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Chapter 1

Introduction

Living in an era that enables us to collect and disseminate any form of data provides us
with various impacts. On the positive side, governments, companies, or individuals may
employ all these data for knowledge-based decision making, which then prompt them to
make own significant business or individual decisions. Notwithstanding these promising
benefits, this sort of data transaction activity may cause the sacrifice of the privacy value of
the data. For example, in a very famous study from Sweeney in [Swe00], it was found that
87% of the US population can be uniquely identified by gender, ZIP code, and full date of
birth within an experiment using 1990 US Census summary data. In medical area, research
from [Wes76] stated that the necessity of patients data dissemination may infer sensitive
or personal information of the patients, such as their job status, their types of insurance, or
even an information about whether the patients are permitted to drive cars or not due to the
serious illnesses they suffer from. These concerns also arise in workplaces where employers’
actions aimed to protect company assets or safeguard proprietary information may violate
confidential data of employees if these data are used for inappropriate purposes [FR07].

Realizing all these privacy matters, one needs to understand avenues and methods of
producing a sort of anonymous data that preserves privacy policies, but keep a high utility
value when it is released publicly. In databases, the study of data privacy itself has been
a long-standing research area. This ranges from the studies of privacy detection in data-
bases (e.g., [MS07; DP05]), enforcement for controlled query evaluation (e.g., [BB04]),
database anonymizations (e.g., [Swe02a]), to the study of attack models in databases (e.g.,
[FWC+10]).

That being said, all such existing works on privacy in databases mainly assume that
the information in databases is complete. When we shift to another more expressive data
representation, such as ontologies, then they are mainly assumed to deal with incomplete
information. The term incompleteness in this context means that we can infer additional
facts from the ontologies, which are not explicitly stated there. Furthermore, in contrast to
complete databases, during query evaluations, all these inferred facts are derived by taking
all models of the ontologies into account, which intuitively may involve complex interactions
with other pieces of information within the ontologies.

It should be realized that incomplete databases [Lev96; MHS09] also exist in the area
of databases and ontologies are strongly related with them. Moreover, researches on data
privacy in the context of incomplete DBs have also been investigated in some literature, such
as [BTW10; BW08]. However, ontologies itself are formulated using languages that are
much more expressive than database schema languages. One of the most common languages
formalizing ontology is the Web Ontology Language (OWL)1 that has been standardized in

1See https://www.w3.org/TR/owl-features/
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Figure 1.1: A scenario for data transactions within organizations

2004 and frequently used in many application domains. This standardization also resulted in
a connection with a family of knowledge representation (KR) languages, called Description
Logics (DLs) [BCM+03; BHL+17], that are more known as a logic-based semantics which,
up to some different notations, are a fragment of first-order logic. This connection provides
more promising features for ontologies to not only be used for giving well-defined and
understandable reasons why a statement is entailed by the ontologies, but also be extensively
integrated with other automated reasoning technologies, e.g., DL reasoners 2.

However, the capacity of ontologies to infer new facts is still prone to privacy violations in
general. To come up with reasonable actions that can be used for privacy management in
ontologies, we start with a scenario of data transactions depicted in Figure 1.1. Taking a look
at the figure, a typical scenario for data transactions in some (government) organizations
consists of the data collection phase and the data publication phase. In the former phase,
the ontology engineer collects the data from data owners, e.g., John and Linda, and then
stores them in a database that has been augmented with an ontology. Meanwhile, in the data
publication phase, the ontology engineer releases the whole or some parts of the ontology to
(possibly unknown) data receivers. As an example, an IT division of a hospital, acting as an
ontology engineer, collects the data about medical information of patients and then share
parts or the whole of the data to a data receiver, e.g., a medical center, that wants to build a
cyclical pattern of some diseases based on the patient data by integrating it with other external
ontologies. Nevertheless, a privacy leak is very susceptible to occur in the publication phase.
For instance, it might be the case that information about patients are disclosed unauthorizedly
to users or data receivers who have no access to the information. This means that the ontology
engineer needs to be at least guided with the following anticipation steps:

1. Asking if the confidential information of objects is kept hidden or not w.r.t. the ontology.
In particular, as mentioned by [Gra10], the identity of an (anonymous) object is a
critical asset that needs to be protected in many application domains, e.g., medical or
insurance.

2. Repairing the ontology in a minimal way such that the identity or other sensitive
properties of individuals cannot be inferred from any user, but at the same time, the
utility value of the ontology is still preserved.

2See http://owl.cs.manchester.ac.uk/tools/list-of-reasoners/
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3. The two above steps only assume that the users’ knowledge is a part of the ontology
in the data publication phase. However, according to [FWC+10; Gra10], when the
ontology is ready to be published on the Web or to be integrated with other external
applications, the solution for ontology repairs should be featured with a provable
logic-based guarantee against a linkage attack from other possible users (attackers)
that may have extra knowledge from different sources. In particular, this sort of attacks
may occur when the combination of the repaired ontology with background knowledge
of external users (atackers) still violates a privacy policy.

In the context of privacy in OWL or DL ontologies, to the best of our knowledge, the studies
of preserving identity or reckoning linkage attacks during the publication phase are still
unexplored, whereas the studies of ontology repairs have been carried out by e.g., [Hor11;
DQF14; LSP+08; TCG+18] with different settings and motivations. In this thesis, we only
focus on ontologies written in Description Logics and, in general, we deal with the following
tasks inspired by the three anticipation steps above:

1. We formulate various new reasoning problems in DLs aimed at preserving the identity
of individuals. We present algorithms to solve the problems and provide complexity
results for each problem.

2. Then, in case the identity or other properties of some object is not preserved, we build
a general framework for repairing ontologies in a minimal way based on information
weakening that can be used to get rid of unwanted consequences, e.g., to hide secret
consequences.

3. Last, we study privacy-preserving ontology publishing where the ontology is ready to
be published on the Web. Since information linkage may happen and violate privacy
of individuals in this case, we specifically provide a logical mechanism against such
matters.

Relating the three main tasks above with the studies on privacy in general, we realize that
what we focus on this thesis is more about the confidentiality aspects of privacy and then
build mechanisms to achieve those confidentiality goals. Some other privacy aspects, such
as controlling personal data usage after disclosure [FAK+16] or the right to be forgotten
[Ros11] are beyond the scope of this thesis.

Figure 1.2 represents a general illustration of how the tasks mentioned above will be
explained in detail sequentially throughout chapters within this thesis, in particular from
Chapter 3 to Chapter 6. The remaining parts of this chapter are described as follows. In
Section 1.1, we give a brief introduction to Description Logics. In Section 1.2, we explain
existing work on detecting whether confidential information about individuals is protected
or not in some form of information systems, such as databases or ontologies. In Section 1.3,
we present existing methods to repair the systems in a way that the unwanted consequences
can be removed. Then, in Section 1.4, we discuss the state-of-the-art of the research on
privacy-preserving data publishing, which motivates the study on privacy-preserving ontology
publishing in this thesis. Last, in Section 1.5, we give an outline of the thesis as well as the
list of related publications.
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1.1 Description Logics

Description logics (DLs) are a family of knowledge representation languages which can
represent conceptual knowledge of an application domain in a formally structured and
well-understood way [BCM+03; BHL+17]. Due to the prominent adoption of the DL-based
language OWL [HPH03], which has become the standard ontology language, many important
application areas use DLs as the definition of their ontologies, for instance, in the biology
and medical areas [HSG15]. Prominent ontologies that have been used for many different
purposes in these two areas are, such as SNOMED CT3, GALEN4, or GENE ONTOLOGY5.

In terms of the syntactical features DLs have, the building blocks of these logics are concept
names expressing the set of elements that can be viewed as unary predicates, role names
denoting a relation between elements that can be seen as binary predicates, and individual
names that point to single elements. From these blocks, the notion of DL concepts are formed
using the constructors that the DL has. For example, in a workplace application domain,
Employee and TechTeam are concept names expressing the set of all employees and the set
of all technical teams, respectively, while worksAt is a role name denoting a binary relation
between employees and the divisions where the employee is working. For instance, the DL
concept

Employeeu ∃worksAt.TechTeam

defines the set of all employees working at a technical team. When we want to construct DL
ontologies, it should be considered what sort of information or axioms we want to include
in the ontologies. Normally, DL ontologies consist of two different types of knowledge.
First, it has a terminological knowledge (TBox) consisting of axioms, called General Concept
Inclusions (GCIs), stating hierarchical relationships between concepts. For example, in the
medical area, we may have an axiom

Patientu ∃suffer.BloodCancer v ∃symptom.Cough u
∃symptom.Fatigueu ∃symptom.(Rashu ∃feels.Itchy).

In addition to TBoxes, DL ontologies also consist of assertional knowledge (ABox), where
instances of concepts and the relationships between these instances are stated. For example,
the assertions

Patient(JOHN),suffer(JOHN,BC),BloodCancer(BC)

say that John is a patient suffering from a blood cancer. DL ontologies provide their users
with abilities to infer implicit knowledge from the stated explicit axioms. One may wonder
whether there is an implicit contradiction within an ontology by asking if the ontology has
a model (satisfiability problem). Another typical question is to ask whether a concept is
more specific than another concept w.r.t. an ontology (subsumption problem) or whether
an individual is an instance of a given concept w.r.t. an ontology (instance problem). For
example, the combination of the terminological and assertional axioms above may derive
(∃symptom.(Rashu∃feels.Itchy))(JOHN) saying that John has a symptom which is a rash that
feels itchy.

3See http://www.snomed.org/
4See https://bioportal.bioontology.org/ontologies/GALEN
5See http://geneontology.org/
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A main concern occurring in many works on DLs is to develop expressive DLs that have
decidable inference problems that can be solved by practical reasoning procedures. For
instance, the DL ALC is the smallest DL closed under Boolean operator [Sch91; SS91] and
the reasoning is already EXPTIME-complete in this logic. Furthermore, for a DL that is more
expressive than ALC, such as SROIQ known as the underlying logic for the full version of the
second generation of OWL, called OWL 2 [HKS06; GHM+08], the reasoning here becomes
N2EXPTIME-complete. This intractability issues brought motivations to DL communities to
find out DLs that are tractable in practice. For instance, in the Description logic EL, which is
a sub-logic of ALC and only has conjunctions (u), existential restrictions (∃r.C), and the top
concept (>) as its constructor, reasoning can be done in polynomial time [BBL05].

In addition to answer yes/no questions for the reasoning problems mentioned above, DL
ontologies can also be viewed as collections of information used to derive answers, which
are generally tuples of individuals, for queries. Commonly, many application use conjunctive
queries (CQs) as a form of querying in the context of DL ontologies. A CQ is essentially a
first-order formula of the form of conjunctions of atoms over unary or binary predicates
with existentially quantified variables. Complexity-wise, answering conjunctive queries is
already intractable for all aforementioned DLs, e.g., it is NP-complete in the Description
Logic EL [Ros07]. However, if the complexity is measured in the size of the data only, i.e.,
in the size of ABox, which is called data complexity, then the complexity of CQ answering
in EL becomes PTIME-complete [Ros07]. Even, most members of the DL-Lite family, which
is a family of tractable DLs mainly used in ontologies with very large ABoxes associated to
relational databases, enjoy the very low data complexity AC0 for CQ answering [CDL+13].

1.2 Detecting Privacy Breaches in Information Systems

Tracing back to very early history of philosophical discussions, we cite a concept of ‘privacy’
in one of the well-known Aristotle’s arguments:

There is a distinction between two spheres of life, which are the public one associated
to political activity and the private one that concerns with domestic life.6 (Aristotle)

Having said that, any single object in this world has their own assumptions on the notion of
privacy in their domestic life. In information systems, the term sensitive data itself varies from
one work to another and is also protected differently depending on the settings that are being
considered. One of the early protections against unintended disclosures was introduced by
the concept of role-based access control in [SCF+96] where every user of a system is labeled
with a role that defines which information can be accessed by the user. In this privacy scheme,
the main focus is to design a security mechanism to predefine role-permission relationship,
instead of detecting whether some secret data is protected or not w.r.t. a given information
system.

The work by Samarati and Sweeney in [SS98] was arguably the first one, at least in the
database area, addressing the problem of releasing individual-specific data while, at the same
time, safeguarding the anonymity of the individuals. In their well-defined confidentiality
criteria, called k-anonymity, a secret is violated if there is an attempt to distinguish the

6https://plato.stanford.edu/entries/privacy
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information for each database tuple from at least k-1 tuples whose information also appears
in the released table.

A different means of shielding the secret information is also captured in the notion of
Controlled Query Evaluation (CQE) that was studied in [BB04] for databases. The correct
answer of the user queries w.r.t. the given database is judged by some censor. If the censor
notices that the query answer violates one of the policies, then a modifier that may distort
the form of the answer, either as lying or refusal, is applied. In databases, a privacy leak
may occur due to a set of materialized views over the database, which is actually intended
only to be an accessible layer for users to query, rather than to store the data. The various
studies of checking whether a confidential query is entailed by a set of database views were
investigated thoroughly in, for instance, [DP05; MS07].

Motivated by the long-standing research of privacy in databases, the concern of preserving
confidential information in ontologies becomes a critical requirement in numerous applica-
tions. Deciding what can be told to a user without revealing secrets from an ontology in an
access-control manner has been investigated in [BKP12], where the axioms of the ontology
are labeled with access restrictions, and users can only see the (consequences of the) axioms
for which they have right of access. Instead of restricting the access only on the side of the
axioms, the works from [GH08; SS09; CDL+12; GMK09; GM12; GKK+15] restrict the user
access on the side of the ontology consequences.

A first attempt to restrict the user access on the consequences side is by adapting the CQE
paradigm over ontologies that were done by [TSH10; BS13; GKK+15]. This approach is
performed by using a confidentiality-preserving layer such that any finite set of answers
for the query w.r.t. this layer will not disclose any secret. Depending on the context, this
layer is called complement of a secrecy envelope in [TSH10], view in [BS13], or censor in
[GKK+15]. Moreover, in the context of ontology reuse, it might be the case that such an
external ontology-based application E wants to reuse an ontology O whose content is not
available due to privacy concerns. To avoid any leak of sensitive data during the reuse phase,
[GMK09; GM12] proposed such an oracle that can be used to access the content of O such
that, by using a, so-called, import-by-query algorithm, any answer for user queries about
E ∪O are based on the union of E and the oracle only. In another case, the practice of
view-based query answering studied in [GH08; SS09; CDL+12] only allowed the user to
access the ontology O via a query interface that only enable them to ask permissible queries.
These sort of queries, together with their answers, are represented as a set V of views over
O and the data to be protected is defined as a query q.

In [SS09], the ontologies were written in ALC and the queries were limited to either a
subsumption query which asks whether a concept C is subsumed by another concept D w.r.t.
O or a retrieval query which computes all individuals that belong to a given concept w.r.t. O.
Their privacy problem asks whether the data privacy is preserved for q w.r.t. the combination
of V and additional background knowledge of the user. In contrast to the latter problem
that only concentrates on standard semantics in DLs, the privacy problem considered in
[CDL+12] provides additional semantics for view-based query answering, each one capturing
additional properties for the answers of the queries. Then, applying these various semantics
in their framework, they ask whether the secret facts captured as answers of q logically follow
from O w.r.t. V. They apply this framework, in particular, to the DL-Lite family [CDL+07;
ACK+09]. Differing from [SS09; CDL+12] that principally only use classical semantics in
their logics, [GH08] also takes additional background knowledge of attackers captured as
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a probabilistic distribution into account. They consider the notion of perfect privacy which
guarantees that the attackers should not learn anything about the possible answer of q w.r.t.
V whenever their knowledge is increased.

Nevertheless, as argued by [Gra10], among the confidential information about individuals,
that should be commonly protected, is their identity. However, none of the works mentioned
above explicitly considers the notion of identity of an object and provides a mechanism to
detect whether the identity is hidden or not. In their works, properties of individuals, i.e.,
the memberships of an individual (or a tuple of individuals) are the common information
they try to hide in their settings. For instance, in the medical example we had in Section
1.1, if it is secret to know that John has a symptom of the form itchy rash, then the property
‘symptom’ of John is not protected w.r.t. the combination of axioms written in Section 1.1. In
the context of DL ontologies, however, the formal term of identity itself is also not defined
yet. In Chapter 3, we define the notion of identity of individuals formulated in DLs and then
study various reasoning problems related to identity preservation.

1.3 Repairing Information Systems

In the previous section, we described several works identifying whether a secret is deduced
from either databases, ontologies, a set of views, or a combination of a protected system
with an oracle. Some of the works complement this identification process with some censors
that may twist the real answers of user queries or pointing the users to other subsets of real
answers that do not disclose any secret. Alternatively, another possible action that can also
save sensitive valuable data from unintended disclosures is by directly modifying or repairing
a given information system in a way that the modified one does not entail any sensitive data.
Indeed, as long as the secret is not a tautology, one may easily modify the system by emptying
its information, and obviously the secret will not be deduced. However, one also needs to
take care of the utility of the modified system whose data still can be learned by other parties.
Thus, the modification needs to ensure that the modified ones remain maximally informative
to users. Similar to previous sections, for literature study, we focus on such information
systems in the structure of database and ontologies.

In database studies, two common approaches that are used to modify the data are by
applying either a perturbation or an anonymization technique. A popular instance of the
former technique is called differential privacy introduced by Dwork in [Dwo06]. Being
commonly used in statistical databases for survey of population, this approach introduces
noise in each of the numeric quantities of personal data in a way that the modified database
will be used for further statistical analysis. However, in other cases, it is more necessary
to release actual data, and not just statistical information. To this end, an anonymization
approach, namely k-anonymity [SS98; Swe02b], is more suitable for this demand. To realize
this approach, [Swe02a] provided a generalization technique which involves replacing a
value with a less specific but semantically consistent value, and a suppression technique
which decides to not release the sensitive data at all. The work on data suppression as well
as complexity of optimal k-anonymity was investigated further in [MW04].

The notion of repair in DL ontologies initially did not come from a privacy scenario, but
from a more general situation where engineers of DL-based ontologies have problems to
understand why an ontology is inconsistent or why a consequence (subsumption or instance
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relationships) computed by the DL reasoner actually follows from the ontology. This leads to
the question on how to repair the ontology in case the consequence is not intended. This
question becomes more challenging since the size of DL-based ontologies grows and the tools
that support improving the quality of such ontologies are highly demanded, which imply
that the need for an ontology maintenance in the sense of repairing ontologies becomes
important.

Axiom pinpointing [SC03] was introduced to help developers or users of DL-based onto-
logies to understand the reasons why a certain consequence holds by computing so-called
justifications, i.e., minimal subsets of the ontology that have the consequence in question.
Black-box approaches for computing justifications such as [SHC+07; KPH+07; BS08] use
repeated calls of existing highly-optimized DL reasoners for this purpose, but it may be
necessary to call the reasoner an exponential number of times. In contrast, glass-box ap-
proaches such as [BH95; SC03; PSK05; MLB+06] compute all justifications by a single run
of a modified, but usually less efficient reasoner.

Given all justifications of an unwanted consequence, one can then repair the ontology by
removing one axiom from each justification. This approach gives a close connection with the
well-known model-based diagnosis from [Rei87]. In [KPS+06a], this approach is extended
to the very expressive DL SHOIN and the authors consider a ranking of axioms that can be
used to select preferred repairs. An implementation of this approach was made available
in the ontology editor SWOOP [KPS+06b]. However, removing complete axioms may also
eliminate consequences that are actually wanted.

Approaches for repairing ontologies while keeping more consequences than the classical
approach based on completely removing axioms have already been considered in the literat-
ure. On the one hand, there are approaches that first modify the given ontology, and then
repair this modified ontology using the classical approach. In [Hor11], a specific syntactic
structural transformation is applied to the axioms in an ontology, which replaces them by
sets of logically weaker axioms. More recently, the authors of [DQF14] have generalized this
idea by allowing for different specifications of the structural transformation of axioms. They
also introduced a specific structural transformation that is based on specializing left-hand
sides and generalizing right-hand sides of axioms in a way that ensures finiteness of the
obtained set of axioms. However, it is inevitable that such an approach replacing a single
axiom with several axioms might blow up the size of the ontology.

