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Privacy-Preserving Ontology Publishing

What people already did:
In (Cuenca Grau & Kostylev, 2016):

Privacy-Preserving Data Publishing

Information to be published: a relational dataset with (labeled) nulls

Policy is a conjunctive query.

Considering three privacy properties when publishing datasets:
policy-compliant, policy-safety, and optimality.

Published information does not have background knowledge.

What we want to do:
Privacy-Preserving Ontology Publishing (PPOP)

Addressed in the context of Description Logic Ontologies
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PPOP for EL instance stores

Starting point: EL Ontologies with role-free ABoxes (instance stores)
and empty TBoxes.

An ABox A is role-free if all the axioms β ∈ A are only in the form of D(a).

Why no TBox? For instance,

in SNOMED CT → Acyclic TBox → the TBox can be reduced away
Even in SNOMED, patient data are usually annotated with SNOMED
concepts, not with SNOMED roles.

W.l.o.g., only one concept assertion in A speaks about one individual
C1(a),C2(a) ∈ A implies (C1 u C2)(a) ∈ A

Safe Ontologies reduced−−−−→ Safe Concepts

Information to be published for an individual a: an EL concept C

Policy is a finite set of EL concepts D1, . . . ,Dp, such that
Di 6≡ > for all i ∈ {1, . . . , p}.
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Compliance, Safety, and Optimality

Given a policy P = {D1, . . . ,Dp} and an EL concept C , the EL concept C ′ is

compliant with P if C ′ 6v Di for all i ∈ {1, . . . , p}.

safe for P if C ′ u C ′′ is compliant with P for all EL-concepts C ′′ that are
compliant with P.

a P-compliant (safe) generalization of C if

C v C ′ and
C ′ is compliant with (safe for) P.

a P-optimal compliant (safe) generalization of C if

C ′ is a P-compliant (safe) generalization of C , and
there is no P-compliant (safe) generalization C ′′ of C s.t. C ′′ @ C ′.
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Illustration on Compliance, Safety, and Optimality

Consider a policy P = {D} specifying what information should be
kept “secret” about linda

D = Patient u ∃seen_by .(Doctor u ∃works_in.Cardiology)

Assume information C is published about linda

C = Patient u Female u ∃seen_by .(Doctor uMale u ∃works_in.Cardiology)

Note C is not compliant with D, i.e., C v D.

Let us make it safe!

C2 = Female u ∃seen_by .(Doctor uMale u ∃works_in.>)
But, C2 is still not optimal since more information than necessary is removed.

Make it optimal!

C3 = Female u ∃seen_by .(Doctor uMale u ∃works_in.>)
u ∃seen_by .(Male u ∃works_in.Cardiology)
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Characterizing Compliance

Let con(C) be the set of all atoms A or ∃r .E occurring in the top-level
conjunction of C .

con(C) covers con(D) iff for all F ∈ con(D), there is E ∈ con(C)
such that E v F ⇒ Characterizing C v D.

Compliance
C is compliant with P iff con(C ) does not cover con(Di ) for any
i ∈ {1, . . . , p}.

Complexity for Compliance

Deciding whether C ′ is compliant w.r.t. P is in PTime.

One optimal P-compliant generalization can be computed in ExpTime.

The set of all optimal P-compliant generalizations can be computed in
ExpTime.
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Characterizing Safety

Assume P is redundant-free: every Di ,Dj ∈ P are incomparable w.r.t.
subsumption.

Safety
C ′ is safe for P iff there is no pair of atoms (E ,F ) such that

E ∈ con(C ′), F ∈ con(D1) ∪ . . . ∪ con(Dp) and E v F

Deciding whether C ′ is safe for P is in PTime.

The Optimal P-Safe Generalization

If C ′
1, C

′
2 are P-safe generalizations of C , then C ′

1 u C ′
2 is also a P-safe

generalization of C .
⇒ Optimal P-safe generalization is unique up to equivalence.

The P-optimal safe generalization of C can be computed in ExpTime.

⇒ Requiring the computation of P-optimal compliant generalizations.
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Deciding Optimality

Deciding whether C ′ a P-optimal compliant (safe) generalization of C .

