Error-Tolerant Reasoning in the Description Logic \mathcal{EL} Based on Optimal Repairs

Franz Baader Francesco Kriegel Adrian Nuradiansyah

Technische Universität Dresden

In the 6th International Joint Conference on Rules and Reasoning

September 28, 2022

Description Logic

1/16

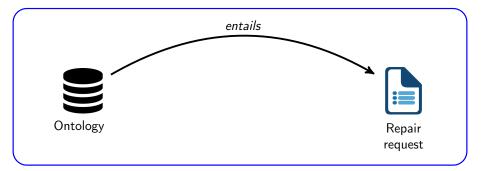
Error-Tolerant Reasoning

RR 2022

September 28, 2022

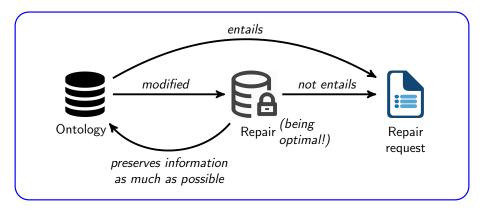
Ontology = Dataset + Background Knowledge

Repair request = a set of incorrect/unwanted consequences



Ontology = Dataset + Background Knowledge

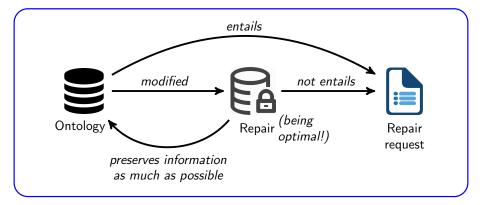
Repair request = a set of incorrect/unwanted consequences



Repairing Ontologies

Ontology = Dataset + Background Knowledge

Repair request = a set of incorrect/unwanted consequences

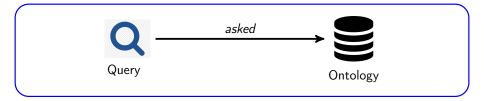


Classical Repairs: preserves a maximal subset of axioms of the ontology **Optimal Repairs**: preserves a maximal set of consequences of the ontology

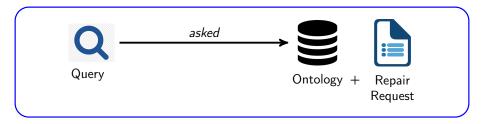
Error-Tolerant Reasoning

2/16

An Illustration on Error-Tolerant Reasoning



Does the ontology return an answer to the query? Does the ontology entail the query?



Error-Tolerant Reasoning

- Is the query entailed by some repair of the ontology? (brave entailment)
- Is the query entailed by each repair of the ontology? (cautious entailment)

Error-Tolerant Reasoning w.r.t. Optimal Repairs

Error-Tolerant Reasoning wr.t. Classical Repairs has been investigated in:

- Ludwig M., Peñaloza R., *Error-Tolerant Reasoning in the Description Logic EL*, JELIA, 2014
- Peñaloza R., Error-Tolerance and Error Management in Lightweight Description Logics, KI Journal, 2020

Error-Tolerant Reasoning w.r.t. Optimal Repairs

Error-Tolerant Reasoning wr.t. Classical Repairs has been investigated in:

- Ludwig M., Peñaloza R., *Error-Tolerant Reasoning in the Description Logic EL*, JELIA, 2014
- Peñaloza R., Error-Tolerance and Error Management in Lightweight Description Logics, KI Journal, 2020

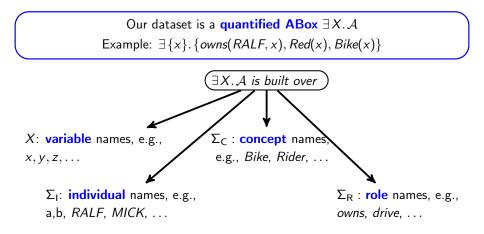
How about optimal repairs?

Research Questions

- How to perform query reasoning w.r.t. optimal repairs **without computing** the optimal repairs?
- How to characterize brave and cautious entailment based on optimal repairs?

Assumption: Our problems are considered in the context of **Description Logics**

How our Dataset Looks Like



and the matrix \mathcal{A} of the quantified ABox consists of:

- atomic concept assertions, e.g., *Rider*(*RALF*), *Circuit*(*x*)...
- role assertions, e.g., drive(RALF, BMW), won(MICK, y)...

Background Knowledge, Repair Requests, Queries

 \mathcal{EL} concepts $C :: \top |A| \exists r. C | C \sqcap C \cap C$ (a) denotes an \mathcal{EL} concept assertion.