Using a different strategy, the approach in [LSP+08] adapts the tracing technique from
[BH95] to identify not only the axioms that cause a consequence, but also the parts of these
axioms that are actively involved in deriving the consequence. This provides them with
information for how to weaken these axioms. In [TCG+18], repairs are computed via axiom
weakening with the help of refinement operators that were originally introduced for the
purpose of concept learning [LH10].

However, we show later in Chapter 4 that the approach in [LSP+08] does not necessarily
yield a repair since, in general, computing such an optimal repair needs iterations. The
authors of [TCG+18] had already realized that this iteration is needed, but they did not give
an example explicitly demonstrating their iterative algorithm, and they had no termination
proof of the algorithm. To this end, we also provide the termination proof in Chapter 4. This
investigation supports our main purpose in Chapter 4 that actually wants to build a gentle
repair framework which repairs the ontology based on axiom weakening with the help of the
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notion of weakening relations. We will apply this framework to the Description Logics EL
and ALC.

1.4 Privacy-Preserving Data Publishing

Repairing information systems, such as ontologies, can be an effective way to get rid of
unwanted consequences, e.g., the consequences we want to keep hidden in the context of
privacy. However, it may only work if we assume that the users’ knowledge is a part of the
input ontology we want to repair. In the context of ontology publishing, it becomes sensible
to deal with users that have extra knowledge which they obtain from different sources. In this
case, this additional knowledge may not violate any privacy policy, but if it is combined with
our input ontology, then the privacy of an individual can be revealed. This vigilant assumption
somehow reminds us to a very stringent definition of privacy protection in statistical databases
provided by Dalenius in [Dal77]. He enunciated the following desideratum:

Nothing about an individual should be learnable from the database that cannot be
learned without access to the database. (Dalenius)

This ideal aim was, however, smashed by Dwork in [Dwo06] saying that such absolute
privacy protection is impossible due to the presence of background knowledge of the attacker.
If we lift up Dwork’s argument to any type of information system, then the background
knowledge of an attacker is indeed something that needs to be carefully considered. Suppose
that the attacker only knows that John lives in the same apartment room with his wife,
Pamela. At the same time, the attacker is given access to an ontology disclosing the address
information of Pamela. Using this access in conjunction with his background knowledge,
the attacker can infer the address information of John, too. In many literatures of Privacy-
Preserving Data Publishing (PPDP), this sort of unintended disclosure is called linkage attack.

In fact, some popular privacy protections in database, such as k-anonymity, was initially
designated to not only publish informative individual-specific data in the anonymized table,
but also to secure the data from possible attacks in the type of record linkage. However, as
investigated thoroughly by [FWC+10], some possible linkage attacks in databases, such
as attribute linkage, table linkage, or probabilistic attack, still can attack the privacy of an
individual, even though the database has satisfied the k-anonymity criteria. This argument
was also firmly supported by [MKM+07] showing a formal study of worst-case background
knowledge for PPDP, and was furthermore confirmed by several confidentiality criteria in
the setting of linkage attacks, such as `-diversity [MKG+07] or t-closeness [LLV07], that
strengthen and refine the notion of k-anonymity.

More recently, the study of PPDP and linkage attack was applied in the context of Linked
Data [GK16; GK19]. In [GK16; GK19], PPDP was investigated in a setting where the
information to be published is given as a relational dataset with (labeled) null values, and
the privacy policy is given by a conjunctive query whose answer is not allowed to be disclosed
publicly. The notion of compliant is introduced to make sure that the published information
(dataset) does not entail the privacy policy (query) and the notion of safety ensuring that
for any information compliant with the query, the combination of this information with our
published information is again compliant. In order to make a given dataset compliant or
safe, one is basically allowed to replace constants or null values by new null values. The
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paper investigates the complexity of deciding compliance (Is a given modification of a dataset
policy compliant?), safety (Is a given modification of a dataset safe w.r.t. a policy?), and
optimality (Is a given modification of a dataset safe w.r.t. a policy and does it change the
dataset in a minimal way?). The obtained complexity results depend on whether combined
or data complexity is considered, and whether closed- or open-world semantics are used.

In the context of DL ontologies, the study of linkage attacks is rather unexplored. To this
end, we initiate the study of Privacy-Preserving Ontology Publishing (PPOP) in Chapter 5 and
6. In general, the setting we design for this study is composed of published information that is
given either by EL instance stores or EL ABoxes, background knowledge of attackers ranging
from the form of concepts in Description Logics EL, FL0, FLE , to the form of EL ABoxes, and
privacy policies in the form of EL concepts or a conjunctive query. We adopt similar decision
problems defined in [GK16; GK19], which are compliance, safety, and optimality. Additionally,
we will provide algorithms for computing optimal compliant (safe) generalizations of EL
concepts and introduce an anonymization function for EL ABoxes.

1.5 Outline and Contributions of the Thesis

In the following, we will briefly give an outline of the remainder of the thesis.
In Chapter 2, we study basic notions in Description Logics, ontologies, and computational

complexities. Initially, we discuss a basic Description Logic, called ALC in terms of its syntax
and semantics. This will be followed by a discussion on DL ontologies together with reasoning
problems in DLs that are commonly investigated in the literature. Then, we see a relationship
between DLs and first-order logic and look at fragments of ALC that will be used in this
thesis. One fragment of ALC that we concentrate on is the DL EL that is known for its limited,
but sufficient expressiveness and its tractability for most of the classical reasoning problems
in DLs. Finally, we end this chapter with the discussion on complexity of reasoning problems
in DLs.

As mentioned in Section 1.2, the type of confidential information we first investigate is
the one aiming at hiding the identity of individuals. Accordingly, in Chapter 3, we introduce
the identity problem that asks whether two individuals are equal w.r.t. a given ontology. We
investigate which DLs that are non-trivial to this problem and analyze its complexity, both
upper bounds and lower bounds. We move to the extended problem called the view-based
identity problem where users can only learn information about individuals of the ontology
through views which they are permitted to access or store. The question is then whether
the identity of anonymous individuals are hidden w.r.t. to this collection of views. Then, we
look at another privacy problem that is violated if the identity of anonymous individuals
belongs to a set of known individual of cardinality smaller than k. This problem is called
the k-hiding problem. Contents, notions, and results written in Chapter 3 particularly on the
identity problem and the view-based identity problem are mainly based on the following
publications [BBN17a; BBN17b].

• Franz Baader, Daniel Borchmann, and Adrian Nuradiansyah. ‘Preliminary Results
on the Identity Problem in Description Logic Ontologies’. In Proceedings of the 30th
International Workshop on Description Logics, Montpellier, France, 2017.
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• Franz Baader, Daniel Borchmann, and Adrian Nuradiansyah. ‘The Identity Problem in
Description Logic Ontologies and Its Application to View-Based Information Hiding’,
In Proceedings of Semantic Technology - 7th Joint International Conference (JIST), Gold
Coast, QLD, Australia, 2017.

In Chapter 4, we present an approach for modifying DL ontologies in order to eliminate
hidden or unwanted consequences in general. We introduce a gentle repair framework that
repairs ontologies based on weakening axioms. Then, instead of allowing arbitrarily many
ways to weaken axioms, we propose the notion of a weakening relation restricting the way
in which axioms should be weakened. We then introduce two weakening relations for
EL axioms, especially for EL GCIs, that are based on generalizing the right-hand side of
GCIs semantically and syntactically. Likewise, we present two weakening relations for ALC
GCIs, where right-hand side and left-hand side of GCIs are generalized and specialized,
respectively. The first one generalizes and specializes concept w.r.t. a finite signature and
a fixed role-depth, while the second one performs the generalizations and specializations
syntactically. All notions and results on the gentle repair framework, weakening relations
and its application to EL axioms are mainly based on the following publications [BKN+18a;
BKN+18b; BKN+18c]

• Franz Baader, Francesco Kriegel, Adrian Nuradiansyah, and Rafael Peñaloza. ‘Making
Repairs in Description Logics More Gentle’. In Proceedings of the Sixteenth International
Conference (KR), Tempe, Arizona, US, 2018.

• Franz Baader, Francesco Kriegel, Adrian Nuradiansyah, and Rafael Peñaloza. ‘Making
Repairs in Description Logics More Gentle (Extended Abstract)’. In Proceedings of the
31st International Workshop on Description Logics, Tempe, Arizona, US, 2018.

• Franz Baader, Francesco Kriegel, Adrian Nuradiansyah, and Rafael Peñaloza. ‘Repairing
Description Logic Ontologies by Weakening Axioms’. CoRR, 2018.

Next, we discuss a study on handling ontologies in the context of privacy-preserving data
publishing in Chapter 5. All sections within this chapter are set with the goal of investigating
three properties, namely compliance, safety, and optimality in different settings. We begin
with a quite restricted setting where information about individuals are contained in EL
Instance Stores without TBoxes, which implies that information to be published about an
individual is given as an EL concept. In addition, privacy policies are encoded as a finite set
of EL concepts whereas the knowledge of possible attackers are written as an EL concept.
We shift this setting to a condition where the way of encoding information about individuals
and privacy policies remains the same, but knowledge of possible attackers is now written as
FL0 and FLE concepts. All contents, notions, and results on privacy-preserving ontology
publishing for EL instance stores that are written in Chapter 5 are mainly based on the
following publications [BN18; BKN19; BN19].

• Franz Baader and Adrian Nuradiansyah. ‘Towards Privacy-Preserving Ontology Pub-
lishing’. In Proceedings of the 31st International Workshop in Description Logics, Tempe,
Arizona, US, 2018.

• Franz Baader, Francesco Kriegel, and Adrian Nuradiansyah. ‘Privacy-Preserving Onto-
logy Publishing for EL Instance Stores’. In Proceedings of the 16th European Conference
on Logics in Artifical Intelligence (JELIA), Rende, Italy, 2019.
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• Franz Baader and Adrian Nuradiansyah. ‘Mixing Description Logics in Privacy-Preserving
Ontology Publishing’. In Proceedings of Künstliche Intelligenz (KI) - the 42nd German
Conference on AI, Kassel, Germany, 2019.

In Chapter 6, we extend the problem setting formulated in Chapter 5. Here, the infomation
about individuals as well as the knowledge of attackers are given by EL ABoxes consisting of
concept and role assertions. Then, the privacy policies are given either as an EL concept or a
conjunctive query. If one policy is violated, then we provide an anonymization approach by
using a function, called an anonymizer that is applied to the given EL ABox, which either
generalizes EL concepts or renames individuals with a new anonymous individual in ABox
assertions. We present algorithms to decide whether an anonymization of the ABox fulfills
compliance and safety properties and then check whether the anonymizer we perform over
the ABox is also optimal in the sense that it keeps information from the original ABox as
much as possible. The complexity of checking such properties are also analyzed within this
chapter.

We end this thesis by providing conclusions and future work in Chapter 7.



14 Chapter 1. Introduction



Chapter 2

Preliminaries

In this chapter, we begin with the basic definition for the Description Logic (DL) ALC
containing all Boolean operators and being the basis of many more expressive Description
Logics. After discussing the syntactical representations and the semantics of ALC, we
describe Description Logic ontologies that are built over ALC concept descriptions and then
it is continued with an introduction of reasoning problems that are relevant for this thesis
and have been well investigated. Following this, we look at fragments of ALC that will be
considered in this thesis. Most notably, we dedicate one section to discuss one fragment of
ALC, called EL, forming the basis of Chapter 4, 5, and 6. This chapter is closed with a brief
summary of the foundation foundation of computational complexity and its applications in
Description Logics.

2.1 Description Logic ALC

As mentioned in Section 1.1, Description Logics (DLs) are useful to represent the conceptual
knowledge of an application domain in a well-understood way. DLs allow their user to define
important notions in an application domains as concepts by stating sufficient and necessary
conditions for individuals to belong to a concept. In general, the building block for the notion
of DL concepts consists of three disjoint sets NC,NR,NI, which are sets of concept names, role
names, and individual names, respectively. For more detail explanations about Description
Logics, readers may refer to [BCM+03; BHL+17].

In this section, we focus on the Description Logic ALC since it is the most widely used in
many DL reasoning services and a very basic one in the sense of containing all Boolean oper-
ators (conjunction, disjunction, and negation). The name of ALC itself stands for ‘Attributive
concept Language with Complement’, which was first introduced in [SS91].

Definition 2.1. Let NC and NR be sets of concepts names and role names, respectively. The set
of ALC concepts is the smallest set satisfying the following conditions:

• > (Top), ⊥ (Bottom), and every concept name A∈ NC are ALC concepts.

• if C , D are concepts, then C u D (conjunction), C t D (disjunction), and ¬C (negation)
are also ALC concepts.

• if C is a concept and r ∈ NR, then ∀r.C (value restriction) and ∃r.C (existential restric-
tion) are also ALC concepts. ♦

For any DL L, in the following we often use to write ‘complex’ concept of the DL L to
distinguish this notion from concept names. If it is clear from the context, we drop the word

15
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‘complex’. The semantics of Description Logic concepts is defined in a model-theoretic way
using a Tarsky-style set theoretic interpretation I = (∆I , ·I), consisting of a non-empty set
∆I of domain elements and the interpretation function ·I , which maps

• every a ∈ NI to an element aI ∈∆I ,

• every A∈ NC to a set AI ⊆∆I , and

• every r ∈ NR to a binary relation rI ⊆∆I ×∆I .

Definition 2.2. Let NC and NR be sets of concept names and role names, respectively, and let
I = (∆I , ·I) be an interpretation. This interpretation function is defined recursively for ALC
concepts as follows.

• (C u D)I := CI ∩ DI ,

• (C t D)I := CI ∪ DI

• (¬C)I :=∆I \ CI ,

• (∃r.C)I := {d ∈∆I | ∃e ∈∆I .(d, e) ∈ rI ∧ e ∈ CI}, and

• (∀r.C)I := {d ∈∆I | ∀e ∈∆I .(d, e) ∈ rI → e ∈ CI} ♦

The following example illustrates an ALC concept together with its interpretations.

Example 2.3. We write an ALC concept C as follows:

C = ¬Germanu ∃worksAt.(IT_Deptu∀located.(GermanytAustria)).

The concept above expresses elements who are not German and work at an IT Department
which is only located in either Germany or Austria. In Figure 2.4, a graphical representation
for interpretations I1 and I2 of C are illustrated. If we take a closer look at I1, all elements
in I1 are in the extension of > and none of them are in the extension of ⊥. For instance,
the element e0 is in the extension of IT_Dept, whereas the element e1 is in the extension of
Austria. Thus, these elements are labeled by IT_Dept and Austria, respectively. Now, if we extend
I1 to complex concepts, we may see that d0 is in the extension of the concept C since d0 is
not in the extension of German and connected via a role name worksAt to e0, which is in the
extension of IT_Dept and has a relationship ‘located’ to e1 which is in the extension of at least
one of disjuncts in Germany t Austria. Likewise, in the other picture, the element d1 is also
an element of C under I2, which is justified with the same argument for d0, except that the
worksAt-successor e2 of d1, which is an element of IT_Dept under I2, is also in the extension of
∀located.(GermanytAustria). This is due to the fact that e2 does not have any located-successors
and hence all their located-fillers vacuously satisfy any imposed condition.

One may call the union of NC, NR, and NI the signature. This notion is extended to
Description Logic concepts by collecting all concept names, role names, and individual names
occurring in the concepts. Besides this notion, one might be interested in counting the
size of concepts that is obtained by counting the number of occurrences of concept names,
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d0

e0
{IT_Dept}

e1
{Austria}

I1

worksAt

located

d1

e2
{IT_Dept}

e3
{Security}

I2

worksAt

specializes

Figure 2.4: A graphical representation of interpretations of the concept C defined in
example 2.3

role names, individual names, and Boolean operators in the concepts 1. In addition to
those two notions, we also define the notion of subconcepts that are intuitively concepts that
syntactically occur in a given concept. For ALC concepts, the formal definitions of signature,
size, and subconcepts are defined as follows.

Definition 2.5. Let C be an ALC concept. The signature of C, denoted by sig(C) is the set of
all concept names and role names occurring in C, while the size and the set of subconcepts of C,
denoted by | C | and sub(C), are defined inductively as follows:

• if C = A∈ NC, then | C |:= 1 and sub(C) = {A};

• if C = C1 u C2 or C = C1 t C2, then | C |:= 1+ | C1 | + | C2 | and
sub(C) = {C} ∪ sub(C1)∪ sub(C2);

• if C = ¬D or C = ∃r.D or C = ∀r.D, then | C |:= 1+ | D | and
sub(C) = {C} ∪ sub(D). ♦

For example, the concept C that is defined in Example 2.3 has the following signature
sig(C) := {German,Germany,Austria, IT_Dept,worksAt, located} and the size that is counted
as follows | C | := 1+ 1+ 1+ 1+ (1+ 1+ 1+ (1+ 1+ 1)) = 10.

2.1.1 Reasoning in ALC Ontologies

Mainly, Description Logic ontologies consist of two parts, which are terminological know-
ledge, called TBoxes, and assertional knowledge, called ABoxes. Intuitively, TBoxes provide
constraints on the interpretation of concepts and define how concepts are related each other,
while ABoxes formulate knowledge about instances of concepts and relationship between
individuals. We start with the definition of ALC TBoxes.

Definition 2.6. Let C , D be ALC concepts. We call the following axiom C v D a general
concept inclusion (GCI). An ALC TBox T is a finite set of GCIs. ♦

If there are two GCI axioms C v D and D v C in T , then we may abbreviate them with
an equivalence axiom C ≡ D. We will sometimes use the word axiom to refer to a GCI

1There are also Description Logics that has individual names as one of their constructors that will be introduced
in the next chapter
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Tex = { Diseasev¬Patient,
CancervDisease,

∃suffer.DiseasevPerson,

PatientvPersonu ∃seen_by.Doctor,
OncologistvDoctor}

Figure 2.8: The example TBox Tex1

or an equivalence axiom. The semantics of TBoxes is also defined using the notion of
interpretations.

Definition 2.7. Let I be an interpretation. I satisfies a GCI C v D iff CI ⊆ DI . I is a model
of a TBox T iff I satisfies all GCIs in T . ♦

In another sense, one may also perceive TBoxes as knowledge consisting of hierarchical
relationships between concepts. Given C v D, we say that C is more specific than D, and
vice versa, D is more general than C . We may alternatively call the notion of TBox above
with the name general TBox. This is due to the fact that there is also another type of TBox,
defined as terminologies, whose axioms are of the form A≡ C , called a concept definition,
where A∈ NC and C is a complex concept. However, in this thesis we just focus on general
TBoxes and sometimes we drop the word ‘general’ if it is already clear from the context.
Next, we illustrate an interpretation Iex1

that interprets all concept names and role names in
a TBox Tex1

presented in Figure 2.8.

∆Iex1 = {cn1, cn2, ds1, dt1, on1, pt1, pt2},
PatientIex1 = {pt1, pt2},
DoctorIex1 = {dt1, on1},

OncologistIex1 = {on1},
PersonIex1 = {dt1, on1, pt1, pt2},
CancerIex1 = {cn1, cn2},
DiseaseIex1 = {cn1, cn2, ds1},

sufferIex1 = {(pt1, cn1), (pt1, cn2), (pt2, ds1)},
seen_byIex1 = {(pt1, dt1), (pt2, dt1)}

To confirm that Iex1
is a model of Tex1

, we check whether for each GCI C v D ∈ Tex1
, we

have CIex1 ⊆ DIex1 . For the GCI Diseasev ¬Patient, we have

DiseaseIex1 = {cn1, cn2, ds1} 6⊆ {pt1, pt2}= PatientIex1 .

