lower neighbors of \mathcal{EL} concepts.
- Considering attacker’s knowledge to be given by an \mathcal{FL}_0 or \mathcal{FLE} concept.
 \[\Rightarrow \text{the stronger knowledge of the attacker, the more radical we need to change the concept to make it safe} \]

Future Work:

- PPOP in \mathcal{EL} Instance Stores w.r.t. General TBoxes
- PPOP in \mathcal{EL} ABoxes
- Representing attacker’s knowledge with more different DLs
Conclusions and Future Work

Conclusions:

- Define and provide characterizations for **compliance, safety, and optimality** in privacy-preserving ontology publishing for \mathcal{EL} instance stores.
- Computing \mathcal{P}-optimal compliant (safe) generalizations of \mathcal{EL} concepts.
- Deciding the optimality problem via computing lower neighbors of \mathcal{EL} concepts.
- Considering attacker’s knowledge to be given by an \mathcal{FL}_0 or \mathcal{FLE} concept. ⇒ the stronger knowledge of the attacker, the more radical we need to change the concept to make it safe.

Future Work:

- PPOP in \mathcal{EL} Instance Stores w.r.t. General TBoxes
- PPOP in \mathcal{EL} ABoxes
- Representing attacker’s knowledge with more different DLs