Privacy-Preserving Ontology Publishing for \mathcal{EL} Instance Stores

Franz Baader Francesco Kriegel Adrian Nuradiansyah

Technische Universität Dresden

Published in JELIA 2019 and Submitted to *Künstliche Intelligenz* (KI) 2019

August 20, 2019

< 行い

э

Adrian Nuradiansyah

August 20, 2019 2 / 20

э

What people already did:

In (Cuenca Grau & Kostylev, 2016):

- Privacy-Preserving Data Publishing
- Information to be published: a relational dataset with (labeled) nulls
- Policy is a conjunctive query.
- Considering three privacy properties when publishing datasets: policy-compliant, policy-safety, and optimality.
- Published information does not have background knowledge.

What people already did:

In (Cuenca Grau & Kostylev, 2016):

- Privacy-Preserving Data Publishing
- Information to be published: a relational dataset with (labeled) nulls
- Policy is a conjunctive query.
- Considering three privacy properties when publishing datasets: policy-compliant, policy-safety, and optimality.
- Published information does not have background knowledge.

What we want to do:

- Privacy-Preserving Ontology Publishing (PPOP)
- Addressed in the context of Description Logic Ontologies

Image: A matrix

PPOP for \mathcal{EL} instance stores

- Starting point: *EL* Ontologies with role-free ABoxes (instance stores) and empty TBoxes.
- An ABox \mathcal{A} is role-free if all the axioms $\beta \in \mathcal{A}$ are only in the form of D(a).

- Starting point: *EL* Ontologies with role-free ABoxes (instance stores) and empty TBoxes.
- An ABox \mathcal{A} is role-free if all the axioms $\beta \in \mathcal{A}$ are only in the form of D(a).
- Why no TBox? For instance,
 - in SNOMED CT \rightarrow Acyclic TBox \rightarrow the TBox can be reduced away
 - Even in SNOMED, patient data are usually annotated with SNOMED concepts, not with SNOMED roles.

- Starting point: *EL* Ontologies with role-free ABoxes (instance stores) and empty TBoxes.
- An ABox \mathcal{A} is role-free if all the axioms $\beta \in \mathcal{A}$ are only in the form of D(a).
- Why no TBox? For instance,
 - in SNOMED CT \rightarrow Acyclic TBox \rightarrow the TBox can be reduced away
 - Even in SNOMED, patient data are usually annotated with SNOMED concepts, not with SNOMED roles.
- W.l.o.g., only one concept assertion in A speaks about one individual C₁(a), C₂(a) ∈ A implies (C₁ ⊓ C₂)(a) ∈ A
- Safe Ontologies $\xrightarrow{reduced}$ Safe Concepts

- Starting point: *EL* Ontologies with role-free ABoxes (instance stores) and empty TBoxes.
- An ABox \mathcal{A} is role-free if all the axioms $\beta \in \mathcal{A}$ are only in the form of D(a).
- Why no TBox? For instance,
 - in SNOMED CT \rightarrow Acyclic TBox \rightarrow the TBox can be reduced away
 - Even in SNOMED, patient data are usually annotated with SNOMED concepts, not with SNOMED roles.
- W.l.o.g., only one concept assertion in A speaks about one individual C₁(a), C₂(a) ∈ A implies (C₁ ⊓ C₂)(a) ∈ A
- Safe Ontologies $\xrightarrow{reduced}$ Safe Concepts
- Information to be published for an individual a: an \mathcal{EL} concept C
- Policy is a finite set of \mathcal{EL} concepts D_1, \ldots, D_p , such that $D_i \not\equiv \top$ for all $i \in \{1, \ldots, p\}$.

Given a policy $\mathcal{P} = \{D_1, \dots, D_p\}$ and an \mathcal{EL} concept C, the \mathcal{EL} concept C' is

- compliant with \mathcal{P} if $C' \not\subseteq D_i$ for all $i \in \{1, \ldots, p\}$.
- safe for \mathcal{P} if $C' \sqcap C''$ is compliant with \mathcal{P} for all \mathcal{EL} -concepts C'' that are compliant with \mathcal{P} .

Given a policy $\mathcal{P} = \{D_1, \dots, D_p\}$ and an \mathcal{EL} concept C, the \mathcal{EL} concept C' is

- compliant with \mathcal{P} if $C' \not\sqsubseteq D_i$ for all $i \in \{1, \ldots, p\}$.
- safe for \mathcal{P} if $C' \sqcap C''$ is compliant with \mathcal{P} for all \mathcal{EL} -concepts C'' that are compliant with \mathcal{P} .
- a *P*-compliant (safe) generalization of *C* if
 - $C \sqsubseteq C'$ and
 - C' is compliant with (safe for) \mathcal{P} .