Then, for the second GCI Cancer v Disease, it holds that

CancerIex1 = {cn1, cn2} ⊆ {cn1, cn2, ds1}= DiseaseIex1 .
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Aex = {Patient(ALICE), Doctor(DIANA),
Patient(BOB), Cancer(AML),
Patient(CAROL), Cancer(CLL),
seen_by(ALICE,DIANA), suffer(ALICE,AML),
seen_by(BOB,DIANA), suffer(BOB,CLL),
seen_by(CAROL,DIANA), (∀suffer.¬Cancer)(CAROL)}

Figure 2.11: The example ABox Aex

For the concept (∃suffer.Disease)Iex1
, we know that the elements pt1, pt2 belong to the exten-

sion of this concept, since their suffer-successors cn1, cn2, and ds1 belong to DiseaseIex1 , and
thus it is verified that

(∃suffer.Disease)Iex1
= {pt1, pt2} ⊆ {dt1, on1, pt1, pt2}= PersonIex1 .

The fourth GCI that contains an existential restriction, too, is also true under Iex1
such that

PatientIex1 = {pt1, pt2} ⊆ {pt1, pt2}= (Personu ∃seen_by.Doctor)Iex1

since the only elements belong to the intersection of PersonIex1 and (∃seen_by.Doctor)Iex1

are pt1 and pt2. Last but not least, it obviously holds that

OncologistIex1 = {on1} ⊆ {dt1, on1}= DoctorIex1 .

Next, we introduce how information about individuals and their relationships are stored
in ABoxes

Definition 2.9. Let C be an ALC concept, r ∈ NR, and a, b ∈ NI. We call C(a) and r(a, b) a
concept assertion and a role assertion, respectively. An ABox A is a finite set of concept assertions
and role assertions. ♦

Likewise, we will sometimes use the word axiom to refer a concept assertion or a role
assertion. We also define the semantics of ABoxes with the use of interpretations.

Definition 2.10. Let I be an interpretation. I satisfies a concept assertion C(a) and a role
assertion r(a, b) iff aI ∈ CI and (aI , bI) ∈ rI , respectively. I is a model of an ABox A iff I
satisfies all concept assertions and role assertion in A. ♦

As an illustration, we have presented an ABox Aex in Figure 2.11. According to Aex ,
we may say that Alice, Bob, and Carol are patients, while Dan is a doctor. Then, we have
Acute Myeloid Leukemia (AML) and Chronic Lymphocytic Leukemia (CLL) as names of cancer
diseases from which Alice and Bob suffer, respectively. Further, it is stated that everything
from which Alice suffers is not an instance of cancer. Additionally, the ABox also explicitly
states that Dan examines Alice, Bob, and Carol.
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Now, we construct an interpretation I′ex1
which coincides with Iex1

on its domain elements
as well as all concept and role names occurring in Tex1

, but it interprets all individual names
in Aex1

as follows:

ALICEI′ex = pt1, DIANAI′ex = dt1,

BOBI′ex = pt1, AMLI′ex = cn1,

CAROLI′ex = pt2, CLLI′ex = cn2.

According to this construction, it is clear to see that I′ex1
is also a model of Tex1

. Observe that
the individual names ALICE and BOB are interpreted to the same element pt1. This is due
to the fact that we do not assume Unique Name Assumption (UNA) in this thesis. In many
literatures, UNA is enforced to their semantics such that it requires aI 6= bI in the case a 6= b.

Now, we verify whether I′ex1
is also a model of Aex1

by checking if aI′ex1 ∈ CI′ex1 for all

concept assertion C(a) ∈ Aex1
and (aI′ex1 , bI′ex1 ) ∈ rI′ex1 for all role assertions r(a, b) ∈ Aex1

. It
clearly holds that for all concept assertions whose all the concepts are concept names, they
are satisfied by I′ex1

. Then, for each role assertion in Aex1
, it is also trivial to see that I′ex1

satisfies them. Now, we see that CAROLI′ex1 = pt2 has a suffer-successor ds1 that is not in
extension of any concept name in I′ex1

. Then, since the universal restriction ∀suffer.¬Cancer

propagates the concept ¬Cancer to any suffer-successor of pt2, we have ds1 ∈ (¬Cancer)
I′ex1 .

Thus, I′ex1
satisfies (∀suffer.¬Cancer)(CAROL) and it concludes that I′ex1

is a model of Aex1
.

Finally, we arrived at the notion of DL ontologies that are formed by the combination of
TBoxes and ABoxes.

Definition 2.12. A Description Logic ontology O = (T , A) consists of a TBox T and an ABox
A. An interpretation I is a model of O iff I is a model of both T and A. ♦

Now, we introduce the notions of signature and size that are extended to Description Logic
ontologies, in particular to ALC ontologies, that are defined in the following

Definition 2.13. Let O = (T , A) be an ALC ontology. The signatures of T and A are defined
as follows

sig(T ) =
⋃

CvD∈T
sig(C)∪ sig(D) and sig(A) =

⋃

C(a)∈A
sig(C)∪ {a} ∪

⋃

r(a1,a2)∈A
{r, a1, a2}.

The signature of O, written sig (O), is simply defined as sig(O) = sig(T )∪ sig(A). Then, the
size of each T and A is defined as follows

| T |=
∑

CvD∈T
| C | + | D | and | A |=

∑

C(a)∈A

| C | +1+
∑

r(a1,a2)

3.

Finally, the size of O, denoted by |O |, is obtained by adding | T | with | A |. ♦

Note that the number 1 used to define | A | above is considered in the summation to indicate
one occurrence of the individual a in an assertion C(a) ∈ A, while the number 3 is used
to indicate three occurences of the role name r and the individual names a1 and a2 in an
assertion r(a1, a2) ∈ A.
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Further, we discuss reasoning problems in DL ontologies that have been well-investigated.
They are the consistency problem, satisfiability problem, subsumption problem, and the instance
problem. We start with the first problem.

Definition 2.14. Let O be an ontology. O is consistent if it has a model. The consistency
problem asks whether there is a model for O. ♦

Now, if we construct an ALC ontology Oex1
= (Tex1

, Aex1
), then Oex1

is consistent since
it has a model I′ex1

that satisfies Tex1
and Aex1

. However, if we add the following axioms to
Oex1

:
α1 =∃seen_by.Oncologistv∃suffer.Cancer,
α2 =Oncologist(DIANA)

such that O′ex1
= (Tex1

∪ {α1}, Aex1
∪ {α2}), then I′ex1

is not a model of O′ex1
. This is due to

the fact that
DIANAI′ex1 = {dt1} 6∈ {on1}= OncologistI

′
ex1 .

Nevertheless, the ontology O′ex1
itself is also inconsistent since in every model J of O′ex1

, we
have DIANAJ ∈ OncologistJ and this implies that ALICE, BOB, and CAROL are seen by an
oncology, which means that all of them suffer from Cancer. This implication however
contradicts the assertion (∀suffer.¬Cancer)(CAROL) and thus the inconsistency of O′ex1
follows.

Next, we define the satisfiability problem that asks whether a given concept C has a model
w.r.t. a given TBox.

Definition 2.15. Let C be a concept and T be an ontology. C is satisfiable w.r.t. T iff there is a
model I of T such that CI 6= ;. The satisfiability problem asks whether C is satisfiable w.r.t. T

The subsequent problem asks whether one concept is more specific than another concept
w.r.t. a given TBox.

Definition 2.16. Let T be a TBox, and C , D be DL concepts. C is subsumed by D w.r.t. T
(denoted by C vT D) iff for all models I of T , CI ⊆ D. If C v D, but D 6v D, then we say that
C is strictly subsumed by D w.r.t. T . The (strict) subsumption problems asks whether C is
subsumed by D w.r.t. T . ♦

Last, we introduce the instance problem involving not only TBoxes, but also the use of
ABoxes, to ask whether an individual is an instance of a given concept w.r.t. an ontology.

Definition 2.17. Let O= (T , A) be an ontology, C be a DL concept, and a ∈ NI. The individual
a is an instance of C w.r.t. O (denoted by O |= C(a)) iff for all models I of O, aI ∈ CI . The
instance problem asks whether a is an instance of C w.r.t. O. ♦

If the last two reasoning problems above do not take TBoxes as input into account, then the
subsumption problem will only ask whether C v D and the instance problem asks whether
A |= C(a). Next, we introduce implicit relationships between the aforementioned reasoning
problems.

Theorem 2.18 ([BHL+17]). Let O = (T , A) be an ALC ontology, C , D be ALC concepts and
a be an individual name.
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(i.) C ≡T D if and only if C vT D and D vT C.

(ii.) C vT D if and only if C u¬D is not satisfiable w.r.t. T .

(iii.) C is satisfiable w.r.t. T if and only if C 6vT ⊥.

(iv.) C is satisfiable w.r.t. T if and only if (T , {C(a)}) is consistent.

(v.) O |= C(a) if and only if (T , A∪ {¬C(a)}) is inconsistent.

Note that the relationships above do not only hold for ALC ontologies but also for all
ontologies which are formulated in DLs that have conjunction and negation of complex
concepts. As a consequence of the theorem above, we can see that all reasoning problems can
be reduced to the consistency problem, i.e., we can use an algorithm for ontology consistency
to decide all reasoning problems mentioned above.

As mentioned in Chapter 1, an ontology can also be viewed as a collection of information
that is used to derive answers for given queries. For instance, one basic query inherited from
the definition of the instance problem is called the instance query. This query asks which
individuals in NI that are instances of a given concept C w.r.t. an ontology O. Using first-order
logic representation, we view that this kind of query only consists of one free variables (called
answer variables in the following) with some existentially quantified variables. The following
notion is a class of query called conjunctive query, that may consist of more than one answer
variables and quantified variables as well as is constructed over the conjunction of unary
and binary predicates only.

Definition 2.19. A conjunctive query (CQ) q is a first-order formula with the following ex-
pression:

q(~v)←∃~w.conj(~v, ~w),

where ~v are answer variables, ~w are existentially quantified variables, and the body conj(~v, ~w) is
a conjunction of query atoms, each of the form A(z) or r(z, z′) where z, z′ are either individuals
names or variables over ~v ∪ ~w and A and r are unary (concept names) and binary (role names)
predicates, respectively. A CQ is Boolean if it has no answer variables. The size of q, written
| q |, is the number of all occurrences of conjunction symbols (∧), concept names, role names,
and individual names in q. ♦

To emphasize that q has answer variables ~v, we particularly write q(~v). Next, we write
how answers to CQs are defined in two steps: first on the level of interpretations and then
on the level of knowledge bases.

Definition 2.20. Let q(~v) be a conjunctive query having n answer variables, a1, . . . , an ∈ NI
and I an interpretation. We call a tuple ~t = a1, . . . , an of individuals an answer to q on I if
I |= q(~t), i.e., q(~v) evaluates to true in I under the valuation that maps ~v to the tuple ~t. We
use ans(q, I) to denote the set of all answers to q on I.

Now, given an ontology O and a CQ q, a tuple ~t ∈ (NI)n of individuals is an answer to q w.r.t.
O, written as O |= q(~t) iff all individual names from ~t occur in A and ~t ∈ ans(q, I) for all I of
O. We write ans(q,O) =

⋂

I model of O
ans(q, I) to denote the set of all answers to q w.r.t. O. ♦
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Let us consider the following ontology Oex2
= (Tex2

, Aex2
), where

Tex2
:= {Patient v ∃seen_by.Doctor}

Aex2
:= {Doctor(DIANA),Patient(ALICE),Patient(BOB),Patient(CAROL)

seen_by(ALICE,DIANA),seen_by(BOB,DIANA)}.

Then, we consider the following samples expressing conjunctive queries:

a.) Return all pairs of individual names (a, b) such that a is a doctor who sees a patient b:
q1(v1, v2) = Doctor(v1)∧ seen_by(v2, v1)∧Patient(v2).

b.) Return all individual names a such that a is a patient who is seen by a doctor:
q2(v) = ∃w.(Doctor(w)∧ seen_by(v, w)∧Patient(v).

The answers for the first query q1 are {(ALICE,DIANA), (BOB,DIANA)}. Note that the
individual CAROL is not included in any answer since it may be that there is a model of Oex2

,
where CAROL is seen by another doctor who is not DIANA. For the other query q2, we have
the answers for it, which are {ALICE,BOB,CAROL}. Now, the individual CAROL is included
since CAROL is a patient and the GCI in Tex2

enforces CAROL to be seen by a doctor.

2.1.2 Relationship with First-Order Logic

It has been mentioned briefly in Chapter 1 that Description Logics can be seen as decidable
fragments of first-order logic. Concept names can be interpreted as unary predicates, role
names can be represented as binary predicates, while individual names can be viewed as
constants. Let us consider the following example

∃leads.> v Boss,

Employee ≡ Personu ∃worksAt.>,

Employee(JIM).

The axioms above can be translated to the following first-order logic formulas

∀x .(∃y.leads(x , y)⇒ Boss(x)),
∀x .(Employee(x)⇔ Person(x)∧ ∃y.(worksAt(x , y))), and

Employee(JIM).

To translate formally Description Logic concepts and axioms, we need at least two transla-
tion functions πv and πw, where v and w are free variables. For this translation, we again
focus on the DL ALC that are inductively defined as follows.

πv(A) = A(v)

πv(C u D) = πv(C)∧πv(D)

πv(C t D) = πv(C)∨πv(D)

πv(∃r.C) = ∃w.(r(v, w))∧πw(C),

πv(∀r.C) = ∀w.r(v, w)⇒ πw(C),

πv(¬C) = ¬πv(C)
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The definition for πw(C) is analogously defined. Then, we extend this translation to ALC
TBoxes T and ALC ABoxes A. For this translation, we define ψ[v 7→ a] as the first-order
formula obtained from ψ by replacing all variables v with the constant a.

π(T ) = ∀v.
∧

CvD∈T
(πv(C)⇒ πv(D)),

π(A) =
∧

C(a)∈A
πv(C)[v 7→ a]∧

∧

r(a,b)∈A
r(a, b).

The following theorem is cited from [BHL+17], which describes the equivalence relationship
between ALC ontologies and its corresponding first-order logic representation.

Theorem 2.21 ([BHL+17]). Let (T , A) be an ALC ontology. It holds that (T , A) is satisfiable
if and only if π(T )∧π(A) is satisfiable.

2.1.3 Fragments of ALC

Now we define three fragments of ALC that are relevant in this thesis, namely the Description
Logics FLE , FL0, and EL. The similarity between these logics is the absence of the bottom
concept (⊥), negation (¬C) and disjunction (C t D), which consequently implies that their
concept descriptions are always satisfiable w.r.t. their ontologies, and in addition, the logics
always have a universal model of both concepts and ontologies. We will not describe the
latter property for each DL in this thesis, but this kind of model indirectly inspires us to have
a nice recursive and structural characterization for reasoning problems, such as subsumption
and instance problems, in these logics that will be described in more detail in the upcoming
sections. Note, since they are fragments of ALC, all the notions, such as signature, size,
subconcept, models, and ontologies of FL0, FLE , and EL follow from the definitions of all
those notions for ALC.

Let NC,NR be sets of concept names and role names. We introduce formally FLE concepts
C , D that are built through the following grammar

C , D :=> | A | C u D | ∃r.C | ∀r.D,

where A∈ NC and r ∈ NR, i.e., the DL FLE has the concept constructors > (top concept), u
(conjunction), ∃r.C (existential restriction), and ∀r.C (value restriction). We call an FLE
concept an atom if it is a concept name, a value restriction, or an existential restriction. We
define the role depth of an FLE concept C as the maximum nesting of the value restriction
and existential restriction in C .

In fact, reasoning in this DL, such as deciding subsumption, has been shown to be NP-
hard, such that FLE is claimed as the first description language not including disjunctive
constructor that were proved intractable [DLN+92]. Even, the application of normalization
rules for FLE concepts may result in normalized concepts which are necessarily exponential
in the size of the original concepts [DLN+92; BKM99]. This normalization is necessary even
when only considering subsumption without FLE GCIs [BKM99]. To gain tractability, a small
fragment of FLE , called FL0, is considered. This logic restricts the expressiveness of FLE by
removing existential restrictions or formally FL0 concepts C , D are constructed recursively
as follows

C , D :=> | A | C u D | ∀r.C .
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We call an FL0 concept an atom if it is a concept name or a value restriction. The role depth
of an FL0 concept C , written rd(C), is the maximum nesting of the value restrictions in
C . The tractability result for this DL was first mentioned in [LB87]. Reasoning problems,
such as subsumption, in FL0 is in polynomial time if we consider this problem without
TBoxes. However, it came as a surprise since the presence of GCIs increases the complexity to
EXPTIME-complete [BBL05], respectively. In the next section, we introduce the Description
Logic EL that has more benefits in terms of its tractability in classical reasoning problems
than the two latter DLs.

2.2 Description Logic EL

The intractability issue in DLs presented above arises to an idea of looking at another
small fragment of ALC that also has limited expressiveness but becomes tractable even for
reasoning problems that require GCIs. Now, we introduce the DL EL, for which reasoning is
tractable [Bra04; BBL05]. Let NC and NR be sets of concept and role names, respectively.
Then EL concepts over these names are constructed through the grammar rule

C , D ::=> | A | C u D | ∃r.C ,

where A∈ NC and r ∈ NR, i.e., the DL EL has the concept constructors > (top concept), u
(conjunction), and ∃r.C (existential restriction).

We name an EL concept an atom if it is a concept name or an existential restriction. Given
an EL concept C , we denote the set of atoms occurring in its top-level conjunction with
con(C). For example, if C = Au ∃r.(B u ∃s.A), then con(C) = {A,∃r.(B u ∃s.A)}. We reduce
an EL concept C by exhaustively replacing subconcepts of the form E u F with E v F by E
(modulo associativity and commutativity of u). As cited from [Küs01], two concepts C and
D are equivalent iff their reduced forms are equal up to associativity and commutativity of u.

Important reasoning tasks in EL are deciding subsumption between EL concepts and
checking whether an individual is an instance of an EL concept w.r.t. an ABox. For the former
task, we can apply the following recursive characterization of the subsumption relation that
has been proved in [BM10].

Lemma 2.22. Let C , D be two EL concepts. It holds that C v D if and only if

• for all A∈ NC ∩ con(D), there is A∈ con(C) and

• for all ∃r.D′ ∈ con(D), there is ∃r.C ′ ∈ con(C) such that C ′ v D′.

Then, to decide whether an individual is an instance of an EL concept w.r.t an ABox, we
use the following recursive characterization that is a direct consequence of Lemma 27 in
[LW10].

Lemma 2.23. Let A be an EL ABox, D an EL concept, and a ∈ NI. It holds that A |= D(a) iff

1. for all A∈ con(D), there is C(a) ∈ A such that A∈ con(C) and

2. for all ∃r.D′ ∈ con(D),
a.) there is C(a) ∈ A and ∃r.C ′ ∈ con(C) such that C ′ v D′ or
b.) there is r(a, b) ∈ A such that A |= D′(b).
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2.3 The Complexity of Reasoning Problems in DLs

In this section, we will study briefly the subject of computational complexity that is used
to measure how complex the decision problem is, in particular how hard it is to compute
a solution for the problem. In fact, every problem belongs to their own complexity class
which is determined by a (non)-deterministic turing machine and the resource bound for
that machine model. Typically, one uses time and space as the resources. Another aim to
study the complexity theory is to know how each complexity class is interrelated and to
determine to which complexity class this given problem belongs. In previous sections, we
have mentioned names of complexity classes to which reasoning problems belong, such as
PTIME, NP, or EXPTIME. In the following, we list complexity classes, that are relevant for
this thesis, in an increasing order according to set inclusion.

• PTIME: problems that can be solved in polynomial time.

• NP: problems that can be solved in non-deterministic polynomial time.

• PSPACE: problems that can be solved in polynomial space.

• EXPTIME: problems that can be solved in exponential time.

• NEXPTIME: problems that can be solved in non-deterministic exponential time.

We also define CONP and CONEXPTIME as the classes of problems whose complements are
in NP and NEXPTIME, respectively.

