Treating Role Assertions as First-Class Citizens in Repair and Error-Tolerant Reasoning

Franz Baader Francesco Kriegel Adrian Nuradiansyah

Technische Universität Dresden

In the 38th ACM/SIGAPP Symposium on Applied Computing Tallinn, Estonia

March 28, 2023

Repairs & Error-Tolerant Reasoning

SAC 2023

March 28, 2023

1/15

Repair request = a set of incorrect/unwanted information

Repair request = a set of incorrect/unwanted information

Repairing Ontologies

Repair request = a set of incorrect/unwanted information

Classical Repairs: preserves a maximal subset of axioms of the ontology **Optimal Repairs**: preserves a maximal set of consequences of the ontology

An Illustration on Error-Tolerant Reasoning

Does the ontology return an answer to the query? Does the ontology entail the query?

Error-Tolerant Reasoning

- Is the query entailed by some repair of the ontology? (brave entailment)
- Is the query entailed by each repair of the ontology? (cautious entailment)

What Have Been Done Before?

Error-Tolerant Reasoning wr.t. Classical Repairs has been investigated in:

- Ludwig M., Peñaloza R., *Error-Tolerant Reasoning in the Description Logic EL*, JELIA, 2014
- Peñaloza R., Error-Tolerance and Error Management in Lightweight Description Logics, KI Journal, 2020

What Have Been Done Before?

Error-Tolerant Reasoning wr.t. Classical Repairs has been investigated in:

- Ludwig M., Peñaloza R., *Error-Tolerant Reasoning in the Description Logic EL*, JELIA, 2014
- Peñaloza R., Error-Tolerance and Error Management in Lightweight Description Logics, KI Journal, 2020

Error-Tolerant Reasoning wr.t. Optimal Repairs has been investigated in:

• Baader F., Kriegel F., Nuradiansyah A., *Error-Tolerant Reasoning in the Description Logic EL Based On Optimal Repairs, RuleML+RR, 2022*

Regarding optimal repairs, the above work only considers repair requests and queries that are finite sets of **instance relationships**.

What Have Been Done Before?

Error-Tolerant Reasoning wr.t. Classical Repairs has been investigated in:

- Ludwig M., Peñaloza R., *Error-Tolerant Reasoning in the Description Logic EL*, JELIA, 2014
- Peñaloza R., Error-Tolerance and Error Management in Lightweight Description Logics, KI Journal, 2020

Error-Tolerant Reasoning wr.t. Optimal Repairs has been investigated in:

• Baader F., Kriegel F., Nuradiansyah A., *Error-Tolerant Reasoning in the Description Logic EL Based On Optimal Repairs, RuleML+RR, 2022*

Regarding optimal repairs, the above work only considers repair requests and queries that are finite sets of **instance relationships**.

What if we treat repair requests and queries as

instance relationships + role assertions?

Role Assertions in Repair Requests and Queries

Why are role assertions interesting to be considered?

Role Assertions as Unwanted Consequences

Assume that an ontology consists of

 $has_parent(NICK, MICHAEL), Famous(MICHAEL), \\ \exists has_parent.Famous \sqsubseteq Rich$

 $\exists has_parent.Famous(NICK)$ and Rich(NICK) are **consequences** of the ontology.

Role Assertions in Repair Requests and Queries

Why are role assertions interesting to be considered?

Role Assertions as Unwanted Consequences

Assume that an ontology consists of

 $has_parent(NICK, MICHAEL), Famous(MICHAEL), \\ \exists has_parent.Famous \sqsubseteq Rich$

 $\exists has_parent.Famous(NICK)$ and Rich(NICK) are **consequences** of the ontology.

Suppose that Michael is actually not a parent of Mick:

- has_parent(NICK, MICHAEL) should be removed from the ontology.
- But removing it also removes ∃has_parent.Famous(NICK) and Rich(NICK) that are not complained by the user.

How to remove unwanted instance relationships and role assertions without removing non-erroneous consequences?

Research Questions

- How to **compute optimal repairs** w.r.t. repair requests consisting of instance relationships and role assertions?
- How to perform query reasoning w.r.t. optimal repairs
- How to characterize brave and cautious entailment based on optimal repairs?

EL concepts $C, D :: \top |A| \exists r. C | C \sqcap D$, where A is an atomic concept name and r is a role name.