Given a policy $\mathcal{P} = \{D_1, \dots, D_p\}$ and an \mathcal{EL} concept C, the \mathcal{EL} concept C' is

- compliant with \mathcal{P} if $C' \not\sqsubseteq D_i$ for all $i \in \{1, \ldots, p\}$.
- safe for \mathcal{P} if $C' \sqcap C''$ is compliant with \mathcal{P} for all \mathcal{EL} -concepts C'' that are compliant with \mathcal{P} .
- a *P*-compliant (safe) generalization of *C* if
 - $C \sqsubseteq C'$ and
 - C' is compliant with (safe for) \mathcal{P} .
- a \mathcal{P} -optimal compliant (safe) generalization of C if
 - C' is a \mathcal{P} -compliant (safe) generalization of C, and
 - there is no \mathcal{P} -compliant (safe) generalization C'' of C s.t. $C'' \sqsubset C'$.

• Consider a policy $\mathcal{P} = \{D\}$ specifying what information should be kept "secret" about *linda*

 $D = Patient \sqcap \exists seen_by.(Doctor \sqcap \exists works_in.Cardiology)$

• Assume information C is published about linda

 $C = Patient \sqcap Female \sqcap \exists seen_by.(Doctor \sqcap Male \sqcap \exists works_in.Cardiology)$ Note C is not compliant with D, i.e., $C \sqsubseteq D$.

• Consider a policy $\mathcal{P} = \{D\}$ specifying what information should be kept "secret" about *linda*

 $D = Patient \sqcap \exists seen_by.(Doctor \sqcap \exists works_in.Cardiology)$

• Assume information C is published about *linda*

 $C = Patient \sqcap Female \sqcap \exists seen_by.(Doctor \sqcap Male \sqcap \exists works_in.Cardiology)$ Note C is not compliant with D, i.e., $C \sqsubseteq D$.

• Generalizing C to yield a compliant concept

 $C_1 = Female \sqcap \exists seen_by.(Doctor \sqcap Male \sqcap \exists works_in.Cardiology)$ But, C_1 is not safe for D since if the attacker knows Patient(linda), then $C_1 \sqcap Patient \sqsubseteq D$ is revealed.

• Consider a policy $\mathcal{P} = \{D\}$ specifying what information should be kept "secret" about *linda*

 $D = Patient \sqcap \exists seen_by.(Doctor \sqcap \exists works_in.Cardiology)$

• Assume information C is published about linda

 $C = Patient \sqcap Female \sqcap \exists seen_by.(Doctor \sqcap Male \sqcap \exists works_in.Cardiology)$ Note C is not compliant with D, i.e., $C \sqsubseteq D$.

• Let us make it safe!

 $C_2 = Female \sqcap \exists seen_by.(Doctor \sqcap Male \sqcap \exists works_in.\top)$

But, C_2 is still not optimal since more information than necessary is removed.

• Consider a policy $\mathcal{P} = \{D\}$ specifying what information should be kept "secret" about *linda*

 $D = Patient \sqcap \exists seen_by.(Doctor \sqcap \exists works_in.Cardiology)$

• Assume information C is published about linda

 $C = Patient \sqcap Female \sqcap \exists seen_by.(Doctor \sqcap Male \sqcap \exists works_in.Cardiology)$ Note C is not compliant with D, i.e., $C \sqsubseteq D$.

• Let us make it safe!

 $C_2 = Female \sqcap \exists seen_by.(Doctor \sqcap Male \sqcap \exists works_in.\top)$

But, C_2 is still not optimal since more information than necessary is removed.

Make it optimal!

 $C_{3} = Female \quad \sqcap \exists seen_by.(Doctor \sqcap Male \sqcap \exists works_in.\top) \\ \sqcap \exists seen_by.(Male \sqcap \exists works_in.Cardiology)$

イロト イポト イヨト イヨト

Let con(C) be the set of all atoms A or ∃r.E occurring in the top-level conjunction of C.

Image: Image:

э

- Let con(C) be the set of all atoms A or ∃r.E occurring in the top-level conjunction of C.
- con(C) covers con(D) iff for all F ∈ con(D), there is E ∈ con(C) such that E ⊑ F

- Let con(C) be the set of all atoms A or ∃r.E occurring in the top-level conjunction of C.
- con(C) covers con(D) iff for all F ∈ con(D), there is E ∈ con(C) such that E ⊑ F ⇒ Characterizing C ⊑ D.

- Let con(C) be the set of all atoms A or ∃r.E occurring in the top-level conjunction of C.
- con(C) covers con(D) iff for all F ∈ con(D), there is E ∈ con(C) such that E ⊑ F ⇒ Characterizing C ⊑ D.

Compliance

C is compliant with \mathcal{P} iff con(C) does not cover $con(D_i)$ for any $i \in \{1, \ldots, p\}$.