Given a complexity class C, a problem L is C-hard if there is a polynomial time-reduction
from L′ to L for all L′ ∈ C. The most common way to prove hardness for a complexity
class C is to find an appropriate problem L that is already known to be C-hard and then
show a polynomial time reduction from L to the problem at hand. We say that a problem
is C-complete if it is in C and also C-hard. When we prove that a problem L is hard for a
complexity class C, we often call this a lower bound because it says that L is at least as hard
as the other problems in C. Also, proving that L is contained in C will be called an upper
bound because it explains that solving L is at least as easy as C-hard problems.

For complexity classes C,C′, we denote by CC′ the class of decision problems that can be
solved by a Turing machine running in C and using an oracle for decision problems in C’.
The polynomial hierarchy is then defined to order relationships between complexity classes
that lie in between PTIME and PSPACE. For k > 0, it is inductively defined as follows:

Σ
p
0 := Πp

0 := PTIME Σ
p
k := NPΣ

p
k−1 Π

p
k := CONPΣ

p
k 4p

k := PTIMEΣ
p
k−1 .

It is also known that 4p
1 = PTIME, Σp

1 = NP, and Πp
1 = CONP. Thus, it is also possible to

derive the following inclusions:
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We also define the complexity class DP as the class of problems that are the intersection of
NP problems and CONP problems and this class is also contained in both Σp

2 and Πp
2. Beyond

EXPTIME, there are also complexity classes consisting of all problems that can be solved in

n-iterated exponentials for n> 1, i.e., 2 22···2
kd

︸ ︷︷ ︸

n times

.

For instance, 2EXPTIME contains all problems that are solved in double exponential time.
We introduce the ELEMENTARY complexity class as the union of the following classes

ELEMENTARY = EXPTIME ∪ 2EXPTIME ∪ 3EXPTIME ∪ . . . .

The complement of ELEMENTARY, which is NONELEMENTARY, obviously consists of all prob-
lems that are not a member of the class ELEMENTARY. For more detailed explanations about
every complexity class, readers may refer to [Pap07].

In the following, we will concentrate on basic reasoning problems in the DLs EL and ALC
and then we see which complexity classes the considered reasoning problems belong to. In
this thesis, we just focus on one type of complexity measures, called combined complexity,
that is measured in the size of the whole input. Another complexity measure, mentioned
in Chapter 1, that is called data complexity, is a different way to measure the complexity
of problems based on the size of the data only, e.g., size of the ABox in the context of DL
ontologies. We will not consider the data complexity in this thesis, but further details about
this kind of complexity measure in DLs can be found in [BO15]. We begin this discussion
with the Description Logic EL for which algorithms for solving subsumption and instance
checking without TBoxes have been defined in Section 2.2.

It is obvious to see that the characterization shown in Lemma 2.22 can be done in polyno-
mial time. This is because in the base case there are only quadratically many steps to check
whether for all A∈ NC∩con(D), there is A∈ con(C). Then for each ∃r.D′ ∈ con(D), we look
for ∃r.C ′ ∈ con(C), where C ′ v D′ for which, by induction on the role depth of C and D,
checking subsumption can be done in polynomial time.

To solve the instance problem in EL, as shown in Lemma 2.23, we do quadratically
many steps to check whether for all A ∈ con(D), there is C(a) such that A ∈ con(C).
Additionally, for each existential restriction ∃r.D′ ∈ con(D), we check whether there is
C(a) ∈ A and ∃r.C ′ ∈ con(C) such that C ′ v D′, where this subsumption checking can be
done in polynomial time, or alternatively, we may check whether there is r(a, b) ∈ A such
that A |= D′(b) that can also be done in polynomial time by induction on the role depth of
D. Thus, it implies that the instance problem in EL in in PTIME. Interestingly, if we lift up
this problem by adding GCIs, then the complexity remains the same [BBL05].

Lemma 2.24. The subsumption and the instance problems in EL are PTIME-complete with and
without TBoxes.

Another essential reasoning task in EL is answering conjunctive queries. We define the
conjunctive query entailment problem that computes all answers to a CQ q w.r.t. a given
ontology O. In [Ros07], it has been shown that this reasoning taks is NP-complete with and
without general TBoxes. The problem belongs to NP since the query rewriting algorithm
[Ros07] that is used as a pre-procedure before computing query entailment relies on a
method to unify terms in q, which runs in NP by guessing one variable substitution which is
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applied to q. The NP-hardness follows from NP-hardness of simple database evaluation of a
CQ [AHV95].

Lemma 2.25. The CQ entailment problem with and without general TBoxes in EL is NP-
complete.

We have seen that for other small fragments of ALC, such as FL0 and FLE , most of the
basic reasoning problems are no longer tractable in these logic. These facts consequently
transfer some impacts to the complexity of reasoning problems in ALC. For ALC, we just
focus on the consistency problem, since all reasoning problems mentioned above can be
reduced to it. In [BHL+17], it is proved that the consistency problem in ALC w.r.t. no
GCIs is PSPACE-complete. The upper bound is obtained by reducing this problem to the
satisfiability problem and then construct a tree model of concept using a tableau algorithm
that if we use a specific strategy to explore the model, then this tableau algorithm only
needs polynomial space. Moreover, the lower bound is obtained from the reduction of a
well-known PSPACE-hard problem, which is the winning strategy problem in an finite boolean
game [SC79]. Extending this problem by adding GCIs implies that the complexity of this
problem becomes EXPTIME-complete as mentioned in [BHL+17]. The EXPTIME-hardness for
this problem is obtained from the reduction of the winning strategy problem in an infinite
boolean game [SC79].

Lemma 2.26. Let L ∈ {consistency, satisfiability, subsumption, instance} be a reasoning prob-
lem in ALC. The complexity of L problem in ALC without TBoxes is PSPACE-complete, while it
becomes EXPTIME-complete with respect to general TBoxes.



Chapter 3

The Identity Problem and Its Variants in
Description Logic Ontologies

After looking at basic introductions on Description Logics, ontologies, and complexity theory,
we shift our attention to the first task stated in the beginning of Chapter 1 that we want to
deal with mechanisms on detecting if there is a privacy breach occurring in a given ontology.
As mentioned in Section 1.2, most of the works, e.g., [GH08; SS09; CDL+12] concentrated on
approaches trying to hide the properties of individuals, i.e., the membership of an individual
(or a tuple of individuals) in the answers to certain queries. In this chapter, we address
a specific class of secrets, so-called identity, and thus we will provide the corresponding
reasoning tasks related to identity-preserving problems.

In order to illustrate the privacy scenario motivating this problem, assume that you are
asked to perform a survey regarding the satisfaction of employees with the management
of a company. Since the boss of the company is known not to respond well to criticism,
the employees insist that you perform the survey such that the identity of persons voicing
criticism cannot be deduced by the boss. Thus, you let the employees use a pseudonym when
answering the survey. However, the survey does ask some personal data from the participants,
and you are concerned that the boss can use the provided answers, in combination with
the employee database and general knowledge about how things work in the company, to
deduce that a certain pseudonym corresponds to a specific employee. For example, assume
that in the survey the anonymous individual x states that she is female and has expertise
in logic and privacy. The boss knows that all employees with expertise logic belong to the
formal verification task force and all employees with expertise privacy belong to the security
task force. In addition, the employee database contains the information that the members of
the first task force are John, Linda, Paul, Pattie and of the second Jim, John, Linda, Pamela.
Since Linda is the only female employee belonging to both task forces, the boss can deduce
that Linda hides behind the pseudonym x . The question is now whether you can use an
automated system to check whether such a breach of privacy can occur in your survey.

We want to show that ontology reasoners can in principle be used for this purpose. We
assume that both the information provided in the survey and the employee database are
represented in a DL ABox A, where the employees from the database are represented as
known individuals in A and the pseudonyms used in the survey are represented as anonymous
individuals in A. Background information (such as disjointness of the concepts Male and
Female, or the connection between expertise and task forces) are represented in a DL TBox T .
In order to detect a breach of privacy, we need to check whether the ontology O consisting of
T and A implies an identity between some anonymous individual x and a known individual
a. We call the underlying reasoning task the identity problem for O, x , and a.

29
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In Section 3.1 we formally introduce the identity problem and show that, for a large class
of DLs, this problem is trivial in the sense that no identities between distinct individuals can
be deduced from consistent ontologies formulated in these DLs. Not surprisingly, this class
consists of the DLs that are fragments of first-order logic without equality. In Subsection 3.1.1,
we introduce DLs for which the identity problem is non-trivial, i.e., the DL ALCO [Sch94] and
ELO ([BBL05], [KKS12]), where nominals allow us to derive identities; DL-LiteA ([ACK+09],
[CDL+07]), where functional roles allows us to derive identities; ALCQ [HB91], where
number restrictions allow us to derive identities; and CFDnc [TW13], where functional
dependencies allow us to derive identities. In Subsection 3.1.2 we show that the identity
problem can be reduced in polynomial time to the instance problem, and that for the DLs
mentioned above this actually yields an optimal procedure w.r.t. worst-case complexity.

Section 3.2 considers the identity problem in the context of rôle-based access control
[SCF+96] to ontologies. Basically, we assume that a user rôle r̂ is associated with access to a
subset Or̂ of the ontology.1 While having rôle r̂, the user can access Or̂ through queries, and
can then store the result in a view Vr̂ . In a setting where rôles can dynamically change, the
user may have collected (and stored) a sequence of views for different rôles. The question is
then whether it is possible to derive the identity of an anonymous individual with a known
one using these views. We will show that answering this question can eventually be reduced
to the identity problem. In Section 3.3, we move to a scenario in which one may define that
the identity of an anonymous individual is protected if it does not belong to any subset of
known individuals with cardinality smaller than k. We call the reasoning problem underlying
this scenario the k-hiding problem. In Subsection 3.3.1 and 3.3.2, we will show the upper
bounds and the lower bounds of the k-hiding problem, which consequently show that this
problem is not harder than the identity problem in most of DLs that can derive equalities
between individuals.

3.1 The Identity Problem

Now we define the identity problem that asks whether two individuals are equal w.r.t. a given
ontology. Since anything (also identities) follows from an inconsistent ontology, we consider
this problem only for the case where the ontology is consistent.

Definition 3.1. Let a, b ∈ NI be distinct individual names and O a consistent ontology. Then
a is equal to b w.r.t. O (denoted by O |= a

.
= b) iff aI = bI for all models I of O. The identity

problem for O, a, b asks whether O |= a
.
= b. ♦

Not all DLs are able to derive equality between individuals. We call those that can DLs
with equality power.

3.1.1 Description Logics with Equality Power

Definition 3.2. A Description Logic L is a Description Logic without equality power if there
is no consistent ontology O formulated in L and two distinct individual names a, b ∈ NI such
that O |= a

.
= b. Otherwise we say that L has equality power. ♦

1To distinguish user rôles from DL roles, we write them with “ô” and also denote specific such rôles with letters
with a hat.
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As has been described in Subsection 2.1.2, and more detail in [BCM+03], that many DLs
can be translated into first-order predicate logic (FOL). For the translation of some DLs, FOL
without equality is sufficient whereas for others equality is needed.

Theorem 3.3. If the DL L can be translated into FOL without equality, then it is a DL without
equality power.

Proof. Let O= (T , A) be a consistent ontology of L and a, b ∈ NI be two distinct individual
names. We must show that O 6|= a

.
= b. According to our assumption on L, there is an FOL

formula φ not containing the equality symbol that is equivalent to O. Consequently, it is
sufficient to show that φ 6|= a = b according to the semantics of FOL, where the equality
symbol ‘=’ is interpreted as equality. Since O is consistent, the formula φ is satisfiable.

Using well-known approaches and results regarding FOL [Gal15], we can transform φ

into a formula φ′ in Skolem form containing additional function symbols such that (i) φ is
satisfiable iff φ′ is satisfiable, and (ii) any model of φ′ is a model of φ. Thus, φ′ is satisfiable
and since it is in Skolem form it has a Herbrand model IH . Since φ′ does not contain equality,
distinct terms (and thus in particular distinct constants) are interpreted by distinct elements
in IH . Finally, we know that IH is also a model of φ, which shows that there is a model of φ
in which a and b are not interpreted by the same domain element. This proves φ 6|= a = b.�

As a consequence of this theorem, we conclude that the basic DL ALC and its fragments,
but also more expressive DLs such as SRI (see the Appendix in [BHL+17]), do not have
equality power, and thus the identity problem is trivial for these DLs.

Now, we introduce four DLs that are able to derive equalities between individuals, and for
which the identity problem is non-trivial. They are ALCO, ALCQ, DL-LiteA, and CFDnc .

The first two DLs extend ALC by nominals and by qualified number restrictions. Nominals
can be used to generate singleton concepts from individual names: if a ∈ NI, then {a} is a
concept description of ALCO, whose semantics is defined as {a}I := {aI}. Qualified number
restrictions are of the form ≥n r.C and ≤n r.C , with associated semantics

• (≥n r.C)I = {d ∈ ∆I | there are at least n elements e ∈ ∆I with (d, e) ∈ rI and
e ∈ CI};

• (≤n r.C)I = {d ∈ ∆I | there are at most n elements e ∈ ∆I with (d, e) ∈ rI and
e ∈ CI}.

The third DL is DL-LiteA [ACK+09; CDL+07] which derives equalities from the presence
of functionality axioms. First of all, we introduce the syntax of basic concept descriptions in
DL-LiteA as follows:

• every concept name A∈ NC,

• > (the top concept),

• ∃r (unqualified existential restriction), and

• ∃r− (unqualified existential restriction on inverse role).

Note that in DL-LiteA, ∃r and ∃r− are just abbreviations for ∃r.> and ∃r−.>, respectively.
Semantically, ∃r− is defined as: (∃r−)I := {e ∈∆I | ∃d ∈∆I .(d, e) ∈ rI}. Then, a DL-LiteA
TBox is a finite set of
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• positive concept inclusions B1 v B2,

• negative concept inclusions B1 v ¬B2,

• positive role inclusions r1 v r2,

• negative role inclusions r1 v ¬r2, and

• global functionality axioms funct r,

where B1 and B2 are DL-LiteA basic concepts and r1, r2 range over role names and their
inverses. The aforementioned concepts or axioms whose semantics has not been described in
Chapter 2 are defined as follows. First, the negation of role has the following semantics (¬r)
∆I \ rI . Then, a role inclusion is semantically defined as rI

1 ⊆ rI
2 . Last, an interpretation

I satisfies (funct r) iff for all (b, b1) ∈ rI and (b, b2) ∈ rI , we have bI
1 = bI

2 . Note that
functionality axioms are incorporated with conditions that the functional roles r cannot be
specialized, i.e., it does not occur on the right hand side of role inclusions.

The fourth DL, called CFDnc [TW13], derives its equality power from so-called functional
dependencies. Instead of roles, this logic uses attributes, which are interpreted as total
functions. We use the symbol NA to denote the set of all attributes, replacing the set NR.
Concept descriptions C , D of CFDnc are defined using the following syntax rules:

C , D ::= A | ¬A | C u D | ∀Pf.C | A : Pf1, . . . ,Pfk→ Pf,

where A∈ NC , k ≥ 1, and the path functions Pf,Pfi are words in N ∗A with the convention that
the empty word is denoted by id. A concept description of the form A : Pf1, . . . ,Pfk → Pf
is called a path functional dependency (PFD). In CFDnc there is an additional restriction on
PFDs to ensure that reasoning in this logic is polynomial: for any PFD of the form above
there is an i, 1≤ i ≤ k such that

1. Pf is a prefix of Pfi , or

2. Pf= Pf′ f for f ∈ NA and Pf′ is a prefix of Pfi .

Note that PFDs whose right-hand side Pf has length ≤ 1 trivially satisfy this restriction.
The interpretation of attributes as total functions is extended to path functions by using

composition of functions and interpreting id as the identity function. The semantics of
atomic negation (¬A) and conjunction (C u D) is defined in the same way as in ALC. For
the constructors involving path functions, it is defined as follows:

(∀Pf.C)I := {d ∈∆I | PfI(d) ∈ CI}, and

(A : Pf1, . . . ,Pfk→ Pf)I := {d ∈∆I | ∀e ∈ AI .

�

∧

1≤i≤k

PfI
i (d) = PfI

i (e)

�

⇒ PfI(d) = PfI(e)}.

A TBox T in CFDnc consists of a finite set of inclusion dependencies Av C , where C is a
complex CFDnc concept, and an ABox A consists of a finite set of concept assertions A(a) and
path function assertions Pf1(a) = Pf2(b), where A∈ NC , C is a CFDnc concept description,
a, b ∈ NI , and Pfi ∈ N ∗A .

Let L ∈ {ALCO, ALCQ, DL-LiteA, CFDnc}. We define L-ontologies analogously to ALC-
ontologies. However, different to ALC, the presence of new symbols in these logics modifies
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formal definitions of some important notions in the previous chapter. For instance, the size
of an L-ontology O is defined as the number of all occurrences of constructors (u,t,¬),
concept names, role names, individual names, and attribute names in O.

Theorem 3.4. The DLs ALCO, ALCQ, DL-LiteA, and CFDnc have equality power.

This theorem is an immediate consequence of the following four examples, which each shows
for the respective DL that it can derive equality between different individuals.

Example 3.5. Here we formulate the example, written in the beginning of Chapter 3, in the DL
ALCO. Let O= (T , A) where

T := {∃expert.{LOGIC} v VerTF, ∃expert.{PRIVACY} v SecTF,
VerTFv {JOHN,LINDA,PAUL,PATTIE},
SecTFv {JIM,JOHN,LINDA,PAMELA}, Femalev ¬Male},

A := {Female(x), expert(x ,LOGIC), expert(x ,PRIVACY),
Female(LINDA),Female(PATTIE),Female(PAMELA),
Male(JOHN),Male(JIM),Male(PAUL)}.

It is easy to see that O |= x
.
= LINDA since x’s expertise implies that she belongs to both the

verification and the security task force, but the only female employee belonging to both is Linda.♦

For the sake of brevity, we use abstract examples to show that ALCQ, DL-LiteA, and CFDnc
have equality power. It would, however, be easy to provide intuitive examples also for these
three DLs.

Example 3.6. Consider the ALCQ ontology O= (T , A) where

T := {Av≤1 r.B} and
A := {A(a), r(a, b), r(a, x), B(b), B(x)}.

Obviously, we have O |= x
.
= b. ♦

Example 3.7. Consider the DL-LiteA ontology O= (T , A), where

T := {(funct r)} and
A := {r(a, b1), r(a, b2)}

Clearly, we have O |= b1 =̇ b2. ♦

Example 3.8. Consider the CFDnc ontology O= (T , A) where

T := {Av A : f → id} and
A := {A(a), f (a) = b, A(x), f (x) = b}.

Since both x and a belong to A and have the same value b for the path function f , the path
functional dependency in T implies that they must be equal, i.e., we have O |= x

.
= a. ♦

We leave it to the reader to come up with translations of nominals, qualified number
restrictions, functional roles and path functional dependencies into FOL with equality.
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3.1.2 The Complexity of the Identity Problem

In this section, we first show that the identity problem can be polynomially reduced to the
instance problem for all DLs with equality power. Note that the instance problem is one of
the basic inference problems for DLs, and thus instance checking facilities are available in
most DL reasoners. Given an ontology O, a concept description C , and an individual name a,
we say that a is an instance of C w.r.t. O (written O |= C(a)) if aI ∈ CI holds for all models
I of O.

Lemma 3.9. Let L be a DL with equality power, O = (T , A) an L ontology and a, b two distinct
individual names. If B is a concept name not occurring in O, then we have

O |= a
.
= b iff (T , A∪ {B(a)}) |= B(b).

Proof. The direction from left to right is trivial. We show the other direction by contraposition.
Thus, assume that O 6|= a

.
= b. Let I be a model of O such that aI 6= bI . Let I′ be the

interpretation that coincides with I on all role names, individual names, and concept names
different from B. For B we define BI′ := {aI}. Since B does not occur in O, the interpretation
I′ is still a model of T and A, and it satisfies B(a) by our definition of BI′ . However, it does
not satisfy B(b) since bI′ = bI 6= aI does not belong to BI′ . �

This lemma shows that the identity problem is at most as complex as the instance problem
for all DLs with equality power that allow instance assertions for concept names in the
ABox. Since the instance problem is polynomial for CFDnc [TW13], this implies that also the
identity problem is polynomial for this DL. In [TW13] it is mentioned that PTIME-hardness
of the consistency problem for CFDnc ontologies is an easy consequence of PTIME-hardness
of satisfiability of propositional Horn formulas [CN10]. We now show that the same is true
also for the identity problem.