EL **atoms** can be either a concept name *A* or an existential restriction $\exists r.C$

\mathcal{EL} concepts $C, D :: \top | A | \exists r. C | C \sqcap D$,

where A is an atomic concept name and r is a role name.

 \mathcal{EL} atoms can be either a concept name A or an existential restriction $\exists r.C$

Ontology is a pair of $\exists X. \mathcal{A}$ and \mathcal{T}

- a quantified ABox (qABox) $\exists X. A$ consists of
 - a finite set X of variable names and
 - > a finite set A of **atomic concept assertions** A(u) and **role assertions** r(u, v), where u and v are either variable or individual names.

• a **TBox** \mathcal{T} is a finite set of concept inclusions $C \sqsubseteq D$

\mathcal{EL} concepts $C, D :: \top | A | \exists r. C | C \sqcap D$,

where A is an atomic concept name and r is a role name.

 \mathcal{EL} atoms can be either a concept name A or an existential restriction $\exists r.C$

ABox Repair Requests and Queries

A repair request \mathcal{P} and a query \mathcal{Q} is an \mathcal{EL} ABox that is a finite set of concept assertions C(a) and role assertions r(a, b), where a, b are individuals.

Building Blocks, Ontologies, and Entailments

 \mathcal{EL} concepts $C, D :: \top | A | \exists r. C | C \sqcap D$,

where A is an atomic concept name and r is a role name.

 \mathcal{EL} atoms can be either a concept name A or an existential restriction $\exists r.C$

ABox Repair Requests and Queries

A repair request \mathcal{P} and a query \mathcal{Q} is an \mathcal{EL} ABox that is a finite set of concept assertions C(a) and role assertions r(a, b), where a, b are individuals.

Entailments

- **ABox-Entailment** (denoted by $\exists X. \mathcal{A} \models^{\mathcal{T}} \mathcal{Q}$).
- IRQ-Entailment (denoted by ∃X.A ⊨^T_{IRQ} ∃Y.B) Interested only in *EL* ABoxes entailed by the given qABoxes and TBox.

Both entailments can be checked in **polynomial time** in \mathcal{EL} [CADE'21, ESWC'22]

< 17 b

IRQ-Repairs

Given a qABox $\exists X. A$, a TBox T, and an ABox repair request P

• the qABox $\exists Y.B$ is an IRQ-repair of $\exists X.A$ for P w.r.t. T if

$$\succ \exists X. \mathcal{A} \models_{\mathsf{IRQ}}^{\mathcal{T}} \exists Y. \mathcal{B}$$
 and

> no assertion in \mathcal{P} is entailed by $\exists Y.\mathcal{B}$ w.r.t. \mathcal{T} .

IRQ-Repairs

Given a qABox $\exists X. A$, a TBox T, and an ABox repair request P

• the qABox $\exists Y.B$ is an IRQ-repair of $\exists X.A$ for \mathcal{P} w.r.t. \mathcal{T} if

$$\succ \exists X. \mathcal{A} \models_{\mathsf{IRQ}}^{\mathcal{T}} \exists Y. \mathcal{B}$$
 and

- > no assertion in \mathcal{P} is entailed by $\exists Y.\mathcal{B}$ w.r.t. \mathcal{T} .
- $\exists Y.\mathcal{B}$ is optimal if there is no IRQ-repair that strictly IRQ-entails $\exists Y.\mathcal{B}$ w.r.t. \mathcal{T}

IRQ-Repairs

Given a qABox $\exists X. A$, a TBox T, and an ABox repair request P

• the qABox $\exists Y.B$ is an IRQ-repair of $\exists X.A$ for \mathcal{P} w.r.t. \mathcal{T} if

$$\succ \exists X. \mathcal{A} \models_{\mathsf{IRQ}}^{\mathcal{T}} \exists Y. \mathcal{B}$$
 and

- > no assertion in \mathcal{P} is entailed by $\exists Y.\mathcal{B}$ w.r.t. \mathcal{T} .
- $\exists Y.\mathcal{B}$ is optimal if there is no IRQ-repair that strictly IRQ-entails $\exists Y.\mathcal{B}$ w.r.t. \mathcal{T}

ABox repair requests \mathcal{P} are divided into two parts:

- Instance repair request \mathcal{P}_C consisting of all C(a) from \mathcal{P} , and
- Role repair request \mathcal{P}_R consisting of all r(a, b) from \mathcal{P} .