- Let con(C) be the set of all atoms A or ∃r.E occurring in the top-level conjunction of C.
- con(C) covers con(D) iff for all F ∈ con(D), there is E ∈ con(C) such that E ⊑ F ⇒ Characterizing C ⊑ D.

Compliance

C is compliant with \mathcal{P} iff con(C) does not cover $con(D_i)$ for any $i \in \{1, \ldots, p\}$.

Complexity for Compliance

• Deciding whether C' is compliant w.r.t. \mathcal{P} is in **PTime**.

A B A A B A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

- Let con(C) be the set of all atoms A or ∃r.E occurring in the top-level conjunction of C.
- con(C) covers con(D) iff for all F ∈ con(D), there is E ∈ con(C) such that E ⊑ F ⇒ Characterizing C ⊑ D.

Compliance

C is compliant with \mathcal{P} iff con(C) does not cover $con(D_i)$ for any $i \in \{1, \ldots, p\}$.

Complexity for Compliance

- Deciding whether C' is compliant w.r.t. \mathcal{P} is in **PTime**.
- One optimal *P*-compliant generalization can be **computed in ExpTime**.
- The set of all optimal \mathcal{P} -compliant generalizations can be **computed in ExpTime**.

Assume \mathcal{P} is redundant-free: every $D_i, D_j \in \mathcal{P}$ are incomparable w.r.t. subsumption.

э

Assume \mathcal{P} is **redundant-free**: every $D_i, D_j \in \mathcal{P}$ are **incomparable w.r.t.** subsumption.

Safety

C' is safe for \mathcal{P} iff there is **no pair of atoms** (E, F) such that

 $E \in \operatorname{con}(C'), F \in \operatorname{con}(D_1) \cup \ldots \cup \operatorname{con}(D_p) \text{ and } E \sqsubseteq F$

Deciding whether C' is safe for \mathcal{P} is in **PTime**.

Assume \mathcal{P} is **redundant-free**: every $D_i, D_j \in \mathcal{P}$ are **incomparable w.r.t.** subsumption.

Safety

C' is safe for \mathcal{P} iff there is **no pair of atoms** (E, F) such that

 $E \in \operatorname{con}(C'), F \in \operatorname{con}(D_1) \cup \ldots \cup \operatorname{con}(D_p)$ and $E \sqsubseteq F$

Deciding whether C' is safe for \mathcal{P} is in **PTime**.

The Optimal \mathcal{P} -Safe Generalization

If C'₁, C'₂ are P-safe generalizations of C, then C'₁ □ C'₂ is also a P-safe generalization of C.

 \Rightarrow Optimal \mathcal{P} -safe generalization is **unique up to equivalence**.

< 行い

Assume \mathcal{P} is **redundant-free**: every $D_i, D_j \in \mathcal{P}$ are **incomparable w.r.t.** subsumption.

Safety

C' is safe for \mathcal{P} iff there is **no pair of atoms** (E, F) such that

 $E \in \operatorname{con}(C'), F \in \operatorname{con}(D_1) \cup \ldots \cup \operatorname{con}(D_p) \text{ and } E \sqsubseteq F$

Deciding whether C' is safe for \mathcal{P} is in **PTime**.

The Optimal \mathcal{P} -Safe Generalization

If C'₁, C'₂ are P-safe generalizations of C, then C'₁ □ C'₂ is also a P-safe generalization of C.

 \Rightarrow Optimal $\mathcal{P}\text{-safe}$ generalization is **unique up to equivalence**.

• The \mathcal{P} -optimal safe generalization of C can be computed in ExpTime.

 \Rightarrow Requiring the computation of $\mathcal P\text{-optimal}$ compliant generalizations.

- **Deciding** whether C' a \mathcal{P} -optimal compliant (safe) generalization of C.
- It can be done in ExpTime
 - Compute the set of all \mathcal{P} -optimal compliant (safe) generalization of C.
 - Check whether C' belongs to the set.

- **Deciding** whether C' a \mathcal{P} -optimal compliant (safe) generalization of C.
- It can be done in ExpTime
 - Compute the set of all \mathcal{P} -optimal compliant (safe) generalization of C.
 - Check whether C' belongs to the set.
- It can be improved to coNP.
- Idea: Design an NP algorithm for deciding non-optimality
 - 1. Guess a lower neighbor C'' of C' subsuming C. $C \sqsubseteq C'' \sqsubseteq C'$ and there is no C''' such that $C'' \sqsubset C''' \sqsubset C'$.
 - 2. Check whether C'' is a compliant (safe)-generalization of C.