Theorem 3.10. The identity problem is PTIME-complete for CFDnc ontologies.

Proof. We already know that the problem is in PTIME. To show PTIME-hardness, we reduce
Horn-SAT to the identity problem. Recall that a Horn-formula φ is a finite set of clauses of
the form

(a) p1 ∧ . . .∧ pn→ p0 where n> 0 and p0, . . . , pn are propositional variables;

(b) → p0, which states that the propositional variable p0 must be true;

(c) p1∧ . . .∧ pn→ for n> 0 propositional variables p1, . . . , pn, which states that p1, . . . , pn
cannot be true at the same time.

Given φ, we construct a CFDnc-ontology Oφ = (Tφ , Aφ) as follows. For every propositional
variable p occurring in φ we introduce a functional role fp as well as individuals cp, dp. In
addition, we introduce the functional role f⊥ and the individuals c⊥, d⊥ and a, b. Intuitively,
we encode truth of the propositional variable p as equality of the individuals cp and dp,
and inconsistency as equality of c⊥ and d⊥. Clauses of the form (a) and (c) are encoded
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using path functional dependencies in the TBox and clauses of the form (b) as path function
assertions in the ABox. To be more precise, we define:

Tφ := {Av A : fp1
, . . . fpn

→ fp0
| p1 ∧ . . .∧ pn→ p0 ∈ φ} ∪

{Av A : fp1
, . . . fpn

→ f⊥ | p1 ∧ . . .∧ pn→∈ φ} and

Aφ := {A(a), A(b)} ∪
{ fp(a) = cp, fp(b) = dp | p ∈ var(φ)}∪
{ f⊥(a) = c⊥, f⊥(b) = d⊥} ∪
{cp0
= dp0

| → p0 ∈ φ}.

where A is a concept name. The ontology constructed this way satisfies the syntactic restric-
tions on CFDnc ontologies. Moreover, it can be constructed in logarithmic space since it can
simply be read off the representation of φ.

By definition, the assertions cp0
= dp0

enforce equality of these individuals iff φ contains a
clause→ p0 of the form (b). The path functional dependencies in Tφ can then be used to
derive further equalities according to the clauses of the form (a) and (c) in φ. It is thus easy
to see that equality of the individuals cp and dp can be derived from O iff φ implies that
the propositional variable p must be set to true. Consequently, deriving an equality of the
individuals c⊥ and d⊥ indicates that a clause p1 ∧ . . .∧ pn→ of the form (c) in φ is violated.
In fact, deriving c⊥ = d⊥ is only possible if there is such a clause of the form (c) in φ and the
equalities cpi

= dpi
(i = 1, . . . , n) have already been derived.

Using this intuition, it is then easy to prove the following claim:

φ is unsatisfiable iff O |= c⊥=̇d⊥,

which states correctness of our reduction, and thus establishes P-hardness of the identity
problem in CFDnc . �

Next, we investigate the complexity of the identity problem in other lightweight DLs, such
as DL-LiteA and ELO. The latter extends EL with nominals and is clearly a fragment of ALCO.
It also holds that, by Theorem 3.3 and Theorem 3.4, ELO has equality power.

By Lemma 3.9, using the complexity result from the instance problem, the upper bound
complexity for the identity problem in both ELO and DL-LiteA is PTime [BBL05; ACK+09].
To match PTime lower bounds for the identity problem in these two logics, the following
two lemmas will show how to get that lower bounds.

Theorem 3.11. The identity problem for ELO is P-complete.

Proof. For ELO, the hardness result for the identity problem is also from the horn-satisfiability
problem that is known to be PTIME-complete. Given a Horn-Sat formula φ containing horn
clauses of the following forms:

(a) p1 ∧ . . .∧ pn→ p0 where n> 0 and p0, . . . , pn are propositional variables;

(b) → p0, which states that the propositional variable p must be true;

(c) p1∧ . . .∧ pn→ for n> 0 propositional variables p1, . . . , pn, which states that p1, . . . , pn
cannot be true at the same time.
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Given φ, we construct an ELO-ontology Oφ = {Tφ , Aφ}. For each propositional variable
p in φ, we introduce a concept name Ap. In addition, we introduce individuals a and b⊥,
where the latter represents ⊥. For each clause (a) and (c), we construct a GCI in TBox,
whereas for each clause (b), we build a concept name assertion in the ABox. The following
is the precise definition of Oφ = (Tφ , Aφ).

Tφ := {Ap1
u . . .u Apn

v Ap0
| p1 ∧ . . .∧ pn→ p0 ∈ φ} ∪

{Ap1
u . . .u Apn

v {b⊥} | p1 ∧ . . .∧ pn→∈ φ} and

Aφ := {Ap0
(a) |→ p0 ∈ φ},

where Ap, . . . , Apn
are concept names. By definition, one can derive that a is an instance

of a concept name Ap w.r.t. Oφ iff 1.) φ contains a clause → p or 2.) for a clause
p1∧ . . .∧ pn→ p0 ∈ φ, we have all pi that are true imply p0 to be true iff Api

(a) (i = 1, . . . , n)
implies Ap0

(a). As a consequence, one may derive {a} v {b⊥} iff a clause p1 ∧ . . .∧ pn→ of
the form (c) is violated. It means that {a} v {b⊥} is derived iff the clause p1 ∧ . . .∧ pn→ is
found in φ and Api

(a) (i = 1, . . . , n) have been derived.
Using this intuition, it is then easy to show the following claim:

φ is unsatisfiable iff Oφ |= {a} v {b⊥}

It is easy to see that subsumption between nominals are equivalent with equality between
two individuals. Consequently, we have P-hardness for the identity problem in ELO. �

Next, we show a reduction from the entailment problem of the Horn-CNF formulas
[BGG97] to the identity problem in DL-LiteA. To show this reduction, we adopt the proof
from ([ACK+09], Theorem 8.7).

Theorem 3.12. The identity problem in DL-LiteA is PTIME-complete.

Proof. To show the PTIME-hardness for this problem, first we take a Horn-CNF formula φ
defined formally as follows:

φ =
n
∧

k=1

(ak,1 ∧ ak,2→ ak,3)∧
p
∧

`=1

a`,o,

where each ak, j and each a`,0 is one of the propositional variables a1, . . . , am and all ak,1, ak,2, ak,3
are distinct for each k, 1≤ k ≤ n. Next, we construct an ontology Oφ = (Tφ , Aφ) by using
additional propositional variables t, ak

i , for 1 ≤ k ≤ n, 1 ≤ i ≤ m, and fk, gk for 1 ≤ k ≤ n,
and role names rP , rQ, rS , and rT . Note that all these variables are considered as individuals
in the ABox Aφ defined as follows:

Aφ := {rS(a
j
i , a j+1

i ) | 1≤ i ≤ m∧ 1≤ j ≤ n− 1} ∪
{rS(an

i , a1
i ) | 1≤ i ≤ m∧ 1≤ j ≤ n− 1} ∪

{rP(ak
k,1, fk), rP(ak

k,2, fk) | 1≤ k ≤ n}∪
{rQ(gk, ak

k,3), rQ( fk, ak, 1k)} ∪
{rT (t, a1

`,0) | 1≤ `≤ p}
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and the TBox Tφ is defined as follows:

Tφ := {(funct rP), (funct rQ), (funct rS), (funct rT )}

By the construction above, it is shown [ACK+09] that given a propositional variable a j ,

φ |= a j if and only if Oφ |= rT (t, a1
j ).

Now, let u be a fresh propositional variable such that O′
φ
= (Tφ , Aφ ∪ {rT (t, u}). It is easy to

see that Oφ |= rT (t, a1
j ) if and only if O′

φ
|= a1

j =̇ u and thus we have

φ |= a j if and only if O′φ |= a1
j =̇ u. (3.1)

Finally this produces PTIME-hardness for the identity problem in DL-LiteA. �

For ALCO and ALCQ, the instance problem is EXPTIME-complete [Sch94; Tob01]. Thus,
we obtain exponential-time upper bounds for the identity problem in these DLs. To show
that these upper bounds are optimal, we basically prove that there are polynomial-time
reductions of the instance problem in ALC to the identity problem in these logics. In fact,
the instance problem is already EXPTIME-hard for the common sub-logic ALC of ALCO and
ALCQ [Sch91].

Before introducing these reductions and proving that they are correct, we have to deal
with a subtlety that shows up in these proofs. Note that, in ALC, we can assume without
loss of generality that any instance relationship that does not follow from an ontology can
be refuted by a model of cardinality greater than 1.

Lemma 3.13. Let O= (T , A) be an ALC ontology, C an ALC concept description, and a an
individual name. If O 6|= C(a), then there is a model I of O such that aI 6∈ CI and |∆I | ≥ 2.

Proof. This follows from the fact that models of ALC ontologies are closed under disjoint
union (see [BHL+17], Theorem 3.8). In fact, if O 6|= C(a), then there is a model I of O such
that aI 6∈ CI . However, this model could have cardinality 1. If we take the disjoint union
J = I1]I2 of I with itself, then the cardinality of∆J is twice the cardinality of∆I , and thus
at least 2. Theorem 3.8 in [BHL+17] says that J is a model of T . Regarding the ABox, we
assume that all individual names occurring in A are interpreted in J by their interpretation
in the renaming I1 of I. Using Lemma 3.7 in [BHL+17], it is easy to see that this ensures
that J is also a model of A. �

Note that this lemma does not hold for ALCO ontologies. For example, O = ({> v {a}},;)
has only models of size 1, and O 6|= A(a). This is the reason why we use the DL ALC rather
than the more expressive logics ALCO or ALCQ in our reductions.

Lemma 3.14. Let L ∈ {ALCO, ALCQ}, O be an ALC ontology, C an ALC concept description,
and a an individual name. Then we can construct in polynomial time an L ontology O’ and
individuals a′, b′ such that

O |= C(a) iff O′ |= a′
.
= b′.

Proof. Let O= (T , A). We consider the two DLs separately.
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1.) L= ALCO:
We define O′ := (T ∪ {C v ∀r.{b′}}, A∪ {r(a, a′), r(a, b′)}), where a′, b′ are distinct
individual names and r is a role name such that a′, b′, r do not occur in O. The direction
from left to right is again trivial. The other direction is shown by contraposition. Let I
be a model of O such that aI 6∈ CI . By Lemma 3.13, we can assume without loss of
generality that the domain of I contains at least two distinct elements d1 6= d2. We
construct an interpretation I′ that coincides with I on all concept, role, and individual
names occurring in O, and thus is also a model of O. In addition, I′ interprets r as
rI′ := {(aI , d1), (aI , d2)} and the new individual names as a′I

′
:= d1 and b′I

′
:= d2.

By construction, I′ satisfies the assertional part of O′. To see that it also satisfies the
GCI C v ∀r.{b′}, note that aI = aI′ is the only element of I′ that has successors w.r.t.
the role r. Since it does not belong to CI = CI′ , the elements of CI′ trivially satisfy
the value restriction ∀r.{b′}. Thus, I′ is a model of O′ in which the individuals a′, b′

are interpreted by different elements, which shows O′ 6|= a′
.
= b′.

2.) L= ALCQ:
We define O′ := (T ∪ {C v≤ 1r>}, A ∪ {r(a, a′), r(a, b′)}), where a′, b′ are distinct
new individuals and r is a new role name not occurring in O. The direction from left
to right is again trivial. To show the other direction, assume that I is a model of O
such that aI 6∈ CI . Again, we assume without loss of generality that the domain of
I contains at least two distinct elements d1 6= d2. We construct an interpretation I′

in the same way as in case 1. above. Also, the argument why I′ is a model of O′ in
which a′, b′ are interpreted by different elements is identical to the one above.

As an easy consequence of Lemma 3.9 and Lemma 3.14 we obtain the exact complexity of
the identity problem in ALCO and ALCQ. In fact, Lemma 3.9 yields EXPTIME upper bounds.
To show that Lemma 3.14 indeed yields ExpTime lower bounds, we need to take into account
the fact that we have defined the identity problem with only consistent ontologies as possible
input. In fact, since the consistency problem can be reduced to the instance problem in ALC,
it could potentially be the case that the reason for the EXPTIME-hardness of the instance
problem comes from the hardness of consistency only. However, we will show now that this
is not the case, i.e., we show that EXPTIME-hardness of the instance problem in ALC also
holds if we consider the instance problem only for consistent ALC ontologies O.

Lemma 3.15. The instance problem w.r.t. consistent ALC ontologies is EXPTIME-hard.

Proof. We show this by a reduction of the (un)satisfiability problem for ALC-concepts w.r.t.
TBoxes, which is also known to be EXPTIME-complete ([BHL+17], Theorem 5.13). Recall
that C is satisfiable w.r.t. T iff there is a model I of T satisfying CI 6= ;.

Thus, let C be an ALC concept description and T an ALC TBox. We can assume without
loss of generality that T consists of a single GCI > v D for an ALC concept description D
(see [BHL+17], page 117). Note that T may actually be inconsistent.

Given C and D, we now construct a consistent ALC ontology OC ,D = (TC ,D,;) as follows:

TC ,D := {B v ∃r.(C u A), Av D} ∪
{Av ∀s.A | s occurs in C , D},
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where A, B are concept names not occurring in C , D and r is a role name not occurring in
C , D. It is easy to see that OC ,D is consistent. In fact, any interpretation I with AI = BI = ; is
obviously a model of TC ,D. Thus, to prove the lemma it is sufficient to show that the following
holds (for an arbitrary individual name a):

C is satisfiable w.r.t. {> v D} iff OC ,D 6|= ¬B(a).

First, assume that OC ,D 6|= ¬B(a). This means that there is a model I of OC ,D that interprets
B as a non-empty set. Then the first GCI ensures that there is an element d0 of A that also
belongs to C . In addition, all the elements connected via roles occurring in C , D with d0
also belong to A, and thus to D because of the second GCI. Consequently, if we restrict I to
these elements, we obtain a model of >v D in which d0 belongs to C . This shows that C is
satisfiable w.r.t. {> v D}.

Conversely, assume that I is a model of {> v D} with d0 ∈ CI . Then I can easily be
extended to a model of TC ,D in which a belongs to B by (i) introducing an additional element
d belonging to B, (ii) interpreting a as d, (iii) interpreting r as {(d, d0)}, and (iv) putting d0
as well as all the elements reachable from it into A. �

In addition, if O is a consistent ALC ontology, then so are the ontologies O’ constructed
from it in the proof of Lemma 3.14. Thus, Lemma 3.14 together with Lemma 3.15 yields the
matching EXPTIME lower bounds for the identity problem in ALCO and ALCQ.

Theorem 3.16. The identity problem is EXPTIME-complete for ALCO and ALCQ ontologies.

One also wonder whether the complexity of the instance problem can be transferred
to the identity problem also for DLs where the instance problem has a higher complexity
than EXPTIME. For example, the DL ALCOIQ which extends both ALCO and ALCQ and
additionally allows the use of inverse roles, has a NEXPTIME-complete satisfiability problem
[Tob00], even w.r.t. the empty TBox. This implies that the instance problem w.r.t. consistent
ALCOIQ ontologies is CONEXPTIME-complete. In fact, the ALCOIQ concept description C
is unsatisfiable iff (;,;) |= ¬C(a) (for a new individual name a), which shows CONEXPTIME-
hardness also w.r.t. consistent ontologies. The complexity upper bound follows from the
NEXPTIME upper bound of satisfiability in C2, i.e., two-variable fragment of first-order logic
with counting quantifiers [Pra05].

Since ALCOIQ contains ALCO, it has equality power and can force models to have
cardinality 1. Lemma 3.9 implies that the identity problem in ALCOIQ is in CONEXPTIME.
Regarding hardness, the reductions employed in the proof of Lemma 3.14 can in principle
both be used since the constructors employed in them are available in ALCOIQ. However,
Lemma 3.14 uses an ALC ontology O in the reduction, which yields only an EXPTIME lower
bound. Simply using an ALCOIQ ontology instead does not work since the proof depends
on the fact that O has models refuting the instance relation of cardinality at least 2. However,
by looking at the NEXPTIME-hardness proof for satisfiability in ALCOIQ in [Tob00], it is easy
to see that the following modified instance problem is also coNExpTime-hard for consistent
ALCOIQ ontologies: is a an instance of C in all models of O of cardinality ≥ 2? Now, let
us call this problem the instance problem w.r.t. 2-consistency. Thus, one can without loss of
generality restrict the attention to models of cardinality ≥ 2 when reducing the instance
problem for ALCOIQ to the identity problem for this logic.
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Theorem 3.17. The identity problem is CONEXPTIME-complete for ALCOIQ ontologies.

For the DLs with equality power considered so far in this chapter, the identity problem has
the same complexity as the instance problem. A natural question to ask is whether this is
always the case. A simple example shows that the answer to this question is negative. In fact,
let ALC= be the DL ALC, with the only difference that ALC= ABoxes may contain equality
assertions a

.
= b between individual names. It is easy to see that the identity problem in

this DL is non-trivial, but it can be solved in polynomial time. In fact, to check whether a
consistent ALC= ontology implies an equality a

.
= b, we only need to construct the reflexive,

transitive, and symmetric closure of the explicitly stated equalities. However, since ALC is a
sub-logic of ALC=, the instance problem in this DL is ExpTime-hard (and it is easy to show
that it is also in ExpTime).

3.2 The View-Based Identity Problem

In this section, we will adapt the approach of [SS06; SS09] for view-based information hiding
such that it can formalize the rôle-based access control scenario sketched in the beginning of
this chapter. We assume that ontologies are written using some DL L with equality power.

To define what kind of information is to be hidden, we divide the set NI of individual
names into the disjoint sets NAI and NKI consisting of anonymous and known individuals,
respectively. As before, we do not make the unique name assumption for these individuals.

Now, given an anonymous individual x ∈ NAI and an ontology O, we define the identity of
x w.r.t. O as

idn(x ,O) := {b ∈ NKI |O |= x
.
= b}.

Note that b, b′ ∈ idn(x ,O) implies that O |= b′
.
= b. Thus, if the cardinality of idn(x ,O)

is greater 1, this does not mean that x is equal to one of these individuals, but rather that
it is equal to all of them (and thus that all of them are equal). We say that x is hidden if
idn(x ,O) = ;.

In the rôle-based access control scenario we assume that there is a “large” input ontology
OI that is always consistent, but users can only see a part of it depending on which rôle they
currently have. More formally, we assume that there is a finite set of user rôles R, and that
playing the rôle r̂ ∈R gives access to a subset Or̂ ⊆OI of the input ontology. Here “access”
does not mean that a user with rôle r̂ can download the ontology Or̂ . Instead, the user can
ask queries to Or̂ , both in the form of a subsumption query C v D for concept descriptions
C , D and a conjunctive query (CQ) q. Note that the former query just simply asks whether
for all models I of Or̂ , CI ⊆ DI . We next formally define the answer to the queries w.r.t.
each rôle.

Definition 3.18 (Answer to Queries). Let OI be the input ontology, Or̂ ⊆ OI the ontology
accessible by users with rôle r̂ ∈ R, and q be a query. The answer to q w.r.t. r̂, denoted by
ans(q, r̂), is defined as follows:

• If q = C v D or a CQ without answer variables, then ans(q, r̂) := {true} if O |= q or
ans(q, r̂) := ; if O 6|= q

• if q is a CQ with n> 0 answer variables, then ans(q, r̂) := {~t ∈ (NI)n |Or̂ |= q(~t)}. ♦
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User

At rôle r̂1
- queries through Or̂1

⊆OI

- obtains View Vr̂1

switch−−−→ . . . switch−−−→

Given an ontology OI

At rôle r̂k
- queries through Or̂k

⊆OI

- obtains View Vr̂k

At rôle r̂k+1, is the identity of an anonymous x hidden w.r.t. Vr̂1
, . . . , Vr̂k

?