Computing (Optimal) IRQ-Repairs for ABox Repair Requests

1. Dealing with Role Repair Requests

Computing the optimal IRQ-repair $\exists Z.C$ of $\exists X.A$ for \mathcal{P}_R w.r.t. \mathcal{T} in polynomial time.

2. Dealing with Instance Repair Requests

Computing the set \mathfrak{R} of all **canonical repairs** of $\exists Z.C$ for \mathcal{P}_C

w.r.t. $\mathcal{T} \; [\text{ESWC '22}]$ in exponential time satisfying the following:

- ► each IRQ-repair of ∃X. A for P w.r.t. T is IRQ-entailed by an element in ℜ w.r.t. T.
- > \mathfrak{R} contains all optimal IRQ-repairs of $\exists X.\mathcal{A}$ for \mathcal{P} w.r.t. \mathcal{T} .
- There are exponentially many elements in R, each of which is of exponential size.

Computing (Optimal) IRQ-Repairs for ABox Repair Requests

1. Dealing with Role Repair Requests

Computing the optimal IRQ-repair $\exists Z.C$ of $\exists X.A$ for \mathcal{P}_R w.r.t. \mathcal{T} in polynomial time.

2. Dealing with Instance Repair Requests

Computing the set \mathfrak{R} of all **canonical repairs** of $\exists Z.\mathcal{C}$ for $\mathcal{P}_{\mathcal{C}}$ w.r.t. \mathcal{T} [**ESWC** '22] in exponential time satisfying the following:

- ► each IRQ-repair of ∃X.A for P w.r.t. T is IRQ-entailed by an element in ℜ w.r.t. T.
- > \mathfrak{R} contains all optimal IRQ-repairs of $\exists X. \mathcal{A}$ for \mathcal{P} w.r.t. \mathcal{T} .
- There are exponentially many elements in R, each of which is of exponential size.

The set of all optimal IRQ-repairs of $\exists X.\mathcal{A}$ for \mathcal{P} w.r.t. \mathcal{T} can be computed in exponential time.

イロト イヨト イヨト イヨ

Brave Entailment

An ABox query Q is **bravely IRQ-entailed** by $\exists X.\mathcal{A}$ for \mathcal{P} w.r.t. \mathcal{T} iff **there is** an optimal IRQ-repair $\exists Y.\mathcal{B}$ of $\exists X.\mathcal{A}$ for \mathcal{P} w.r.t. \mathcal{T} such that $\exists Y.\mathcal{B} \models^{\mathcal{T}} Q$.

Brave Entailment is in P

Brave entailment can be **reduced** to the ABox-entailment problem in \mathcal{EL} . \mathcal{Q} is bravely IRQ-entailed by $\exists X. \mathcal{A}$ for \mathcal{P} w.r.t. \mathcal{T} iff

 $\exists X. \mathcal{A} \models^{\mathcal{T}} \mathcal{Q} \text{ and no assertion in } \mathcal{P} \text{ is entailed by } \mathcal{Q} \text{ w.r.t. } \mathcal{T}$

Cautious Entailment

An ABox query Q is **cautiously** IRQ-entailed by $\exists X.\mathcal{A}$ for \mathcal{P} w.r.t. \mathcal{T} iff every optimal IRQ-repair $\exists Y.\mathcal{B}$ of $\exists X.\mathcal{A}$ for \mathcal{P} w.r.t. \mathcal{T} satisfies $\exists Y.\mathcal{B} \models^{\mathcal{T}} Q$.

Cautious Entailment

An ABox query Q is **cautiously** IRQ-entailed by $\exists X.\mathcal{A}$ for \mathcal{P} w.r.t. \mathcal{T} iff every optimal IRQ-repair $\exists Y.\mathcal{B}$ of $\exists X.\mathcal{A}$ for \mathcal{P} w.r.t. \mathcal{T} satisfies $\exists Y.\mathcal{B} \models^{\mathcal{T}} Q$.

Note:

- Cannot be solved by a reduction to classical reasoning in \mathcal{EL} .
- One could compute all optimal repairs and then perform instance checking w.r.t. each of them, which would be very expensive.
- The naïve approach solving the instance problem w.r.t. canonical repair runs in exponential time.