- **Deciding** whether C' a \mathcal{P} -optimal compliant (safe) generalization of C.
- It can be done in ExpTime
 - Compute the set of all \mathcal{P} -optimal compliant (safe) generalization of C.
 - Check whether C' belongs to the set.
- It can be improved to coNP.
- Idea: Design an NP algorithm for deciding non-optimality
 - 1. Guess a lower neighbor C'' of C' subsuming C. $C \sqsubseteq C'' \sqsubseteq C'$ and there is no C''' such that $C'' \sqsubset C''' \sqsubset C'$.
 - 2. Check whether C'' is a compliant (safe)-generalization of C.
- The converse of lower neighbor: Upper Neighbor \sqsubseteq_1 (Baader, et. al., 2018).
- Only polynomially many upper neighbors of *EL*-concepts and each of them is of polynomial size (Kriegel, 2018).

- **Deciding** whether C' a \mathcal{P} -optimal compliant (safe) generalization of C.
- It can be done in ExpTime
 - Compute the set of all \mathcal{P} -optimal compliant (safe) generalization of C.
 - Check whether C' belongs to the set.
- It can be improved to coNP.
- Idea: Design an NP algorithm for deciding non-optimality
 - 1. Guess a lower neighbor C'' of C' subsuming C. $C \sqsubseteq C'' \sqsubseteq C'$ and there is no C''' such that $C'' \sqsubset C''' \sqsubset C'$.
 - 2. Check whether C'' is a compliant (safe)-generalization of C.
- The converse of lower neighbor: Upper Neighbor \sqsubseteq_1 (Baader, et. al., 2018).
- Only polynomially many upper neighbors of *EL*-concepts and each of them is of polynomial size (Kriegel, 2018).
- The next task: computing lower neighbors!

Image: A matrix of the second seco

Characterizing Lower Neighbors

• Lower neighbors C" of C' can be obtained by conjoining an atom not implied by C' to C'.

э

- Lower neighbors C" of C' can be obtained by conjoining an atom not implied by C' to C'.
- Let Σ be a finite set of concept and role names.
 We define the set LA_Σ(C') of lowering atoms for C' w.r.t. Σ.

- Lower neighbors C" of C' can be obtained by conjoining an atom not implied by C' to C'.
- Let Σ be a finite set of concept and role names.
 We define the set LA_Σ(C') of lowering atoms for C' w.r.t. Σ.
- $LA_{\Sigma}(C') := \{A \in \Sigma \cap N_C \mid A \notin \operatorname{con}(C')\} \cup$

- Lower neighbors C" of C' can be obtained by conjoining an atom not implied by C' to C'.
- Let Σ be a finite set of concept and role names.
 We define the set LA_Σ(C') of lowering atoms for C' w.r.t. Σ.

•
$$LA_{\Sigma}(C') := \{A \in \Sigma \cap N_C \mid A \notin \operatorname{con}(C')\} \cup \{\exists r.D \mid r \in N_R \cap \Sigma, \ sig(D) \subseteq \Sigma, \ C' \not\sqsubseteq \exists r.D \text{ and } \}$$

- Lower neighbors C" of C' can be obtained by conjoining an atom not implied by C' to C'.
- Let Σ be a finite set of concept and role names.
 We define the set LA_Σ(C') of lowering atoms for C' w.r.t. Σ.

•
$$LA_{\Sigma}(C') := \{A \in \Sigma \cap N_C \mid A \notin \operatorname{con}(C')\} \cup \{\exists r.D \mid r \in N_R \cap \Sigma, sig(D) \subseteq \Sigma, C' \not\sqsubseteq \exists r.D \text{ and} C' \sqsubseteq \exists r.E \text{ for all } E \text{ with } D \sqsubset_1 E\}$$

- Lower neighbors C'' of C' can be obtained by conjoining an atom not implied by C' to C'.
- Let Σ be a finite set of concept and role names.
 We define the set LA_Σ(C') of lowering atoms for C' w.r.t. Σ.

•
$$LA_{\Sigma}(C') := \{A \in \Sigma \cap N_C \mid A \notin \operatorname{con}(C')\} \cup \{\exists r.D \mid r \in N_R \cap \Sigma, sig(D) \subseteq \Sigma, C' \not\sqsubseteq \exists r.D \text{ and} C' \sqsubseteq \exists r.E \text{ for all } E \text{ with } D \sqsubset_1 E\}$$

Lemma

C" is a **lower neighbor** of *C*' w.r.t. Σ iff **there is an atom** $At \in LA_{\Sigma}(C')$ such that $C'' \equiv C' \sqcap At$.