Figure 3.20: An illustration for the identity problem in a rôle-based setting

Since Or̂ ⊆ OI , positive answers to queries, i.e., ans(C v D, r̂) = {true} or ~t ∈ ans(q, r̂)
imply that this subsumption or conjunctive queries also hold in OI . In contrast, negative
answers do not tell us anything about what holds in OI since the inclusion may be strict.
Answers to queries w.r.t. rôle r̂ is stored in a view.

Definition 3.19 (View). A view for r̂ ∈R (written r̂ |= V) is a finite set of pairs 〈qi , ans(qi , r̂)〉,
where each qi is a query. The size of the view V is defined as

∑

(qi ,ans(qi ,r̂))∈ V

| qi | +(k · |ans(qi , r̂)|), where k is the arity of qi

In a setting where user rôles can dynamically change, a user may successively play rôles
r̂1, r̂2, . . . , r̂k, in each rôle r̂i generating (and storing) a view Vr̂i

for r̂i by asking queries.
The question is now whether these views can be used to find out the identity of a given
anonymous individual x ∈ NAI. An illustration for this setting is depicted in Figure 3.20.

Assume that the user wants to know whether there is b ∈ NKI such that b ∈ idn(x ,OI).
However, the user cannot access OI as a whole, all she knows is that the positive answers
to the queries in the views Vr̂i

are justified by subsets of OI . Consequently, instead of one
(unknown) ontology OI , the user needs to consider all possible ontologies, i.e., all ontologies
that are compatible with the positive answers in the views.

Definition 3.21 (Possible Ontology). The ontology P is a possible ontology for the sequence
of views Vr̂1

, . . . , Vr̂k
if P is consistent and compatible with all positive answers in these views,

where P is compatible with

• 〈C v D, {t rue}〉 ∈ Vr̂i
if P |= C v D,

• 〈q, ans(q, r̂i)〉 ∈ Vr̂i
if for all ~t ∈ ans(q, r̂i), we have P |= q(~t). ♦

We denote the set of all possible ontologies for Vr̂1
, . . . , Vr̂k

with Poss(Vr̂1
, . . . , Vr̂k

). The certain
identity of x w.r.t. Vr̂1

, . . . , Vr̂k
is defined as

cert_idn(x , Vr̂1
, . . . , Vr̂k

) :=
⋂

P∈Poss(Vr̂1 ,...,Vr̂k
)

idn(x ,P).

Definition 3.22 (View-Based Identity Problem). Given x ∈ NAI and views Vr̂1
, . . . , Vr̂k

, the
identity of x is hidden w.r.t. Vr̂1

, . . . , Vr̂k
if

cert_idn(x , Vr̂1
, . . . , Vr̂k

) = ;.
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The view-based identity problem asks whether the identity of x is hidden or not w.r.t.
Vr̂1

, . . . , Vr̂k
. ♦

Since OI ∈ Poss(Vr̂1
, . . . , Vr̂k

), we know that b ∈ cert_idn(x , Vr̂1
, . . . , Vr̂k

) implies that
b ∈ idn(x ,OI). Thus, if cert_idn(x , Vr̂1

, . . . , Vr̂k
) 6= ;, the identity of x in OI is no longer

hidden. Conversely, if cert_idn(x , Vr̂1
, . . . , Vr̂k

) = ;, then for all b ∈ NKI , there is a possible
ontology P ∈ Poss(Vr̂1

, . . . , Vr̂k
) such that P 6|= x

.
= b. Since, according to the information

available to the user, OI could be this P, she cannot conclude for any b ∈ NKI that OI |= x
.
= b.

This shows that cert_idn(x , Vr̂1
, . . . , Vr̂k

) = ; indeed corresponds to the fact that the views
Vr̂1

, . . . , Vr̂k
do not disclose the identity of x .

Since the set Poss(Vr̂1
, . . . , Vr̂k

) consists of infinitely many ontologies, cert_idn(x , Vr̂1
, . . . , Vr̂k

)
does not directly yield an approach for computing this set. We will now show that we can
reduce this computation to the identity problem for the canonical ontology of Vr̂1

, . . . , Vr̂k
.

Basically, this ontology consists of axioms obtained from the positive answers in the views.
However, for some views Vr̂ , there are still some pairs 〈q, ans(q, r̂)〉 ∈ Vr̂i

, where q is a CQ
and contains existentially quantified variables. To remove these variables, first we restrict
our attention to all pairs 〈q, ans(q, r̂)〉 in all views Vr̂i

, where q is a conjunctive query. Then,
we construct a first-order representation for this collection of pairs. Formally, we construct a
first-order sentence obtained from Vr̂1

, . . . , Vr̂k
as follows:

αFO(Vr̂1
, . . . , Vr̂k

) =
∧

Vr̂i

∧
∧

〈q j ,ans(q j ,r̂i)〉∈Vr̂i
,

q j is a CQ

∧
∧

~tk∈ans(q j ,r̂i)
∃~w.conj(~tk, ~w)

Since αFO(Vr̂1
, . . . , Vr̂k

) still contains existentially quantified variables w from ~w, we can
remove them by simply replacing w with fresh constants aw not occurring in αFO(Vr̂1

, . . . , Vr̂k
).

These replacements yields the ground first-order representation αG(Vr̂1
, . . . , Vr̂k

) of Vr̂1
, . . . , Vr̂k

.
Now, we start constructing the canonical ontology C(Vr̂1

, . . . , Vr̂k
) from a given Vr̂1

, . . . , Vr̂k
.

Definition 3.23 (Canonical Ontology). The canonical ontology C(Vr̂1
, . . . , Vr̂k

) of Vr̂1
, . . . , Vr̂k

is defined as C(Vr̂1
, . . . , Vr̂k

) := (T , A) where

T := {C v D | 〈C v D, {t rue}〉 ∈ Vr̂i
for some i, 1≤ i ≤ k}

A := {A(a) | A(a) is an atom in conj(αG(Vr̂1
, . . . , Vr̂k

))} ∪
{r(a1, a2) | r(a1, a2) is an atom in conj(αG(Vr̂1

, . . . , Vr̂k
))}

Note that the construction of αFO(Vr̂1
, . . . , Vr̂k

) above only considers linearly many queries
q j in Vr̂1

, . . . , Vr̂k
and then for every answers of q j, we transform the form of q j by repla-

cing each answer variable x with t from ~tk. Additionally, αG(Vr̂1
, . . . , Vr̂k

) is obtained from
αFO(Vr̂1

, . . . , Vr̂k
) by replacing linearly many existentially quantified variables occurring in

Vr̂1
, . . . , Vr̂k

with fresh constants. Since the construction of C(Vr̂1
, . . . , Vr̂k

) is performed by tak-
ing GCIs whose answer is positive in each Vr̂i

and taking each atom from conj(αG(Vr̂1
, . . . , Vr̂k

)),
we know that this construction is also done in linear time and its size is linearly bounded in
the sum of the sizes of the views Vr̂1

, . . . , Vr̂k
.

Now, for simplicity to prove the next theorem, we treat the fresh constants aw in C(Vr̂1
, . . . , Vr̂k

)
as anonymous individuals. The following theorem says that the sets cert_idn(x , Vr̂1

, . . . , Vr̂k
)

and idn(x , C(Vr̂1
, . . . , Vr̂k

)) of the identities of an anonymous individual x are the same.



3.2 The View-Based Identity Problem 43

Theorem 3.24. Given views Vr̂1
, . . . , Vr̂k

and an anonymous individual x ∈ NAI , we have

cert_idn(x , Vr̂1
, . . . , Vr̂k

) = idn(x , C(Vr̂1
, . . . , Vr̂k

)).

Proof. Let us assume that there is b ∈ NKI such that b ∈ cert_idn(x , Vr̂1
, . . . , Vr̂k

). This implies
that for all P ∈ Poss(Vr̂1

, . . . , Vr̂k
), we have P |= x=̇b. By contradiction, we assume that b

is not in idn(x , C(Vr̂1
, . . . , Vr̂k

)). This implies that there is a model I of C(Vr̂1
, . . . , Vr̂k

) such
that I 6|= x=̇b. However, I is also a model of a possible ontology P ∈ Poss(Vr̂1

, . . . , Vr̂k
) by

assigning to each existential variable w the object aI
w. Hence, b 6∈ cert_idn(x , Vr̂1

, . . . , Vr̂k
),

which is a contradiction to the fact that b is in cert_idn(x , Vr̂1
, . . . , Vr̂k

).
For the converse direction, we assume that b ∈ idn(x , C(Vr̂1

, . . . , Vr̂k
)). By contradiction,

we assume that b 6∈ cert_idn(x , Vr̂1
, . . . , Vr̂k

). This implies that there is P ∈ Poss(Vr̂1
, . . . , Vr̂k

)
such that P 6|= x=̇b and thus there is a model I of P such that I 6|= x=̇b. Then, we
can extend I to an interpretation I′ by interpreting each fresh anonymous individual aw
as the value assigned to the existentially quantified variable w that makes I satisfying P.
Thus, I′ is also a model of C(Vr̂1

, . . . , Vr̂k
) such that I′ 6|= x=̇b, which is a contradiction to

b ∈ idn(x , C(Vr̂1
, . . . , Vr̂k

)) �

This theorem shows that, to check whether x is hidden w.r.t. Vr̂1
, . . . , Vr̂k

, it is sufficient to
compute idn(x , C(Vr̂1

, . . . , Vr̂k
)). If the employed ontology language L allows for unrestricted

GCIs, concept assertions, and role assertions, the set idn(x , C(Vr̂1
, . . . , Vr̂k

)) can clearly be
computed using an algorithm that solves the identity problem for L ontologies a polynomial
number of times.

Note that this applies to the DLs ELO, ALCO, ALCQ, and ALCOIQ considered in the
previous sections, but not to DL-LiteA and CFDnc since their GCIs and concept assertions
need to satisfy certain restrictions. One may ask whether it makes sense to have views where
the answers for the queries are obtained from ontologies written in the DLs ELO, ALCO,
ALCQ, and ALCOIQ. The answer is yes since the subsumption problem and computing
query answering in these four DLs are decidable and computable, respectively [OS12].

The upper bounds for ELO, ALCO and ALCQ are obvious. For ALCOIQ, one considers
all the (polynomially many) known individuals a1, . . . , ap. Using a NExpTime procedure for
the complement of the identity problem, one then checks whether x is not identical to a1.
The non-successful paths of this non-deterministic computation stop with failure whereas
the successful ones continue with the same test for a2, etc. It is easy to see that this yields
the desired NExpTime procedure. In fact, any path of this procedure has only exponential
length, and a successful path indicates that inequality with x holds for all known individuals.

Corollary 3.25. For L = ELO, we can check in polynomial time whether an anonymous
individual x is hidden w.r.t. views Vr̂1

, . . . , Vr̂k
. For L ∈ {ALCO, ALCQ} this problem can be

checked in exponential time. Meanwhile, for L = ALCOIQ, this problem can be solved in
NExpTime.

To show that the upper bounds above are optimal, we investigate the lower bounds for the
view-based identity problem for each DL. We start with a reduction from the (un)satisfiability
problem of Horn-SAT formulas to the view-based identity problem in ELO.

Theorem 3.26. The view-based identity problem in ELO is PTIME-complete
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Proof. As written in Theorem 3.11, we take a Horn-SAT formula φ containing horn clauses
of forms (a), (b), and (c) and then construct an ELO-ontology Oφ = {Tφ , Aφ}. For this
construction, we emphasize that b⊥ is the known individual and rename a with x , where x
is an anonymous individual. From this construction, we can deduce that

φ is unsatisfiable iff Oφ |= {x} v {b⊥} (3.2)

Now, let Vφ be a view that is constructed from Oφ as follows:

Vφ := {〈C v D,true〉 | C v D ∈Oφ} ∪
{〈A(v), x〉 | A(x) ∈Oφ ∧ v is an answer variable }

It can be readily seen that Oφ is the canonical ontology of Vφ . Since {b⊥} is the only known
individual in Oφ , x is not hidden in Vφ iff Oφ |= x =̇ b⊥. Consequently, by Equation 3.2, we
show that

φ is unsatisfiable iff the identity of x is not hidden w.r.t.Vφ

This shows us that the view-based identity problem is PTIME-hard. �

Next, we show that the EXPTIME complexity of the view-based identity problem in ALCO
and ALCQ is also optimal. This is shown by doing a reduction from the instance problem in
consistent ALC ontologies.

Theorem 3.27. The view-based identity problem in L ∈ {ALCO, ALCQ} is EXPTIME-complete.

Proof. We consider the proof from Lemma 3.14, where we take the ALC ontology O = (T , A),
the ALC concept C and the individual a. Then, we construct the same L ontologyO′ = (T ′, A′)
as in the proof of Lemma 3.14, but we rename the individual a′ with an anonymous individual
x ∈ NAI and now we treat the individual b′ as a known individual. Next, we construct a
new ontology O′′ = (T ′′, A′′) that is obtained from O′ by replacing every concept assertion
D(a) ∈ A′ with AD(a), where AD is a new concept name not occurring in O′, and adding
AD v D to T ’. From the proof in Lemma 3.14 and due to the fact that O′ and O′′ are
equisatisfiable, we know that

O |= C(a) iff O′′ |= x =̇ b′. (3.3)

Now, we construct a view V ′′ obtained from O′′ as follows:

V ′′ := {〈C v D,true〉 | C v D ∈O′′} ∪
{〈A(v), a〉 | A(a) ∈O′′ ∧ v is an answer variable } ∪
{〈r(u1, u2), (a1, a2)〉 | r(a1, a2) ∈O′′ ∧ u1, u2 are answer variables}

It is obvious to see that O′′ is the canonical ontology of V ′′. Due to Theorem 3.24 and
Equation 3.3, the following statement also holds if O is formulated in ALCO or ALCQ.

O |= C(a) iff the identity of x is not hidden w.r.t. V ′′. �

Last, we show that the NEXPTIME complexity of ALCOIQ is also tight. Similar to the
arguments above Theorem 3.17, we reduce the instance problem in ALCOIQ ontologies w.r.t.
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2-consistency to the view-based identity problem in ALCOIQ by only considering models
of cardinality ≥ 2. This reduction can also use the same proof construction described in
Theorem 3.27.

Theorem 3.28. The view-based identity problem in ALCOIQ is NEXPTIME-complete

3.3 The k-Hiding Problem

So far, in the identity problem, we investigated whether an anonymous individual x belongs
to a singleton set of known individual. If it does not belong to any singleton set consisting of
one known individual, then the identity of x is hidden. However, in some cases, an attacker
does not really want to known the exact identity of some anonymous objects. Instead, he
wants to deduce whether x belongs to a set of known individuals such that the set has a
cardinality smaller than k. From this deduction, he may infer that the identity of x is one of
the known individuals that belong to that set. In this situation, it is sufficient to see that the
identity of x is ‘k-hidden’ if x does not belong to any (k-1)-subsets of known individuals.

Now, we provide the definition for the k-hiding problem that depends on the definition of
a subprobem called K-membership, which asks whether an anonymous individuals belongs
to a given set of known individuals in all models of an ontology.

Definition 3.29. LetO be a consistent ontology, x ∈ NAI , andK ⊆ NKI , whereK = {a1, . . . , ak−1}.
The individual x is in K-membership w.r.t. O iff xI ∈ {aI

1 , . . . , aI
k−1} for all models I of O.

Then, x is not k-hidden w.r.t. O iff there is K ⊆ NKI , where K= {a1, . . . , ak−1}, such that x is
in K-membership w.r.t. O.

The definition above implies that the k-hiding (resp. K-membership) problem asks whether x
is k-hidden (resp. in K-membership) w.r.t. O. Since the number k is included to the input,
we need to be careful when considering the size of the k-hiding problem. Here we assume
that the number k is written in unary encoding and thus the size of the k-hiding problem is
| O | + | NKI | +k. We can also infer that if x is not k-hidden w.r.t. O, then for all `, where
` > k, the individual x is not `-hidden either. To provide a concrete illustration on how
users or attackers can infer that x is (not) k-hidden w.r.t. a given ontology, we provide the
following example inspired from Example 3.5.

Example 3.30. Let O= (T , A) where

T := {∃expert.{CODING} v TechTeam, TechTeam≡ VerTFtSecTF,
VerTFv {JOHN,LINDA,PAUL},
SecTFv {JIM,PATTIE,PAMELA}, Femalev ¬Male},

A := {Female(x), expert(x ,CODING),
Female(LINDA),Female(PATTIE),Female(PAMELA),
Male(JOHN),Male(JIM),Male(PAUL)}.

Let x ∈ NAI. First, we show that O 6|= x=̇a for all a ∈ NKI. Since the concept of female is
disjoint with the concept of male, x is not equal to any male individual. It remains to check
whether x is equal to one of female individuals. However, due to the disjunction rule, x ’s expertise
enforces x to become a member of either the verification team or the security team. Let I and I′
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be models of O such that xI ∈ VerTFI , but xI′ 6∈ VerTFI′ and xI′ ∈ SecTFI′ , but xI 6∈ SecTFI .
Since both verification and security teams are disjoint, it implies that xI = bI , but xI′ 6= bI′

for b ∈ {LINDA,PATTIE,PAMELA}. This implies that x is 2-hidden w.r.t. O.
Next, we show that the ontology above does not entail any set consisting of two known

individuals either, i.e., xI 6∈ {aI , bI} for all models I of O and all a, b ∈ NKI. If both a and b
are males, or the genders of a and b are different, or a and b are females belonging to the same
team, then it is easy to see that there is a model I′ of O such that xI′ 6∈ {aI′ , bI′}. It remains
to show whether in all models I of O, xI ∈ {LINDAI ,PATTIEI} or xI ∈ {LINDAI ,PAMELAI}.
However, for the case that xI ∈ {LINDAI ,PATTIEI}, due to the disjunction rule, there are models
I1, I2 of O such that

• xI1 ∈ VerTFI1 , but xI1 6∈ SecTFI1 and

• xI1 = LINDAI1 and, additionally,

• xI2 ∈ SecTFI2 , but xI2 6∈ VerTFI2 and

• xI2 = PAMELAI2 and xI2 6= PAMELAI2

This implies that xI1 ∈ {LINDAI1 ,PATTIEI1}, but xI2 6∈ {LINDAI2 ,PATTIEI2}. The same ar-
gument also holds to check the case that xI ∈ {LINDAI ,PAMELAI}. This implies that x is
3-hidden w.r.t. O.

Nevertheless, if we extend k to 4, then there is a subset K of known individuals, where
K= {LINDA,PATTIE,PAMELA} such that xI ∈ {LINDAI ,PATTIEI ,PAMELAI} in all models I
of O. This can be justified by the fact that in every model of O, due to the x’s expertise, x belongs
to either the verification team or security team. Then, in every possible team to which x belongs,
there is a female individual to which x is equal, which directly implies that x is not 4-hidden
w.r.t. O. ♦

Since the definition of the k-hiding problem above relies on the K-membership probem, we
first investigate the complexities for the K-membership problem in some DLs with equality
power and then show the complexities for the k-hiding problem. We start with the upper
bound.

3.3.1 Upper Bounds

We first show that the K-membership problem actually can also be reduced to the instance
problem for all DLs with equality power.

Lemma 3.31. Let L be a DL with equality power, O be a consistent ontology formulated in L,
x ∈ NAI, and ai ∈ NKI for all 1≤ i ≤ k− 1. It holds that for all models I of O,

xI ∈ {aI
1 , . . . , aI

k−1} iff O′ |= A(x),

where O′ := (T , A∪ {A(ai) | 1≤ i ≤ k− 1}) and A is a new concept name not occurring in O.