Background Knowledge, Repair Requests, Queries

 \mathcal{EL} concepts $C :: \top |A| \exists r. C | C \sqcap C$ C(a) denotes an \mathcal{EL} concept assertion.

The **background knowledge** is represented by an \mathcal{EL} **TBox** e.g., $\mathcal{T} = \{Champion \sqsubseteq Famous, \exists drive.RacingCar \sqsubseteq RacingDriver\}$

Repair requests ${\cal R}$ and Queries ${\cal Q}$ are finite sets of ${\cal EL}$ concept assertions

 $\mathcal{R} = \{ (RacingDriver \sqcap Famous)(RALF), \\ (\exists father.(RacingDriver \sqcap Famous))(MICK) \}$

 $\begin{array}{l} \mbox{Atoms}(\mathcal{R},\mathcal{T}) \mbox{ is a set of } \mathcal{EL} \mbox{ atoms} \mbox{ (concept names or existential restrictions)} \mbox{ occurring in } \mathcal{R} \cup \mathcal{T} \mbox{ e.g.}, \end{array}$

 $Atoms(\mathcal{R}, \mathcal{T}) = \{ Famous, RacingDriver, Champion, RacingCar, \\ \exists father.(RacingDriver \sqcap Famous), \exists drive.RacingCar \}$

Reasoning in \mathcal{EL} with Quantified ABoxes

Reasoning in $\mathcal{E\!L}$

- $C \sqsubseteq^{\mathcal{T}} D$ means the concept C is **subsumed by** the concept D w.r.t. \mathcal{T}
- $\exists X. A \models^{T} C(b)$ means that the individual *b* is an **instance of** the \mathcal{EL} concept *C* w.r.t. $\exists X. A$ and \mathcal{T} .
- Subsumption and Instance relationships in *EL* can be checked in polynomial time

IQ-Entailment

Interested only in instance relationships entailed by the given qABox and TBox

- ∃X.A |Q-entails ∃Y.B w.r.t. T, denoted by ∃X.A ⊨^T_{IQ} ∃Y.B,
 if ∃Y.B ⊨^T C(b) implies ∃X.A ⊨^T C(b) for each concept assertion C(b)
- IQ-entailment between quantified ABoxes is in P. [CADE '21]

3

7/16

< □ > < 同 > < 回 > < 回 > < 回 >

(Optimal) IQ-repairs

IQ-Repairs

Given $\exists X. A, T$, and a repair request \mathcal{R} ,

• the qABox $\exists Y.\mathcal{B}$ is an IQ-repair of $\exists X.\mathcal{A}$ for \mathcal{R} w.r.t. \mathcal{T} if

$$\succ \exists X. \mathcal{A} \models_{\mathsf{IQ}}^{\mathcal{T}} \exists Y. \mathcal{B} \text{ and }$$

- ▶ for each $C(b) \in \mathcal{R}$, $\exists Y. \mathcal{B} \not\models^{\mathcal{T}} C(b)$.
- $\exists Y.\mathcal{B} \text{ is optimal if there is no IQ-repair } \exists Z.\mathcal{C} \text{ that strictly IQ-entails} \\ \exists Y.\mathcal{B} \text{ w.r.t. } \mathcal{T}$

(Optimal) IQ-repairs

IQ-Repairs

Given $\exists X. \mathcal{A}, \mathcal{T}$, and a repair request \mathcal{R} ,

• the qABox $\exists Y.\mathcal{B}$ is an IQ-repair of $\exists X.\mathcal{A}$ for \mathcal{R} w.r.t. \mathcal{T} if

$$\succ \exists X. \mathcal{A} \models_{\mathsf{IQ}}^{\mathcal{T}} \exists Y. \mathcal{B} \text{ and }$$

▶ for each
$$C(b) \in \mathcal{R}$$
, $\exists Y . \mathcal{B} \not\models^{\mathcal{T}} C(b)$.

• $\exists Y.\mathcal{B} \text{ is optimal}$ if there is no IQ-repair $\exists Z.\mathcal{C}$ that strictly IQ-entails $\exists Y.\mathcal{B} \text{ w.r.t. } \mathcal{T}$

(Optimal) IQ-repairs may have exponential size [CADE '21]

Are there any **polynomial-size representations** that correspond to (optimal) IQ-repairs such that reasoning with them is **tractable**?