 $\Sigma := \{r, A_1, A_2, B_1, B_2, C_1, C_2\}$ and

 $C' := \exists r.(A_1 \sqcap A_2 \sqcap B_1 \sqcap B_2) \sqcap \exists r.(A_1 \sqcap A_2 \sqcap C_1 \sqcap C_2) \sqcap \exists r.(B_1 \sqcap B_2 \sqcap C_1 \sqcap C_2).$

э

 $\Sigma := \{ r, A_1, A_2, B_1, B_2, C_1, C_2 \}$ and

 $C' := \exists r.(A_1 \sqcap A_2 \sqcap B_1 \sqcap B_2) \sqcap \exists r.(A_1 \sqcap A_2 \sqcap C_1 \sqcap C_2) \sqcap \exists r.(B_1 \sqcap B_2 \sqcap C_1 \sqcap C_2).$

• if $D := A_i \sqcap B_j \sqcap C_k$ for $i, j, k \in \{1, 2\}$, then $\exists r. D \in LA_{\Sigma}(C'')$.

- $\Sigma := \{ r, A_1, A_2, B_1, B_2, C_1, C_2 \}$ and
- $C' := \exists r.(A_1 \sqcap A_2 \sqcap B_1 \sqcap B_2) \sqcap \exists r.(A_1 \sqcap A_2 \sqcap C_1 \sqcap C_2) \sqcap \exists r.(B_1 \sqcap B_2 \sqcap C_1 \sqcap C_2).$
 - if $D := A_i \sqcap B_j \sqcap C_k$ for $i, j, k \in \{1, 2\}$, then $\exists r. D \in LA_{\Sigma}(C'')$.
 - For all upper neighbors *E* of *D*, where *E* is only either $A_i \sqcap B_j$, $B_j \sqcap C_k$, or $A_i \sqcap C_k$, we have $C \sqsubseteq \exists r.E$.

 $\Sigma := \{ r, A_1, A_2, B_1, B_2, C_1, C_2 \}$ and

 $C' := \exists r.(A_1 \sqcap A_2 \sqcap B_1 \sqcap B_2) \sqcap \exists r.(A_1 \sqcap A_2 \sqcap C_1 \sqcap C_2) \sqcap \exists r.(B_1 \sqcap B_2 \sqcap C_1 \sqcap C_2).$

- if $D := A_i \sqcap B_j \sqcap C_k$ for $i, j, k \in \{1, 2\}$, then $\exists r.D \in LA_{\Sigma}(C'')$.
- For all upper neighbors *E* of *D*, where *E* is only either $A_i \sqcap B_j$, $B_j \sqcap C_k$, or $A_i \sqcap C_k$, we have $C \sqsubseteq \exists r.E$.
- $C' \sqcap \exists r.D$ is a lower neighbor of C'

 $\Sigma := \{ r, A_1, A_2, B_1, B_2, C_1, C_2 \}$ and

 $C' := \exists r.(A_1 \sqcap A_2 \sqcap B_1 \sqcap B_2) \sqcap \exists r.(A_1 \sqcap A_2 \sqcap C_1 \sqcap C_2) \sqcap \exists r.(B_1 \sqcap B_2 \sqcap C_1 \sqcap C_2).$

- if $D := A_i \sqcap B_j \sqcap C_k$ for $i, j, k \in \{1, 2\}$, then $\exists r.D \in LA_{\Sigma}(C'')$.
- For all upper neighbors *E* of *D*, where *E* is only either $A_i \sqcap B_j$, $B_j \sqcap C_k$, or $A_i \sqcap C_k$, we have $C \sqsubseteq \exists r.E$.
- $C' \sqcap \exists r.D$ is a lower neighbor of C'

Given C and Σ , in general, $|LA_{\Sigma}(C)|$ can be **exponential** in the size of C and Σ .

 $\Sigma := \{ r, A_1, A_2, B_1, B_2, C_1, C_2 \}$ and

 $C' := \exists r.(A_1 \sqcap A_2 \sqcap B_1 \sqcap B_2) \sqcap \exists r.(A_1 \sqcap A_2 \sqcap C_1 \sqcap C_2) \sqcap \exists r.(B_1 \sqcap B_2 \sqcap C_1 \sqcap C_2).$

- if $D := A_i \sqcap B_j \sqcap C_k$ for $i, j, k \in \{1, 2\}$, then $\exists r.D \in LA_{\Sigma}(C'')$.
- For all upper neighbors *E* of *D*, where *E* is only either $A_i \sqcap B_j$, $B_j \sqcap C_k$, or $A_i \sqcap C_k$, we have $C \sqsubseteq \exists r.E$.
- $C' \sqcap \exists r.D$ is a lower neighbor of C'

Given C and Σ , in general, $|LA_{\Sigma}(C)|$ can be **exponential** in the size of C and Σ .

To produce exactly the lower neighbors of C' that subsume C, let us

- generate all $At \in LA_{\Sigma}(C')$ w.r.t. $\Sigma := sig(C)$, and
- **remove** the ones that do not subsume *C*.