It can be done in ExpTime

– Compute the set of all P-optimal compliant (safe) generalization of C .
– Check whether C ′ belongs to the set.

It can be improved to coNP.

Idea: Design an NP algorithm for deciding non-optimality

1. Guess a lower neighbor C ′′ of C ′ subsuming C .
C v C ′′ v C ′ and there is no C ′′′ such that C ′′ @ C ′′′ @ C ′.

2. Check whether C ′′ is a compliant (safe)-generalization of C .

The converse of lower neighbor: Upper Neighbor v1 (Baader, et. al., 2018).

Only polynomially many upper neighbors of EL-concepts and
each of them is of polynomial size (Kriegel, 2018).

The next task: computing lower neighbors!
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Characterizing Lower Neighbors

Lower neighbors C ′′ of C ′ can be obtained by conjoining an atom
not implied by C ′ to C ′.

Let Σ be a finite set of concept and role names.
We define the set LAΣ(C ′) of lowering atoms for C ′ w.r.t. Σ.

LAΣ(C ′) := {A ∈ Σ ∩ NC | A 6∈ con(C ′)} ∪
{∃r .D | r ∈ NR ∩ Σ, sig(D) ⊆ Σ, C ′ 6v ∃r .D and

C ′ v ∃r .E for all E with D @1 E}

Lemma
C ′′ is a lower neighbor of C ′ w.r.t. Σ iff there is an atom At ∈ LAΣ(C ′) such
that C ′′ ≡ C ′ u At.
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Example of Lower Neighbors

Example
Σ := {r ,A1,A2,B1,B2,C1,C2} and

C ′ := ∃r .(A1uA2uB1uB2) u ∃r .(A1uA2uC1uC2) u ∃r .(B1uB2uC1uC2).

if D := Ai u Bj u Ck for i , j , k ∈ {1, 2}, then ∃r .D ∈ LAΣ(C ′′).

For all upper neighbors E of D, where E is only either Ai u Bj ,
Bj u Ck , or Ai u Ck , we have C v ∃r .E .
C ′ u ∃r .D is a lower neighbor of C ′

Given C and Σ, in general, |LAΣ(C )| can be exponential in the size of C and Σ.

To produce exactly the lower neighbors of C ′ that subsume C , let us

generate all At ∈ LAΣ(C ′) w.r.t. Σ := sig(C ), and

remove the ones that do not subsume C .
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Generating Lower Neighbors

But LAΣ(C ′) does not show directly how appropriate ∃r .D can be found!

The NP-algorithm generating exactly the elements of LAΣ(C ′) works
as follows

1. Choose A ∈ Σ \ con(C ′) and output A. If there is no such A, fail.

2. Choose r ∈ NR ∩ Σ, a set {∃r .F ′
1, . . . ,∃r .F ′

k} ⊆ con(C ′), and recursively
guess F1 ∈ LAΣ(F ′

1), . . . ,Fk ∈ LAΣ(F ′
k).

If for some i , 1 ≤ i ≤ k , it fails to produce Fi ∈ LAΣ(F ′
i ), or

If C ′ v ∃r .(F1 u . . . u Fk), or

If F1 u . . . u Fk has an upper neighbor E such that C ′ 6v ∃r .E ,
then fail. Otherwise, output ∃r .(F1 u . . . u Fk) ≡ ∃r .D.
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Complexity for the Optimality Problem

Theorem
The optimality problem is in coNP for compliance and for safety in EL.

We do not know if these problems are also coNP-hard.

The Hypergraph Duality Problem (Dual) can be reduced to them.

Given two families of inclusion-comparable sets G and H, Dual asks
whether H consists exactly of the minimal hitting sets of G.

Proposition
There is a polynomial reduction of Dual to the optimality problem for
compliance and safety
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Considering Different Attacker’s Knowledge

What we considered before:

Knowledge about individuals
Privacy policies
Background knowledge of attackers

are represented by EL concepts.

Background Knowledge of Attackers: FL0 or FLE concepts?