Repair Seed Function (rsf)

- It specifies a (superset of) optimal repairs
- It assigns to each individual *b* a **repair type** \mathcal{K} for *b* consisting of **atoms that should not hold for** *b* **in the repair** such that

if $P(b) \in \mathcal{R}$ with $\exists X. \mathcal{A} \models^{\mathcal{T}} P(b)$, then there is $D \in \mathcal{K}$ that subsumes P.

Repair Seed Function (rsf)

- It specifies a (superset of) optimal repairs
- It assigns to each individual *b* a **repair type** \mathcal{K} for *b* consisting of **atoms that should not hold for** *b* **in the repair** such that

if $P(b) \in \mathcal{R}$ with $\exists X. \mathcal{A} \models^{\mathcal{T}} P(b)$, then there is $D \in \mathcal{K}$ that subsumes P.

Canonical IQ-Repairs [CADE '21]

- each rsf s induces a **canonical** IQ-repair, denoted as $\operatorname{rep}_{IQ}^{\mathcal{T}}(\exists X.A, s)$.
- each IQ-repair is IQ-entailed by a canonical IQ-repair
- the set of all canonical IQ-repairs contains all optimal IQ-repairs.

 $\operatorname{rep}_{IQ}^{\mathcal{T}}(\exists X.\mathcal{A},s) \models^{\mathcal{T}} C(b) \text{ iff } \exists X.\mathcal{A} \models^{\mathcal{T}} C(b) \text{ and the}$ repair type s(b) does not contain any atom subsuming C w.r.t. \mathcal{T} .

Instance problem w.r.t. canonical IQ-repairs

Given an rsf s and an assertion C(b), we can decide in polynomial time whether $\operatorname{rep}_{IQ}^{\mathcal{T}}(\exists X.\mathcal{A},s) \models^{\mathcal{T}} C(b)$ without computing $\operatorname{rep}_{IQ}^{\mathcal{T}}(\exists X.\mathcal{A},s)$.

 $\operatorname{rep}_{IQ}^{\mathcal{T}}(\exists X.\mathcal{A},s) \models^{\mathcal{T}} C(b) \text{ iff } \exists X.\mathcal{A} \models^{\mathcal{T}} C(b) \text{ and the}$ repair type s(b) does not contain any atom subsuming C w.r.t. \mathcal{T} .

Instance problem w.r.t. canonical IQ-repairs

Given an rsf s and an assertion C(b), we can decide in polynomial time whether $\operatorname{rep}_{IQ}^{\mathcal{T}}(\exists X.\mathcal{A},s) \models^{\mathcal{T}} C(b)$ without computing $\operatorname{rep}_{IQ}^{\mathcal{T}}(\exists X.\mathcal{A},s)$.

What seed functions that induce optimal IQ-repairs?

\leq -Minimal Seed Functions

Some notions and results from [CADE '21, ESWC '22] ...

 A repair type K is covered by a repair type L (denoted as K ≤ L) iff for each C ∈ K, there is D ∈ L such that C is subsumed by D

• s is covered by t (denoted as $s \le t$) if $s(a) \le t(a)$ for each $a \in \Sigma_{\mathsf{I}}$

\leq -Minimal Seed Functions

Some notions and results from [CADE '21, ESWC '22] ...

- A repair type K is covered by a repair type L (denoted as K ≤ L) iff for each C ∈ K, there is D ∈ L such that C is subsumed by D
- s is covered by t (denoted as $s \le t$) if $s(a) \le t(a)$ for each $a \in \Sigma_{\mathsf{I}}$

 $s \leq t \text{ iff } \operatorname{rep}_{\mathsf{IQ}}^{\mathcal{T}}(\exists X. \mathcal{A}, s) \models_{\mathsf{IQ}}^{\mathcal{T}} \operatorname{rep}_{\mathsf{IQ}}^{\mathcal{T}}(\exists X. \mathcal{A}, t)$

- If s is \leq -minimal, then rep $_{IQ}^{\mathcal{T}}(\exists X. \mathcal{A}, s)$ is an optimal IQ-repair
- Every optimal IQ-repair is IQ-equivalent to rep^T_{IQ}(∃X.A, s) for a ≤-minimal rsf s.

\leq -Minimal Seed Functions

Some notions and results from [CADE '21, ESWC '22] ...