A B K A B K

A B A A B A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

The NP-algorithm generating exactly the elements of $LA_{\Sigma}(C')$ works as follows

1. Choose $A \in \Sigma \setminus \operatorname{con}(C')$ and output A. If there is no such A, fail.

The NP-algorithm generating exactly the elements of $LA_{\Sigma}(C')$ works as follows

- 1. Choose $A \in \Sigma \setminus \operatorname{con}(C')$ and output A. If there is no such A, fail.
- 2. Choose $r \in N_R \cap \Sigma$, a set $\{\exists r.F'_1, \ldots, \exists r.F'_k\} \subseteq \operatorname{con}(C')$, and recursively guess $F_1 \in LA_{\Sigma}(F'_1), \ldots, F_k \in LA_{\Sigma}(F'_k)$.

The NP-algorithm generating exactly the elements of $LA_{\Sigma}(C')$ works as follows

- 1. Choose $A \in \Sigma \setminus \operatorname{con}(C')$ and output A. If there is no such A, fail.
- 2. Choose $r \in N_R \cap \Sigma$, a set $\{\exists r.F'_1, \ldots, \exists r.F'_k\} \subseteq \operatorname{con}(C')$, and recursively guess $F_1 \in LA_{\Sigma}(F'_1), \ldots, F_k \in LA_{\Sigma}(F'_k)$.
 - If for some $i, 1 \le i \le k$, it fails to produce $F_i \in LA_{\Sigma}(F'_i)$, or
 - If $C' \sqsubseteq \exists r. (F_1 \sqcap \ldots \sqcap F_k)$, or

• If $F_1 \sqcap \ldots \sqcap F_k$ has an upper neighbor E such that $C' \not\sqsubseteq \exists r.E$, then fail.

3

(日) (同) (日) (日) (日)

The NP-algorithm generating exactly the elements of $LA_{\Sigma}(C')$ works as follows

- 1. Choose $A \in \Sigma \setminus \operatorname{con}(C')$ and output A. If there is no such A, fail.
- 2. Choose $r \in N_R \cap \Sigma$, a set $\{\exists r.F'_1, \ldots, \exists r.F'_k\} \subseteq \operatorname{con}(C')$, and recursively guess $F_1 \in LA_{\Sigma}(F'_1), \ldots, F_k \in LA_{\Sigma}(F'_k)$.
 - If for some $i, 1 \le i \le k$, it fails to produce $F_i \in LA_{\Sigma}(F'_i)$, or
 - If $C' \sqsubseteq \exists r. (F_1 \sqcap \ldots \sqcap F_k)$, or

• If $F_1 \sqcap \ldots \sqcap F_k$ has an upper neighbor E such that $C' \not\sqsubseteq \exists r.E$, then fail. Otherwise, **output** $\exists r.(F_1 \sqcap \ldots \sqcap F_k) \equiv \exists r.D$.

3

イロト 不得下 イヨト イヨト

Theorem

The optimality problem is in **coNP** for compliance and for safety in \mathcal{EL} .

Theorem

The optimality problem is in **coNP** for compliance and for safety in \mathcal{EL} .

- We do not know if these problems are also coNP-hard.
- The Hypergraph Duality Problem (Dual) can be reduced to them.
- Given two families of inclusion-comparable sets \mathcal{G} and \mathcal{H} , Dual asks whether \mathcal{H} consists exactly of the minimal hitting sets of \mathcal{G} .

Theorem

The optimality problem is in **coNP** for compliance and for safety in \mathcal{EL} .

- We do not know if these problems are also coNP-hard.
- The Hypergraph Duality Problem (Dual) can be reduced to them.
- Given two families of inclusion-comparable sets \mathcal{G} and \mathcal{H} , Dual asks whether \mathcal{H} consists exactly of the minimal hitting sets of \mathcal{G} .

Proposition

There is a **polynomial reduction** of Dual to the optimality problem for compliance and safety

- What we considered before:
 - Knowledge about individuals
 - Privacy policies
 - Background knowledge of attackers

are represented by $\mathcal{E}\mathcal{L}$ concepts.

- What we considered before:
 - Knowledge about individuals
 - Privacy policies
 - Background knowledge of attackers

are represented by $\mathcal{E}\mathcal{L}$ concepts.

• Background Knowledge of Attackers: \mathcal{FL}_0 or \mathcal{FLE} concepts?

- What we considered before:
 - Knowledge about individuals
 - Privacy policies
 - Background knowledge of attackers

are represented by $\mathcal{E}\mathcal{L}$ concepts.

- Background Knowledge of Attackers: \mathcal{FL}_0 or \mathcal{FLE} concepts?
- \mathcal{FL}_0 concepts:

 $C, D ::= \top \mid A \mid C \sqcap D \mid \forall r.C$

• \mathcal{FLE} concepts:

 $C,D ::= \top \mid A \mid C \sqcap D \mid \exists r.C \mid \forall r.D$

- What we considered before:
 - Knowledge about individuals
 - Privacy policies
 - Background knowledge of attackers

are represented by $\mathcal{E}\mathcal{L}$ concepts.