Cautious Entailment

An ABox query Q is **cautiously** IRQ-entailed by $\exists X.\mathcal{A}$ for \mathcal{P} w.r.t. \mathcal{T} iff every optimal IRQ-repair $\exists Y.\mathcal{B}$ of $\exists X.\mathcal{A}$ for \mathcal{P} w.r.t. \mathcal{T} satisfies $\exists Y.\mathcal{B} \models^{\mathcal{T}} Q$.

Note:

- Cannot be solved by a reduction to classical reasoning in \mathcal{EL} .
- One could compute all optimal repairs and then perform instance checking w.r.t. each of them, which would be very expensive.
- The naïve approach solving the instance problem w.r.t. canonical repair runs in exponential time.

Are there any **polynomial-size representations** of canonical repairs such that reasoning with them is **tractable**?

Image: A matrix and a matrix

Repair Seed Function (rsf)

- It assigns to each individual *b* a set of **atoms that should not hold for** *b* in the repair.
- each seed function s induces a canonical repair denoted by rep(∃X.A, s) [CADE'21]

Repair Seed Function (rsf)

- It assigns to each individual *b* a set of **atoms that should not hold for** *b* in the repair.
- each seed function s induces a canonical repair denoted by rep(∃X.A, s) [CADE'21]

Reasoning w.r.t. Canonical IQ-repairs

Given an rsf s and an ABox Q, we can decide in polynomial time whether rep $(\exists X.A, s) \models^{T} Q$ without computing rep $(\exists X.A, s)$.

What seed functions that induce optimal IRQ-repairs?

\leq_{IRQ} -Minimality of Seed Functions

Introducing a **pre-order relation** \leq_{IRQ} on seed functions that reflects IRQ-entailment between canonical repairs.

\leq_{IRQ} -Minimality of Seed Functions

Introducing a **pre-order relation** \leq_{IRQ} on seed functions that reflects IRQ-entailment between canonical repairs.

s is an \leq_{IRQ} -minimal seed function iff $rep(\exists Z.C, s)$ is an optimal IRQ-repair.

Complexity of the \leq_{IRQ} -Minimality Problem

Deciding whether a seed function is $\leq_{\mathsf{IRQ}}\text{-minimal}$ can be done in polynomial time.

\leq_{IRQ} -Minimality of Seed Functions

Introducing a **pre-order relation** \leq_{IRQ} on seed functions that reflects IRQ-entailment between canonical repairs.

s is an \leq_{IRQ} -minimal seed function iff $rep(\exists Z.C, s)$ is an optimal IRQ-repair.

Complexity of the \leq_{IRQ} -Minimality Problem

Deciding whether a seed function is $\leq_{\mathsf{IRQ}}\text{-minimal}$ can be done in polynomial time.

Cautious Entailment is in coNP (unclear if it is coNP-hard)

<u>Non-Cautious Entailment</u>: guess a function s mapping each individual to a set of atoms in the ontology and then check whether

$$\succ \operatorname{rep}(\exists Z. \mathcal{C}, s) \not\models^{\mathcal{T}} \mathcal{Q}$$

(I) < ((()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) <

Classical Repairs of qABoxes w.r.t. \mathcal{EL} TBoxes

If we consider classical repairs of qABoxes, then we obtain a matching lower bound for brave and cautious reasoning.

Brave Entailment is NP-Complete

Guessing a subset of A and check whether it entails Q w.r.t. T and is maximal.

 Obtaining NP-hardness by a reduction from the problem monotone 1-in-3-SAT.

Cautious Entailment is coNP-Complete

Considering Non-Cautious Entailment

- Guessing a subset of ${\cal A}$ and check whether it does not entail ${\cal Q}$ w.r.t. ${\cal T}$ and is maximal.
- Obtaining NP-hardness by a reduction from the problem **path via a node**.

< ロト < 同ト < ヨト < ヨト

Conclusion:

- Computing optimal IRQ-repairs for ABox repair request can be performed in exponential time.
- Investigated the complexities of brave and cautious entailment of qABoxes based on optimal and classical repairs.
- Characterized the \leq_{IRQ} -minimality of seed functions.

Future Work:

- Is CoNP upper bound for cautious IRQ-entailment really tight?
- Considering more variants of repairs for error-tolerant reasoning
- Inconsistent-tolerant reasoning