- A repair type K is covered by a repair type L (denoted as K ≤ L) iff for each C ∈ K, there is D ∈ L such that C is subsumed by D
- s is covered by t (denoted as $s \le t$) if $s(a) \le t(a)$ for each $a \in \Sigma_{\mathsf{I}}$

 $s \leq t \text{ iff } \mathsf{rep}_{\mathsf{IQ}}^{\mathcal{T}}(\exists X. \mathcal{A}, s) \models_{\mathsf{IQ}}^{\mathcal{T}} \mathsf{rep}_{\mathsf{IQ}}^{\mathcal{T}}(\exists X. \mathcal{A}, t)$

- If s is \leq -minimal, then rep^T_{IQ}($\exists X. A, s$) is an optimal IQ-repair
- Every optimal IQ-repair is IQ-equivalent to rep^T_{IQ}(∃X.A, s) for a ≤-minimal rsf s.

There is a **naïve procedure** for deciding the \leq -minimality of seed function running in exponential time.

Can we decide the \leq -minimality of seed functions in polynomial time?

11/16

Deciding \leq -Minimality of Seed Functions

\leq -Minimality of Seed Functions is in P (Idea)

If s is not \leq -minimal, then there is an rsf t such that t < s.

If t < s, then there exist $b \in \Sigma_1$ and $D \in s(b)$ such that no atom in t(b) that subsumes D.

Deciding \leq -Minimality of Seed Functions

\leq -Minimality of Seed Functions is in P (Idea)

If s is not \leq -minimal, then there is an rsf t such that t < s.

If t < s, then there exist $b \in \Sigma_1$ and $D \in s(b)$ such that no atom in t(b) that subsumes D.

From s(b), we compute a repair type \mathcal{L}_b for b such that

▶ $t(b) \leq \mathcal{L}_b < s(b)$ and \mathcal{L}_b does not contain D,

▶ if $P(b) \in \mathcal{R}$ with $\exists X. \mathcal{A} \models^{\mathcal{T}} P(b)$, then there exists an atom in \mathcal{L}_b that subsumes P.

Computing such a repair type \mathcal{L}_b for each $b \in \Sigma_1$ can be done in **polynomial time**.

Deciding \leq -Minimality of Seed Functions

\leq -Minimality of Seed Functions is in P (Idea)

If s is not \leq -minimal, then there is an rsf t such that t < s.

If t < s, then there exist $b \in \Sigma_1$ and $D \in s(b)$ such that no atom in t(b) that subsumes D.

From s(b), we compute a repair type \mathcal{L}_b for b such that

▶ $t(b) \leq \mathcal{L}_b < s(b)$ and \mathcal{L}_b does not contain D,

▶ if $P(b) \in \mathcal{R}$ with $\exists X. \mathcal{A} \models^{\mathcal{T}} P(b)$, then there exists an atom in \mathcal{L}_b that subsumes P.

Computing such a repair type \mathcal{L}_b for each $b \in \Sigma_1$ can be done in **polynomial time**.

What can we do with \leq -minimal seed functions for dealing with error-tolerant reasoning problems?

Error-Tolerant Reasoning

12/16

Brave Entailment

A query Q is **bravely entailed** by $\exists X.\mathcal{A}$ for \mathcal{R} w.r.t. \mathcal{T} iff **there is** an optimal IQ-repair $\exists Y.\mathcal{B}$ such that $\exists Y.\mathcal{B} \models^{\mathcal{T}} C(a)$ for each $C(a) \in Q$.

Cautious Entailment

A query Q is **cautiously entailed** by $\exists X. A$ for \mathcal{R} w.r.t. \mathcal{T} iff **every** optimal IQ-repair $\exists Y. \mathcal{B}$ satisfies $\exists Y. \mathcal{B} \models^{\mathcal{T}} C(a)$ for each $C(a) \in Q$.

Note:

- If there is no repair, then every consequence is cautiously entailed
- Thus, we require only repair requests that have a repair, namely ...
- Repair requests that are solvable w.r.t. *T*, i.e., for each *C*(*a*) ∈ *R*,
 C is not tautology w.r.t. *T*

< □ > < 同 > < 回 > < 回 > < 回 >

Brave Entailment is in P Brave entailment can be reduced to the instance problem in \mathcal{EL} . \mathcal{Q} is bravely entailed by $\exists X.\mathcal{A}$ for \mathcal{R} w.r.t. \mathcal{T} iff $\exists X.\mathcal{A} \models^{\mathcal{T}} \mathcal{Q}$ and no assertion in \mathcal{R} is entailed by \mathcal{Q} w.r.t. \mathcal{T}

Brave Entailment is in P

Brave entailment can be **reduced to the instance problem** in \mathcal{EL} . \mathcal{Q} is bravely entailed by $\exists X.\mathcal{A}$ for \mathcal{R} w.r.t. \mathcal{T} iff $\exists X.\mathcal{A} \models^{\mathcal{T}} \mathcal{Q}$ and no assertion in \mathcal{R} is entailed by \mathcal{Q} w.r.t. \mathcal{T}

What can we do more with brave entailment?