- Background Knowledge of Attackers: \mathcal{FL}_0 or \mathcal{FLE} concepts?
- \mathcal{FL}_0 concepts:

 $C, D ::= \top \mid A \mid C \sqcap D \mid \forall r.C$

• \mathcal{FLE} concepts:

$$C, D ::= \top \mid A \mid C \sqcap D \mid \exists r. C \mid \forall r. D$$

- Subsumption without general TBoxes:
 - in \mathcal{FL}_0 : PTime
 - in \mathcal{FLE} : NP-complete
- In SNOMED CT, the roles have implicit typing constraints, that may be known to an attacker.

Adrian Nuradiansyah

Extending the Definition of Compliance and Safety

Let C be an \mathcal{EL} concept, \mathcal{P} be an \mathcal{EL} policy, $Q \in \{\forall, \forall \exists\}$, and $\mathcal{L}_{\forall} = \mathcal{FL}_0, \mathcal{L}_{\forall \exists} = \mathcal{FLE}$.

The \mathcal{L}_Q concept C' is **compliant** with \mathcal{P} if $C' \not\sqsubseteq D$ for all $D \in \mathcal{P}$.

The \mathcal{EL} concept C' is

- Q-safe for P if C' □ C" is compliant with P for all L_Q concepts C" that are compliant with P.
- a *Q*-safe generalization of *C* for \mathcal{P} if $C \sqsubseteq C'$ and C' is *Q*-safe for \mathcal{P} ,
- an **optimal** Q-safe generalization of C for \mathcal{P} if
 - $\bullet\,$ it is a Q-safe generalization of C for ${\cal P}$ and
 - there is no Q-safe generalization of C for \mathcal{P} such that $C'' \sqsubset C'$.

We now focus on \forall -safety and $\forall \exists$ -safety

Let us consider again

 $D = Patient \sqcap \exists seen_by.(Doctor \sqcap \exists works_in.Cardiology)$

 \bullet ... and the published information C about linda

 $C = Patient \sqcap Female \sqcap \exists seen_by.(Doctor \sqcap Male \sqcap \exists works_in.Cardiology)$ Note C is not compliant with D, i.e., $C \sqsubseteq D$.

• Compute the optimal safe generalization

 $C_{3} = Female \quad \Box \exists seen_by.(Doctor \Box Male \Box \exists works_in. \top) \\ \Box \exists seen_by.(Male \Box \exists works_in. Cardiology)$

But then, if the attacker's knowledge is given by an \mathcal{FL}_0 concept $F_1 = \forall seen_by.\forall works_in.Cardiology$, then $C_3 \sqcap F_1 \sqsubseteq D$.

16 / 20

• Let us consider again

 $D = Patient \sqcap \exists seen_by.(Doctor \sqcap \exists works_in.Cardiology)$

• ... and the published information C about linda

 $C = Patient \sqcap Female \sqcap \exists seen_by.(Doctor \sqcap Male \sqcap \exists works_in.Cardiology)$ Note C is not compliant with D, i.e., $C \sqsubseteq D$.

• Compute an optimal \forall -safe generalization

 $C_4 = Male \sqcap Patient \sqcap \exists seen by.(Doctor \sqcap Female)$

However, if the attacker's knowledge is given by an \mathcal{FLE} concept $F_2 = \forall seen_by. \exists works_in. Cardiology$, then $C_4 \sqcap F_2 \sqsubseteq D$.

Let us consider again

 $D = Patient \sqcap \exists seen_by.(Doctor \sqcap \exists works_in.Cardiology)$

 \bullet ... and the published information C about linda

 $C = Patient \sqcap Female \sqcap \exists seen_by.(Doctor \sqcap Male \sqcap \exists works_in.Cardiology)$ Note C is not compliant with D, i.e., $C \sqsubseteq D$.

• Compute an optimal \forall -safe generalization

 $C_4 = Male \sqcap Patient \sqcap \exists seen by.(Doctor \sqcap Female)$

However, if the attacker's knowledge is given by an \mathcal{FLE} concept $F_2 = \forall seen_by. \exists works_in. Cardiology$, then $C_4 \sqcap F_2 \sqsubseteq D$.

• Compute the **optimal** $\forall \exists$ -safe generalization $C_5 = Male$

∀-Safety

- *C'* is \forall -safe for \mathcal{P} iff for all $D \in \mathcal{P}$:
 - 1. if rd(D) = 0, then $con(C) \cap con(D) = \emptyset$.

3

∀-Safety

C' is \forall -safe for \mathcal{P} iff for all $D \in \mathcal{P}$:

1. if rd(D) = 0, then $con(C) \cap con(D) = \emptyset$.