FL0 concepts:
C ,D ::= > | A | C u D | ∀r .C

FLE concepts:
C ,D ::= > | A | C u D | ∃r .C | ∀r .D

Subsumption without general TBoxes:

in FL0: PTime
in FLE : NP-complete

In SNOMED CT, the roles have implicit typing constraints, that
may be known to an attacker.
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Extending the Definition of Compliance and Safety

Let C be an EL concept, P be an EL policy, Q ∈ {∀,∀∃}, and
L∀ = FL0,L∀∃ = FLE .

The LQ concept C ′ is compliant with P if C ′ 6v D for all D ∈ P.

The EL concept C ′ is

Q-safe for P if C ′ uC ′′ is compliant with P for all LQ concepts C ′′ that are
compliant with P.
a Q-safe generalization of C for P if C v C ′ and C ′ is Q-safe for P,
an optimal Q-safe generalization of C for P if

it is a Q-safe generalization of C for P and
there is no Q-safe generalization of C for P such that C ′′ @ C ′.

We now focus on ∀-safety and ∀∃-safety

Adrian Nuradiansyah Thursday Seminar August 20, 2019 15 / 20



Illustrations on ∀-Safety and ∀∃-Safety

Let us consider again

D = Patient u ∃seen_by .(Doctor u ∃works_in.Cardiology)

. . . and the published information C about linda

C = Patient u Female u ∃seen_by .(Doctor uMale u ∃works_in.Cardiology)

Note C is not compliant with D, i.e., C v D.

Compute the optimal safe generalization

C3 = Female u ∃seen_by .(Doctor uMale u ∃works_in.>)
u ∃seen_by .(Male u ∃works_in.Cardiology)

But then, if the attacker’s knowledge is given by an FL0 concept
F1 = ∀seen_by .∀works_in.Cardiology , then C3 u F1 v D.
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However, if the attacker’s knowledge is given by an FLE concept
F2 = ∀seen_by .∃works_in.Cardiology , then C4 u F2 v D.

Compute the optimal ∀∃-safe generalization C5 = Male
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Characterizing ∀-Safety

∀-Safety
C ′ is ∀-safe for P iff for all D ∈ P:
1. if rd(D) = 0, then con(C ) ∩ con(D) = ∅.

2. if rd(D) > 0, then there is ∃r .D ′ ∈ con(D) such that

a. if rd(D ′) = 0, then there is no concept of the form ∃r .C ′ ∈ con(C ),
b. if rd(D ′) > 0, then for all ∃r .C ′ ∈ con(C ), C ′ is ∀-safe for {D ′}.

Complexity for ∀-Safety

Deciding whether C ′ is ∀-safe for P is in PTime.

One optimal ∀-safe generalization for P can be computed in ExpTime.

The set of all optimal ∀-safe generalizations for P can be computed in
ExpTime.

∀-optimality is in coNP.
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Characterizing ∀∃-Safety

∀∃-Safety
C is ∀∃-safe for P iff

1. A 6∈ con(C ) for all concept names A ∈ con(D1) ∪ . . . ∪ con(Dp), and

2. for all existential restrictions ∃r .D ′ ∈ con(D1) ∪ . . . ∪ con(Dp), there is no
concept of the form ∃r .E ∈ con(C )

Complexity for ∀-Safety
Given EL concepts C ,C ′′ and a redundancy-free EL policy P, we

can decide if C is ∀∃-safe for P,
can compute the unique optimal ∀∃-safe generalization of C for P, and
can decide if C ′′ is an optimal ∀∃-safe generalization of C for P

in polynomial time
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Conclusions and Future Work

Conclusions:

Define and provide characterizations for compliance, safety, and
optimality in privacy-preserving ontology publishing for EL instance stores.

Computing P-optimal compliant (safe) generalizations of EL concepts.

Deciding the optimality problem via computing lower neighbors of EL
concepts.

Considering attacker’s knowledge to be given by an FL0 or FLE concept.

⇒ the stronger knowledge of the attacker, the more radical we need to change the
concept to make it safe

Future Work:

PPOP in EL Instance Stores w.r.t. General TBoxes

PPOP in EL ABoxes

Representing attacker’s knowledge with more different DLs
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Thank You
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