An (Optimal) Repair for Wanted Consequences

Brave entailment can be used to check in polynomial time whether there exists an IQ-repair $\exists Y.B$ such that

 $\exists Y.\mathcal{B}$ entails consequences/query \mathcal{Q} that one wants to retain.

Brave Entailment is in P

Brave entailment can be **reduced to the instance problem** in \mathcal{EL} . \mathcal{Q} is bravely entailed by $\exists X. \mathcal{A}$ for \mathcal{R} w.r.t. \mathcal{T} iff

 $\exists X. \mathcal{A} \models^{\mathcal{T}} \mathcal{Q}$ and no assertion in \mathcal{R} is entailed by \mathcal{Q} w.r.t. \mathcal{T}

 \mathcal{Q} is bravely entailed by $\exists X. \mathcal{A}$ for \mathcal{R} w.r.t. \mathcal{T} iff the **translation of** \mathcal{Q} into a qABox $\exists Y. \mathcal{B}$ is an IQ-repair of $\exists X. \mathcal{A}$ for \mathcal{R} w.r.t. \mathcal{T} .

Such an IQ-repair $\exists Y.B$ need not be optimal in general, but then ...

Brave Entailment is in P

Brave entailment can be **reduced to the instance problem** in \mathcal{EL} . \mathcal{Q} is bravely entailed by $\exists X.\mathcal{A}$ for \mathcal{R} w.r.t. \mathcal{T} iff

 $\exists X. \mathcal{A} \models^{\mathcal{T}} \mathcal{Q} \text{ and no assertion in } \mathcal{R} \text{ is entailed by } \mathcal{Q} \text{ w.r.t. } \mathcal{T}$

Q is bravely entailed by $\exists X. A$ for \mathcal{R} w.r.t. \mathcal{T} iff the **translation of** Q into a qABox $\exists Y. B$ is an IQ-repair of $\exists X. A$ for \mathcal{R} w.r.t. \mathcal{T} .

Such an IQ-repair $\exists Y.B$ need not be optimal in general, but then ...

Computing One \leq -Minimal rsf

- From ∃Y.B, we can compute in polynomial time a ≤-minimal rsf t such that rep^T_{IQ}(∃X.A, t) ⊨^T_{IQ} ∃Y.B.
- Since t is \leq -minimal, rep $_{IQ}^{\mathcal{T}}(\exists X. \mathcal{A}, t)$ is optimal and entails \mathcal{Q}

Cautious Entailment w.r.t. Non-Empty TBoxes is in coNP

<u>Non-Cautious Entailment</u>: guess a function $s : \Sigma_I \to \mathcal{P}(Atoms(\mathcal{R}, \mathcal{T}))$ and then check whether

- > s is a repair seed function and is \leq -minimal, and
- ▶ there is $C(a) \in Q$ such that $\operatorname{rep}_{IQ}^{\mathcal{T}}(\exists X. \mathcal{A}, s) \not\models^{\mathcal{T}} C(a)$.

Cautious Entailment w.r.t. Non-Empty TBoxes is in coNP

<u>Non-Cautious Entailment</u>: guess a function $s : \Sigma_I \to \mathcal{P}(Atoms(\mathcal{R}, \mathcal{T}))$ and then check whether

- > s is a repair seed function and is \leq -minimal, and
- ▶ there is $C(a) \in Q$ such that $\operatorname{rep}_{IQ}^{\mathcal{T}}(\exists X. A, s) \not\models^{\mathcal{T}} C(a)$.

(Non)-Cautious Entailment w.r.t. an Empty TBox is in P

- ▶ $C(a) \in Q$ is not entailed by some optimal repair iff there is a ≤-minimal rsf *s* s.t. *C* is subsumed by **some atom** $D \in s(a)$
- ▶ If $T = \emptyset$, then a minimal rsf *s*, where *s*(*a*) should contain such an atom *D*, can be computed in polynomial time.

15/16

Conclusion:

- Reasoning w.r.t. canonical repairs of exponential size can be performed by considering only seed functions of polynomial size
- Characterized the \leq -minimality of seed functions.
- Investigated the complexities of brave and cautious entailment based on optimal repairs

Future Work:

- Is CoNP upper bound for cautious entailment really tight?
- Adding role assertions in both repair requests and queries
- Inconsistent-tolerant reasoning?