2. if rd(D) > 0, then there is $\exists r.D' \in \operatorname{con}(D)$ such that

- a. if rd(D') = 0, then there is no concept of the form $\exists r.C' \in con(C)$, b. if $rd(D') \ge 0$, then for all $\exists r.C' \in con(C)$.
- b. if rd(D') > 0, then for all $\exists r.C' \in con(C)$, C' is \forall -safe for $\{D'\}$.

∀-Safety

C' is \forall -safe for \mathcal{P} iff for all $D \in \mathcal{P}$:

1. if
$$rd(D) = 0$$
, then $con(C) \cap con(D) = \emptyset$.

2. if rd(D) > 0, then there is $\exists r.D' \in \operatorname{con}(D)$ such that

- a. if rd(D') = 0, then there is no concept of the form $\exists r.C' \in con(C)$,
- b. if rd(D') > 0, then for all $\exists r. C' \in con(C)$, C' is \forall -safe for $\{D'\}$.

Complexity for ∀-Safety

- Deciding whether C' is \forall -safe for \mathcal{P} is in **PTime**.
- One optimal \forall -safe generalization for \mathcal{P} can be **computed in ExpTime**.
- The set of all optimal ∀-safe generalizations for *P* can be computed in ExpTime.
- ∀-optimality is in **coNP**.

17 / 20

(B)

Image: A matrix

∀∃-Safety

$C \text{ is } \forall \exists \textbf{-safe for } \mathcal{P} \text{ iff}$

- 1. $A \notin \operatorname{con}(C)$ for all concept names $A \in \operatorname{con}(D_1) \cup \ldots \cup \operatorname{con}(D_p)$, and
- 2. for all existential restrictions $\exists r.D' \in \operatorname{con}(D_1) \cup \ldots \cup \operatorname{con}(D_p)$, there is no concept of the form $\exists r.E \in \operatorname{con}(C)$

∀∃-Safety

$C \text{ is } \forall \exists \textbf{-safe for } \mathcal{P} \text{ iff}$

- 1. $A \notin \operatorname{con}(C)$ for all concept names $A \in \operatorname{con}(D_1) \cup \ldots \cup \operatorname{con}(D_p)$, and
- 2. for all existential restrictions $\exists r.D' \in \operatorname{con}(D_1) \cup \ldots \cup \operatorname{con}(D_p)$, there is no concept of the form $\exists r.E \in \operatorname{con}(C)$

Complexity for ∀-Safety

Given \mathcal{EL} concepts C, C'' and a redundancy-free \mathcal{EL} policy \mathcal{P} , we

- can decide if C is $\forall \exists$ -safe for \mathcal{P} ,
- can compute the unique optimal $\forall \exists$ -safe generalization of C for \mathcal{P} , and
- can decide if C'' is an optimal $\forall \exists$ -safe generalization of C for \mathcal{P}

in polynomial time

Image: Image:

Conclusions:

- Define and provide characterizations for compliance, safety, and optimality in privacy-preserving ontology publishing for *EL* instance stores.
- Computing \mathcal{P} -optimal compliant (safe) generalizations of \mathcal{EL} concepts.
- Deciding the **optimality problem** via computing **lower neighbors of** *EL* **concepts**.
- Considering attacker's knowledge to be given by an \mathcal{FL}_0 or \mathcal{FLE} concept.

Conclusions:

- Define and provide characterizations for compliance, safety, and optimality in privacy-preserving ontology publishing for *EL* instance stores.
- Computing \mathcal{P} -optimal compliant (safe) generalizations of \mathcal{EL} concepts.
- Deciding the **optimality problem** via computing **lower neighbors of** *EL* **concepts**.
- Considering attacker's knowledge to be given by an *FL*₀ or *FLE* concept.
 ⇒ the stronger knowledge of the attacker, the more radical we need to change the concept to make it safe

Conclusions:

- Define and provide characterizations for **compliance**, **safety**, **and optimality** in privacy-preserving ontology publishing for \mathcal{EL} instance stores.
- Computing \mathcal{P} -optimal compliant (safe) generalizations of \mathcal{EL} concepts.
- Deciding the **optimality problem** via computing **lower neighbors of** *EL* **concepts**.
- Considering attacker's knowledge to be given by an *FL*₀ or *FLE* concept.
 ⇒ the stronger knowledge of the attacker, the more radical we need to change the concept to make it safe

Future Work:

- PPOP in \mathcal{EL} Instance Stores w.r.t. General TBoxes
- PPOP in \mathcal{EL} ABoxes
- Representing attacker's knowledge with more different DLs

Image: A matrix

Thank You

Adrian Nuradiansyah

Thursday Seminar

∃ ⊳ August 20, 2019 20 / 20

A I >
 A I >
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

æ