Proof. It is easy to show the direction from left to right. Now we prove from the other direction
via contraposition. Assume that there is a model I of O such that xI 6∈ {aI

1 , . . . , aI
k−1}. Now,

we extend I to I′ such that I′ coincides with I on all concept names, role names, and
individual names occurring in O. Additionally, AI′ = {aI′

1 , . . . , aI′
k−1} and thus I′ satisfies the
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terminological and assertional parts of O′. It implies that I′ is a model of O′. Due to the
fact that A does not occur in O and a1, . . . , ak−1 are the only instances of A w.r.t. I′ as well as
xI′ 6= aI′

i for all 1≤ i ≤ k− 1, it holds that xI′ 6∈ AI′ . Thus, O′ 6|= A(x). �

For Description Logics with equality power that contain nominal, it is also easy to reduce
the K-membership problem to the subsumption problem.

Lemma 3.32. Let L be a DL with equality power containing nominals, O be a consistent
ontology formulated in L, x ∈ NAI, and {a1, . . . , ak}= K ⊆ NKI. It holds for all models I of O
that

xI ∈ {aI
1 , . . . , aI

k } iff O |= {x} v {a1, . . . , ak}.

As a consequence, to check whether an anonymous x is k-hidden, we simply enumerate all
(k-1)-subsets K of known individuals and then for each subset K, we check whether x is in
K-membership based on Lemma 3.31 or Lemma 3.32 depending whether the underlying
logic contains nominal or not. For some DLs with equality power, such as ALCO or ALCQ,
the instance problem or the subsumption problem for both is in EXPTIME. Since there are
exponentially many subsets of known individuals to be enumerated and for each subset call
an EXPTIME algorithm to check whether x belongs to the subset w.r.t. O, it means that solving
the k-hiding problem is also in EXPTIME for both logics. For a more expressive DL ALCOIQ,
where the subsumption and the instance problems in this logic can be solved in CONEXPTIME,
we need to perform an NEXPTIME procedure in each subset of known individuals for checking
whether x is not contained in the subset w.r.t. O. Since the complexity class NEXPTIME

subsumes EXPTIME, the whole procedure for checking whether x is k-hidden w.r.t. O takes
non-deterministic exponential time.

Theorem 3.33. Let L1 ∈ {ALCO, ALCQ} and L2 ∈ {ALCOIQ}. The K-membership problem
in L1 and L2 can be solved in EXPTIME and CONEXPTIME, respectively, while the k-hiding
problem in L1 and L2 can be solved in EXPTIME and NEXPTIME, respectively.

However, the two reductions in Lemma 3.31 and 3.32 still look costly for some tractable
DLs with equality power, such as ELO, DL-LiteA, or CFDnc , because in order to check if x is
k-hidden we have to generate all (k− 1)-subsets of NKI and then run a decision procedure to
solve the instance problem of which the complexity for these logics are mostly in polynomial
time.

To deal with this issue, one needs to investigate whether the ontology is formulated in a
convex DL or not. In general, a DL L is convex if it satisfies the following property: Given an
L-ontology O, an anonymous x ∈ NAI, and a1, . . . , ak−1 ∈ NKI, it holds that for all models I
of O, xI ∈ {aI

1 , . . . , aI
k−1} iff for all models J of O, xJ = aJ

i for some 1≤ i ≤ k− 1.
We show that for each ontology O formulated in convex DLs that have equality power,

the k-hiding (K-membership) problem w.r.t. O can be reduced to the identity problem w.r.t.
O and the converse direction also holds. For the convex logics, these reductions show that
k-hiding is also the same with 2-hiding and it implies that the k-hiding problem is not an
interesting generalization of the identity problem since they share the same complexity
classes for the considered convex logics.

Obviously, this property does not hold for ALCO and ALCQ since we may find the following
counterexamples.
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Example 3.34. We define an ontology O1 = (T1,;) formulated in ALCO as follows:

T1 = {{x} v {a1} t {a2}}.

It is easy to see that xI ∈ {aI
1 , aI

2} for all models I of O1, but it does not hold that xI ∈ {aI
i } in

all models I of O1 for any i ∈ {1, 2}. Now, we define an ontology O2 = (T2, A2) formulated in
ALCQ as follows:

T2 := {A1 u A2 v⊥}
A2 := {A1(a1), A2(a2),≤ 2r.>(a)} ∪

{r(a, x), r(a, a1), r(a, a2)}

In all models of O2, the individual a is enforced by ≤ 2r.>(a) to only have at most two r-
successors. Since a1 and a2 are also enforced to be not equal w.r.t. O2 due to the GCI in T2,
in every model J of O2 we can only have either xJ = aJ

1 or xJ = aJ
2 . This implies that

xJ ∈ {aJ
1 , aJ

2 }, but similar to the previous counterexample, it does not hold that xJ ∈ {aJ
i } in

all models J of O2 for any i ∈ {1,2}. ♦

One advantage to ensure that our ontology O is formulated in a convex logic is that we
can solve the k-hiding problem as the same as solving the identity problem. One just need to
take the set NKI of all known individuals and then check whether a given anonymous x is
equal to one of the elements from NKI w.r.t. O. If there is at least one known individual that
is equal to x w.r.t. O, then we know that x is not k-hidden for any k ≥ 1. This procedure is
better than the previous one which requires us to first enumerate all (k− 1)-subsets K of NKI.

Lemma 3.35. Let O be a consistent ontology formulated in a convex logic L, x ∈ NAI, and
NKI be the set of all known individuals. The individual x is k-hiding w.r.t. O iff x is not in
K-membership w.r.t. O, where K= NKI.

Next, we show that ELO, DL-LiteA, and CFDnc are convex.

Lemma 3.36. Let O be a consistent ontology formulated in L ∈ {ELO, DL-LiteA, CFDnc}. If
x ∈ NAI, a1, . . . , ak−1 ∈ NKI, then for all models I of O, xI ∈ {aI

1 , . . . , aI
k−1} iff for all models J

of O, xJ = aJ
i for some 1≤ i ≤ k− 1.

Proof. We show this by distinguishing the following three cases, where for each case, the
‘only if’ direction is trivial, and thus it remains to show the ‘if’ direction.

1. Let L = ELO.
We assume that O |= {x} v {a1, . . . , ak−1} since ELO has nominals by Lemma 3.32. As
argued in [KKS12], given O, reasoning in ELO should consider the set MO of axioms
closed under the inference rules for ELO, which may contain conditional subsumption
axiom written as G : C v D with the semantics: if GI 6= ;, then CI ⊆ DI , where C , D, G
are concepts occurring in O. Additionally, as stated in [KKS12], to deduce subsumption
in ELO, we can construct the canonical model Ic of O such that for the concept G and
all concepts D occurring in O, the following holds:

Ic |= G v D implies G : G v D ∈MO, (3.4)
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where MO is the completion set closed under the completion rule. Without loss
of generality, we assume that {x} and {ai}, for all 1 ≤ i ≤ k − 1, are in O. Now
we assume that O |= {x} v {a1} t . . . t {ak−1}. Since Ic is a model of O, we have
{xIc} ∈ {aIc

1 , . . . , aIc
k−1}. Consequently, there exists 1≤ i ≤ k− 1 such that xIc = aIc

i or
Ic |= {x} v {ai} and thus {x} : {x} v {ai} ∈MO follows by equation (3.4) . Due to
the soundness of the completion rule stated in (3.4), if {x} : {x} v {ai} ∈MO, then
we obtain O |= {x} v {ai}.

2. Let L = DL-LiteA
We assume that xI ∈ {aI

1 , . . . , aI
k } for all models I of O. In [ACK+09], it is said that

every DL-Lite family has canonical model Ic for the ontologies, if they are consist-
ent. Since Ic is also a model, xI

c ∈ {a
Ic
1 , . . . , aIc

k−1}. It implies that there exists i, for
1≤ i ≤ k− 1, such that xIc = aIc . In [CDL+07], it is also said that for every model I
of O, there is a homomorphism from Ic to I that maps the objects in the extension of
concept, role, and individual names in I to objects in the extension of concept, role,
and individual names in I. In other words, xIc = aIc

i implies xI = aI
i for all models I

of O.

3. Let L = CFDnc
We assume that xI ∈ {aI

1 , . . . , aI
k−1} for all models I of O. In [TW13], it is said that

in CFDnc ontologies O, we can build a non-deterministic finite (NFA) automaton A

whose states Q are concept names, their negations, and individuals occurring in O.
Additionally, it also has transition relations δA(O), which is a set of transitions from

one state q1 to another state q2 via path functional relation f , denoted by q1
f
−→ q2,

where f ∈ N ∗F ∪ {ε} for q1, q2 ∈ Q. We may also write q
Pf
−→ q′, where q, q′ ∈ Q and

Pf ∈ N ∗F . This kind of automaton A is very useful for various reasoning problems
related in CFDnc . For instance

a
ε
−→ b, b

ε
−→ a ∈ δA(O) iff O |= a=̇b (3.5)

It turns out that A also accepts such a canonical model Ic, if O is consistent, whose
domain ∆Ic consists of equivalent classes [a] defined as:

[a] := {b ∈ NI | a
ε
−→ b, b

ε
−→ a ∈ δA(O)} for all a ∈ NI.

Since Ic is a model of O, it implies that xIc ∈ {aIc
1 , . . . , aIc

k−1} and thus there exists ai

such that xIc = aIc
i . Immediately, we have x , ai ∈ [ai] and hence x

ε
−→ ai , ai

ε
−→ x ∈ δA(O).

Due to (3.5), we have O |= x
.
= ai . �

From the proof above, we can see that the convexity of those three logics exists if and only
if they have a canonical model. The following theorem is a consequence of Lemma 3.36,
Theorem 3.10, and Theorem 3.11.

Theorem 3.37. The K-membership problem and the k-hiding problem for ELO, DL-LiteA, and
CFDnc are in PTime , respectively.
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3.3.2 Lower Bounds

Now, we investigate the lower bounds for the k-hiding and the K-membership problems. We
start with the tractable ones, which are ELO, DL-LiteA, and CFDnc , where the hardness result
for the K-membership problem can be trivially obtained from the identity problem.

Theorem 3.38. For DLs ELO, DL-LiteA, and CFDnc , the K-membership problem is in P-hard.

Proof. We take the identity problem and reduce it to the K-membership problem. It is
sufficient to show that given a consistent ontology O formulated in L, x ∈ NAI, a ∈ NKI, and
ai ∈ NKI as the known individuals not occurring in O, for all 1≤ i ≤ k− 1, we have

O |= x
.
= a iff xI ∈ {aI , aI

1 , . . . , aI
k−1} (3.6)

for all models I of O’, where O′ :=O∪{>(ai) | 1≤ i ≤ k−1}. It can be see that O′ basically
is equivalent to O, where adding >(ai) to O just means a tautology. Consequently, Equation
3.6 trivially holds. �

For more expressive DLs such as ALCO and ALCQ, we also obtain the lower bound for the
K-membership problem through a reduction from the instance problem in consistent ALC
ontologies.

Lemma 3.39. Let O = (T,A) be an ontology formulated in ALC, C an ALC concept, and
a ∈ NI. It holds that

O |= C(a) iff xI′ ∈ {bI′
1 , . . . , bI

k−1}

for all models I′ of O′, where O′ = (T ′, A′) is defined as

T ′ := T ∪{C v ∀r.{b1, . . . , bk−1} ∪
{{bi} u {b j} v ⊥ | 1≤ i, j ≤ k− 1∧ i 6= j}

A′ := A ∪{r(a, x)}

and x and bi, for all 1 ≤ i ≤ k− 1, are new anonymous and known individuals, respectively,
and r ∈ NR is a new role name.

Proof. It is obvious to see the direction from left to right. For the other direction, we prove it
via contraposition. We assume that O 6|= C(a). As written in Lemma 3.13, there is a model I
of O such that I 6|= C(a) and |∆I | ≥ k for k > 1. Suppose that there are d0, d1, . . . dk−1 ∈∆I

with di 6= d j , for all 0≤ i ≤ k−1. Now we extend I to I′ that coincides on all individual names,
role names, and concept names occurring O. Additionally, xI′ := d0, rI′ := {(aI′ , xI′)}, and
bI′

i := di , for all 1≤ i ≤ k− 1. By construction, I ’ clearly satisfies the assertional part of O’.
Then, since each bi and b j are interpreted differently and bi is disjoint with b j, it implies
that I′ satisfies the GCI {bi} u {b j} v ⊥. Next, since a is the only individual that has an
r-successor and aI′ ∈ CI′ , all elements of CI′ trivially satisfy ∀r.{b1, . . . , bk−1}. It implies
that I ’ is a model of O’, but interprets xI′ 6∈ {bI′

1 , . . . , bI′
k−1}. �

Lemma 3.40. Let O = (T , A) be a consistent ontology formulated in ALC, C an ALC concept,
and a ∈ NI. It holds that

O |= C(a) iff xI′ ∈ {bI′
1 , . . . , bI′

k−1}
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for all models I ’ of O’, where O′ := (T ′, A′) is defined as

T ′ := T ∪{C v≤ (k− 1)r.>} ∪
{Ai u A j v⊥ | 1≤ i, j ≤ k− 1∧ i 6= j}

A′ := A∪{Ai(bi) | 1≤ i ≤ k− 1} ∪ {r(a, x)} ∪
{r(a, bi) | 1≤ i ≤ k− 1}

and x ∈ NAI, bi ∈ NKI are new anonymous and known individuals, respectively, Ai ∈ NC are also
new concept names, and last we have r ∈ NR as a new role name.

Proof. Clearly, the direction from left to right holds. Now, it is sufficient to show the direction
from right to left via contraposition. Assume that there is a model I of O such that aI 6∈ CI .
By Lemma 3.13, it follows that |∆I | ≥ k for k > 1. Suppose that there are d0, d1, . . . dk−1 ∈∆I

with di 6= d j for all 0 ≤ i ≤ k − 1. Then, we extend I to I′ such that I′ coincides with
I on all role names, individual names, and concept names occurring in O. Additionally,
xI′ := d0, bI′

i := di for all i ∈ {1, . . . , k− 1}, rI′ := {(aI′ , xI′)} ∪ {(aI′ , bI′
i ) | 1 ≤ i ≤ k− 1},

and AI′
i := {bI′

i } for all i ∈ {1, . . . , k−1}. It implies that I′ satisfies the assertional part of O’.
Further, since each Ai and A j is disjoint and the only elements in I′ belonging to Ai and A j
are di and d j , respectively, that are defined differently, it implies that I′ satisfies the second
form of GCI in T ′. Then, since aI′ 6∈ CI′ and a is the only individual that has an r-successor,
all elements of CI′ satisfiy ≤ (k− 1)r.>. It implies that I′ satisfies T ′ and thus I′ is a model
of O’ but interprets xI′ 6∈ {bI′

1 , . . . , bI′
k−1}. �

Combining Lemma 3.31, 3.39, and 3.40, we have the following theorem.

Theorem 3.41. The K-membership problem for ALCO and ALCQ is EXPTIME-complete.

Next, we show that we can also reduce the instance problem w.r.t. consistent ALC ontologies
to the k-hiding problem for DLs ALCO and ALCQ.

Theorem 3.42. The k-hiding problem in ALCO and ALCQ is EXPTIME-complete.

Proof. By Theorem 3.33, we know that the k-hiding problem is in ExpTime for ALCO and
ALCQ. For the hardness, we take a consistent ALC ontology O, an ALC concept C , and an
individual a. Then, we show the following claim

O |= C(a) iff x is not k-hidden w.r.t. O′,

where x ∈ NAI and O′ is defined as in Lemma 3.39 or Lemma 3.40 such that O′ is formulated
in ALCO or ALCQ, respectively. Now, let O be formulated in ALCO. If O |= C(a), then by
Lemma 3.39 and Lemma 3.40, we know that x is not k-hidden w.r.t. O′.

Conversely, we prove it by adopting the proofs from Lemma 3.39 and Lemma 3.40. If
O 6|= C(a), then there is a model I of O such that I 6|= C(a) and |∆I | ≥ 2 by Lemma
3.13. Suppose there are n distinct individuals ai occurring in O for n ≥ 1 and |∆I | has at
least n+ (k − 1) + 1 distinct elements e1, . . . , en, d0, d1, . . . , dk−1 for k > 1. Without loss of
generality, we may assume that each ai is interpreted to one e j in I for all 1≤ i, j ≤ n. Then,
we construct I′ obtained from I as introduced in the proof of Lemma 3.39 or Lemma 3.40,
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where xI′ = d0, bI′
`
= d` for all `, where 1 ≤ ` ≤ k − 1. As argued in Lemma 3.39 and

Lemma 3.40, it holds that I′ is a model of O′. From this construction, it can be shown that
for any given K ⊆ NKI , where | K |= k− 1, we can always build a model I′ from a model I
of O in which aI 6∈ CI , which interprets x differently with all individuals in K. Particularly,
this implies that x is not in K-membership w.r.t. O′ for all K ⊆ NKI , where |K|= k− 1 and
thus x is not in k-hiding w.r.t. O′. �

For the DL ALCOIQ, the lower bound for the K-membership problem and k-hiding problem
can also be obtained by reduction from the instance problem in ALCOIQ ontologies w.r.t.
2-consistency by again restricting attentions only to models of cardinality ≥ 2. The argument
for the proof construction of this reduction is similar to the ones in Lemma 3.39, Lemma
3.40, and Theorem 3.42.

Theorem 3.43. The K-membership problem in ALCOIQ is CONEXPTIME-complete and thus
the k-hiding problem in ALCOIQ is NEXPTIME-complete.



Chapter 4

Repairing Description Logic Ontologies

The previous chapter has supplied various reasoning problems associated to identity-preserving
problems, provided mechanisms to detect whether the identity of an object is deduced w.r.t.
the considered setting, and produced the complexity results of these problems varying from
one DL to another. Moreover, this sort of investigation augments more mechanisms to detect
privacy breaches in DL ontologies besides other known procedures which check if protected
consequences (e.g., subsumption relationships, instance relationships, or membership of
(tuple of) individuals) are revealed from the given ontologies or not. However, we have
not considered what to do when this is the case that this confidential information can be
revealed. One possibility would be to modify the input ontology containing this confidential
information such that it yields a new ontology from which the hidden information cannot be
deduced. In this chapter, we are about to discuss the notion of ontology repair, where the
motivation behind this notion is not only restricted to privacy problems, but also to more
general problems that principally want to get rid of unwanted consequences.

In the classical approach of repairing ontologies [KPS+06a; Sch05a; Sch05b], one compute
all minimal subsets of the ontology, called justifications, that are responsible to derive an
unwanted consequences and then, given all of them, the ontology is repaired by removing
one axiom from each justification. However, removing complete axioms may also eliminate
consequences that are actually wanted. For example, assume that our ontology contains the
following general concept inclusions:

∃owns.(GermanCaruDiesel)v ∃gets.Compensations,

GermanTaxiDriver v ∃owns.(GermanCaruDiesel).

These two axioms are a justification for the incorrect consequence that every German taxi
driver gets compensation. Suppose that we are not allowed by the ontology administrator
to remove the first axiom. Thus, removing the second axiom will get rid of the incor-
rect conseqeunce. However, removing this completely would also remove the correct con-
sequence that every German taxi driver owns a German car. Thus one may weaken the
second axiom to GermanTaxiDriver v ∃owns.GermanCar, which together with the first ax-
iom will also remove the unwanted consequence. However, this weakening is still not
‘gentle’ since the consequence stating that every German taxi driver owns diesel is also lost.
Thus, it would be more appropriate if the second axiom is replaced with a weaker axiom
GermanTaxiDriver v ∃owns.GermanCaru∃owns.Diesel, which is clearly seen that this weaker
axiom together with the first axiom also eliminate the unwanted consequence. This is the
basic idea underlying our gentle repair approach. In general, in this approach we weaken

53



54 Chapter 4. Repairing Description Logic Ontologies

one axiom from each justification such that the modified justifications no longer have the
consequence.

In Section 4.1, we formally introduce the notion of repair and show that optimal repair
need not exist in general. Then, in Section 4.2, we introduce a general framework for
repairing ontologies based on axiom weakening. This framework is independent of the
concrete method employed for weakening axioms and of the concrete ontology language
used to write axiom. It only assumes that ontologies are finite sets of axioms, that there
is a monotonic consequence operator defining which axiom follows from which, and that
weaker axioms have less consequences. Our first important result is that, in general, the
gentle repair approach needs to be iterated, i.e., applying it once does not necessarily remove
the consequence. This problem has actually been overlooked in [LSP+08], which means that
their approach does not always yield a repair. Our second result is that at most exponentially
many iterations are always sufficient to reach a repair. The authors of [TCG+18] had already
realized that iteration is needed, but they did not give an example explicitly demonstrating
this, and they had no termination proof.

Instead of allowing for arbitrary ways of weakening axioms, in Section 4.3, we then
introduce the notion of a weakening relation, which restricts the way in which axioms can be
weakened. Subsequently, we define conditions on such weakening relations that equip the
gentle repair approach with better algorithmic properties if they are satisfied. Further, in
Section 4.4 we address the task of defining specific weakening relations for the DL EL. After
showing that two quite large such relations do not behave well, we introduce two restricted
relations, which are based on generalizing the right-hand sides of axioms semantically or
syntactically. Both of them satisfy most of our conditions, but from a complexity point of view
the syntactic variant behaves considerably better. Likewise, in Section 4.5, we introduce two
weakening relations for ALC, where the first relation generalizes and specializes concepts
C based on a finite set of signature and a fixed role-depth, while the second relation does
generalizations and specializations syntactically.

4.1 Repairing Ontologies

For the purpose of this section, we leave it open what sort of axioms and ontologies are
allowed in general. We only assume that there is a monotonic consequence relation O |= α
between ontologies (i.e., finite sets of axioms) and axioms, and that Con(O) consists of all
consequences of O.

Assume in the following that the ontology O=Ost ∪Ort is the disjoint union of a static
ontology Ost and a refutable ontology Ort. When repairing the ontology, only the refutable
part may be changed. For example, the static part of the ontology could be a carefully
hand-crafted TBox whereas the refutable part is an ABox that is automatically generated
from (possibly erroneous) data. It may also make sense to classify parts of a TBox as refutable,
for example if the TBox is obtained as a combination of ontologies from different sources,
some of which may be less trustworthy than others. In a privacy application, it may be the
case that parts of the ontology are publicly known whereas other parts are hidden. In this
setting, in order to hide critical information, it only makes sense to change the hidden part
of the ontology.



4.1 Repairing Ontologies 55

Definition 4.1. Let O = Ost ∪Ort be an ontology consisting of a static and a refutable part,
and α an axiom such that O |= α and Ost 6|= α. The ontology O′ is a repair of O w.r.t. α if

Con(Ost ∪O′) ⊆ Con(O) \ {α}.

The repair O′ is an optimal repair of O w.r.t. α if there is no repair O′′ of O w.r.t. α with
Con(Ost ∪O′) ⊂ Con(Ost ∪O′′). The repair O′ is a classical repair of O w.r.t. α if O′ ⊂ Ort,
and it is an optimal classical repair of O w.r.t. α if there is no classical repair O′′ of O w.r.t. α
such that O′ ⊂O′′. ♦

The condition Ost 6|= α ensures that O does have a repair w.r.t. α since obviously the empty
ontology ; is such a repair. In general, optimal repairs need not exist.

Proposition 4.2. There is an EL ontology O =Ost ∪Ort and an EL axiom α such that O does
not have an optimal repair w.r.t. α. ♦

Proof. We set α := A(a), Ost := T , and Ort := A where

T := {Av ∃r.A,∃r.Av A} and A := {A(a)}.

To show that there is no optimal repair of O w.r.t. α, we consider an arbitrary repair O′ and
show that it cannot be optimal. Thus, let O′ be such that

Con(T ∪O′) ⊆ Con(O) \ {A(a)}.

Without loss of generality we assume that O′ contains assertions only. In fact, if O′ contains
a GCI that does not follow from T , then Con(T ∪O′) 6⊆ Con(O). This is an easy consequence
of the fact that, in EL, a GCI follows from a TBox together with an ABox iff it follows from
the TBox alone. It is also easy to see that O′ cannot contain role assertions since no such
assertions are entailed by O. In addition, concept assertions following from T ∪O′ must
have a specific form.

Claim: If the assertion C(a) is in Con(T ∪O′), then C does not contain A.

Proof of claim. By induction on the role depth n of C .

Base case: If n = 0 and A is contained in C , then A is a conjunct of C and thus C(a) ∈ Con(T ∪O′)
implies A(a) ∈ Con(T ∪O′), which is a contradiction.

Step case: If n> 0 and A occurs at role depth n in C , then C(a) ∈ Con(T ∪O′) implies that there
are roles r1, . . . , rn such that (∃r1. · · · ∃rn.A)(a) ∈ Con(T ∪O′). Since Con(T ∪O′) ⊆ Con(O),
this can only be the case if r1 = . . . = rn = r since O clearly has models in which
all roles different from r are empty. Since T contains the GCI ∃r.A v A and rn = r,
(∃r1. · · · ∃rn.A)(a) ∈ Con(T ∪ O′) implies (∃r1. · · · ∃rn−1.A)(a) ∈ Con(T ∪ O′). Induction
now yields that this is not possible, which completes the proof of the claim.

Furthermore, as argued in the proof of the claim, any assertion belonging to Con(O)
cannot contain roles other than r. The same is true for concept names different from A.
Consequently, all assertions C(a) ∈ Con(T ∪O′) are such that C is built using r and > only.
Any such concept C is equivalent to a concept of the form (∃r.)n>.

Since O′ is finite, there is a maximal n0 such that ((∃r.)n0>)(a) ∈O′, but ((∃r.)n>)(a) 6∈O′

for all n> n0. Since (∃r.)n>v (∃r.)m> if m≤ n, we can assume without loss of generality
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that O′ = {((∃r.)n0>)(a)}. We claim that ((∃r.)n>)(a) 6∈ Con(T ∪O′) if n > n0. To this
purpose, we construct a model I of T ∪O′ such that aI 6∈ ((∃r.)n>)I . This model is defined
as follows:

∆I = {d0, d1, . . . , dn0
},

rI = {(di−1, di) | 1≤ i ≤ n0},
AI = ;,
aI = d0.

Clearly, I is a model of O′, and it does not satisfy ((∃r.)n>)(a) if n> n0. In addition, it is a
model of T since AI = (∃r.A)I = ;.

Consequently, if we choose n such that n > n0 and define O′′ := {((∃r.)n>)(a)}, then
Con(T ∪O′) ⊂ Con(T ∪O′′). In addition, Con(T ∪O′′) ⊆ Con(O)\{A(a)}, i.e., O′′ is a repair.
This shows that O′ is not optimal. Since we have chosen O′ to be an arbitrary repair, this
shows that there cannot be an optimal repair. �

In contrast, optimal classical repairs always exist. One approach for computing such a
repair uses justifications and hitting sets [Rei87].

Definition 4.3 (Justifications and Hitting Sets). Let O = Ost ∪Ort be an ontology and α
an axiom such that O |= α and Ost 6|= α. A justification for α in O is a minimal subset J
of Ort such that Ost ∪ J |= α. Given justifications J1, . . . , Jk for α in O, a hitting set of these
justifications is a set H of axioms such that H ∩ Ji 6= ; for i = 1, . . . , k. This hitting set is
minimal if there is no other hitting set strictly contained in it. ♦

Note that the condition Ost 6|= α implies that justifications are non-empty. Consequently,
hitting sets and thus minimal hitting sets always exist.

The algorithm for computing an optimal classical repair of O w.r.t. α proceeds in two steps:
(i) compute all justifications J1, . . . , Jk for α in O; and then (ii) compute a minimal hitting
set H of J1, . . . , Jk and remove the elements of H from Ort, i.e., output O′ =Ort \H.

It is not hard to see that, independently of the choice of the hitting set, this algorithm
produces an optimal classical repair. Conversely, all optimal classical repairs can be generated
this way by going through all hitting sets.

4.2 Gentle Repairs

Instead of removing axioms completely, as in the case of a classical repair, a gentle repair
replaces them by weaker axioms.

Definition 4.4. Let β ,γ be two axioms. We say that γ is weaker than β if Con({γ}) ⊂ Con({β}).♦

Alternatively, we could have introduced weaker w.r.t the strict part of the ontology, by requiring
Con(Ost∪{γ}) ⊂ Con(Ost∪{β}).1 In this paper, we will not consider this alternative definition,
although most of the results in this section would also hold w.r.t. it (e.g., Theorem 4.6).
The difference between the two definitions is, however, relevant in the next section, where
we consider concrete approaches for how to weaken axioms. In the case where the whole
ontology is refutable, there is of course no difference between the two definitions.

1Defining weaker w.r.t the whole ontology O does not make sense since this ontology is possibly erroneous.
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Obviously, the weaker-than relation from Definition 4.4 is transitive, i.e., if α is weaker than
β and β is weaker than γ, then α is also weaker than γ. In addition, a tautology is always
weaker than a non-tautology. Replacing an axiom by a tautology is obviously the same as
removing this axiom. We assume in the following that there exist tautological axioms, which
is obviously true for Description Logics such as EL.

Gentle repair algorithm: we still compute all justifications J1, . . . , Jk for α in O and a
minimal hitting set H of J1, . . . , Jk. But instead of removing the elements of H from Ort,
we replace them by weaker axioms. To be more precise, if β ∈ H and Ji1 , . . . , Ji` are all the
justifications containing β , then replace β by a weaker axiom γ such that

Ost ∪ (Ji j
\ {β})∪ {γ} 6|= α for j = 1, . . . ,`. (4.1)

Note that such a weaker axiom γ always exists. In fact, we can choose a tautology as the
axiom γ. If γ is a tautology, then replacing β by γ is the same as removing β . Thus, we
have Ost ∪ (Ji j

\ {β})∪ {γ} 6|= α due to the minimality of Ji j
. In addition, minimality of Ji j

also implies that β is not a tautology since otherwise Ost ∪ (Ji j
\ {β}) would also have the

consequence α. In general, different choices of γ yield different runs of the algorithm.

In principle, the algorithm could always use a tautology γ, but then this run would produce
a classical repair. To obtain more gentle repairs, the algorithm needs to use a strategy that
chooses stronger axioms (i.e., axioms γ that are less weak than tautologies) if possible.
In contrast to what is claimed in the literature (e.g. [LSP+08]), this approach does not
necessarily yield a repair.

Lemma 4.5. Let O′ be the ontology obtained from Ort by replacing all the elements of the hitting
set by weaker ones such that the condition (4.1) is satisfied. Then Con(Ost ∪O′) ⊆ Con(O),
but in general we may still have α ∈ Con(Ost ∪O′).

Proof. The definition of “weaker than” (see Definition 4.4) implies that Con(Ost∪O′) ⊆ Con(O).
We now give an example where this approach nevertheless does not produce a repair. Let
O=Ost ∪Ort where Ost = ; and Ort = T ∪A with T = {B v A} and A= {(Au B)(a)}, and
α be the consequence A(a). Then α has a single justification J = {(Au B)(a)}, and thus
H = {β = (Au B)(a)} is the only hitting set. The assertion γ= B(a) is weaker than β and it
satisfies (J \ {β})∪ {γ} 6|= α. However, if we define O′ = (O \ {β})∪ {γ}, then O′ |= α still
holds. �

A similar example that uses only GCIs is the following, where now we consider a refutable
ontology O = Ort = {C v Au B, B v A} and we assume that α is the consequence C v A.
Then α has a single justification J = {C v Au B} and thus H = {β = C v Au B} is the
only hitting set. The GCI γ= C v B is a weaker than β and it satisfies (J \ {β})∪ {γ} 6|= α.
However, if we define O′ = (O \ {β})∪ {γ}, then O′ |= α.

These examples show that applying the gentle repair approach only once may not lead to a
repair. For this reason, we need to iterate this approach, i.e., if the resulting ontology Ost∪O′

still has α as a consequence, we again compute all justifications and a hitting set for them,
and then replace the elements of the hitting set with weaker axioms as described above. This
is iterated until a repair is reached. We can show that this iteration indeed always terminates
after finitely many steps with a repair.
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Theorem 4.6. Let O(0) =O
(0)
st ∪O

(0)
rt be a finite ontology and α an axiom such that O(0) |= α

and O
(0)
st 6|= α. Applied to O(0) and α, the iterative algorithm described above stops after a finite

number of iterations that is at most exponential in the cardinality of O(0)rt , and yields as output
an ontology that is a repair of O(0)st w.r.t. the consequence α.

Proof. Assume that O(0)rt contains n axioms, and that there is an infinite run R of the algorithm
on input O(0) and α. Take a bijection `0 between O

(0)
rt and {1, . . . , n} that assigns unique

labels to axioms. Whenever we weaken an axiom during a step of the run, the new weaker
axiom inherits the label of the original axiom. Thus, we have bijections `i : O(i)rt → {1, . . . , n}
for all ontologies O(i)rt considered during the run R of the algorithm. For i ≥ 0 we define

Si := {K ⊆ {1, . . . , n} |Ost ∪ {β ∈O
(i)
rt | `i(β) ∈ K} |= α},

i.e., Si contains all sets of indices such that the corresponding subset of O(i)rt together with
Ost has the consequence α.

We claim that Si+1 ⊂ Si . Note that Si+1 ⊆ Si is an immediate consequence of the fact that
`i(γ) = j = `i+1(γ′) implies that γ = γ′ or γ′ is weaker than γ. Thus, it remains to show that
the inclusion is strict. This follows from the following observations. Since the algorithm
does not terminate with the ontology O

(i)
rt , we still have Ost ∪O

(i)
rt |= α, and thus there is

at least one justification ; ⊂ J ⊆ O
(i)
rt . Consequently, the hitting set H used in this step of

the algorithm contains an element β of O(i)rt . When going from O
(i)
rt to O

(i+1)
rt , β is replaced

by a weaker axiom β ′ such that Ost ∪ (J \ {β})∪ {β ′} 6|= α. But then the set {`(γ) | γ ∈ J}
belongs to Si , but not to Si+1.

Since S0 contains only exponentially many sets, the strict inclusion Si+1 ⊂ Si can happen
only exponentially often, which contradicts our assumption that there is an infinite run R of
the algorithm on input O(0) and α. This shows termination after exponentially many steps.
However, if the algorithm terminates with output O(i)rt , then Ost∪O

(i)
rt 6|= α. In fact, otherwise,

there would be a possibility to weaken O
(i)
rt into O

(i+1)
rt since it would always be possible to

replace the elements of a hitting set by tautologies, i.e., perform a classical repair. �

When computing a classical repair, considering all justifications and then removing a
minimal hitting set of these justifications guarantees that one immediately obtains a repair.
We have seen in the proof of Lemma 4.5 that with our gentle repair approach this need not
be the case. Nevertheless, we were able to show that, after a finite number of iterations of
the approach, we obtain a repair. The proof of termination actually shows that for this it
is sufficient to weaken only one axiom of one justification such that the resulting set is no
longer a justification. This motivates the following modification of our approach.

Modified gentle repair algorithm: compute one justification J for α in O and choose an
axiom β ∈ J . Replace β by a weaker axiom γ such that

Ost ∪ (J \ {β})∪ {γ} 6|= α. (4.2)

Clearly, one needs to iterate this approach, but it is easy to see that the termination argument
used in the proof of Proposition 4.6 also applies here.



4.2 Gentle Repairs 59

Corollary 4.7. Let O(0) =O
(0)
st ∪O

(0)
rt be a finite ontology and α an axiom such that O(0) |= α

and O
(0)
st 6|= α. Applied to O(0) and α, the modified iterative algorithm stops after a finite

number of iterations that is at most exponential in the cardinality of O(0)rt , and yields as output
an ontology ÒOs that is a repair of O(0)st w.r.t. α.

An important advantage of this modified approach is that the complexity of a single
iteration step may decrease considerably. For example, for the DL EL, a single justification
can be computed in polynomial time, while computing all justifications may take exponential
time [BPS07]. In addition, to compute a minimal hitting set one needs to solve an NP-
complete problem [GJ90] whereas choosing one axiom from a single justification is easy.
However, as usual, there is no free lunch: we can show that the modified gentle repair
algorithm may indeed need exponentially many iteration steps.2

Proposition 4.8. There is a sequence of EL ontologies O(n) =O
(n)
st ∪O

(n)
rt with O

(n)
st = ; and

an EL axiom α such that the modified gentle repair algorithm applied to O(n) and α has a run
with exponentially many iterations in the size of O(n). ♦

Proof. For n ≥ 1, consider the set of concept names I (n) = {Pi ,Q i | 1 ≤ i ≤ n}, and define
O(n) :=O

(n)
rt := T (n)1 ∪ T (n)2 , where

T (n)1 := {Av ∃r.
d

I (n), ∃r.(Pn uQn)v B} ∪
{Pi uQ i v Pi+1, Pi uQ i vQ i+1 | 1≤ i < n},

T (n)2 := {∃r.(X u Y )v DX Y , DX Y u X v Y |
X ∈ {Pi ,Q i}, Y ∈ {Pi+1,Q i+1}, 1≤ i < n} ∪
{∃r.P1 v P1, ∃r.Q1 vQ1, Pn v B, Qn v B}.

It is easy to see that the size of O(n) is polynomial in n and that O(n) |= Av B. Suppose that
we want to get rid of this consequence using the modified gentle repair approach. First, we
can find the justification

{Av ∃r.
l

I (n), ∃r.(Pn uQn)v B}.

We repair it by weakening the first axiom to

γ := Av ∃r.
l
(I (n) \ {Pn}) u ∃r.

l
(I (n) \ {Qn}).

At this point, we can find a justification that uses γ and Pn−1uQn−1 v Pn. We further weaken
γ to

Av ∃r.
d
(I (n) \ {Pn, Pn−1}) u

∃r.
d
(I (n) \ {Pn,Qn−1})u ∃r.

d
(I (n) \ {Qn}).

Repeating this approach, after 2n weakenings we have only changed the first axiom, weak-
ening it to the axiom

Av
l

X i∈{Pi ,Q i},1≤i≤n

∃r.(X1 u · · · u Xn), (4.3)

2It is not clear yet whether this is also the case for the unmodified gentle repair algorithm.
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whose right-hand side is a conjunction with 2n conjuncts, each of them representing a possible
choice of Pi or Q i at every location i, 1≤ i ≤ n.

So far, we have just considered axioms from T (n)1 . Taking also axioms from T (n)2 into
account, we obtain for every conjunct ∃r.(X1 u · · · u Xn) in axiom (4.3) a justification for
Av B that consists of (4.3) and the axioms

{∃r.X1 v X1, Xn v B } ∪
{∃r.(X i u X i+1)v DX i X i+1

, DX i X i+1
u X i v X i+1 | 1≤ i < n }.

This justification can be removed by weakening (4.3) further by deleting one concept name
appearing in the conjunct. The justifications for other conjuncts are not influenced by this
modification. Thus, we can repeat this for each of the exponentially many conjuncts, which
shows that overall we have exponentially many iterations of the modified gentle repair
algorithm in this run. �

4.3 Weakening Relations

In order to obtain better bounds on the number of iterations of our algorithms, we restrict
the way in which axioms can be weakened. Before introducing concrete approaches for
how to do this for EL axioms in the next section, we investigate such restricted weakening
relations in a more abstract setting.

Definition 4.9. Given a pre-order � (i.e., an irreflexive and transitive binary relation) on
axioms, we say that it

• is a weakening relation if β � γ implies that Con({γ}) ⊂ Con({β});

• is bounded (linear, polynomial) if, for every axiom α, the length of the longest chain � −
generated from β is linearly (polynomially) bounded by the size of β .

• is complete if, for any axiom β that is not a tautology, there is a tautology γ such that
β � γ. ♦

If we use a linear (polynomial) and complete weakening relation, then termination with a
repair is guaranteed after a linear (polynomial) number of iterations.

Proposition 4.10. Let � be a linear (polynomial) and complete weakening relation. If in the
above (modified) gentle repair algorithm we have β � γ whenever β is replaced by γ, then
the algorithm stops after a linear (polynomial) number of iterations and yields as output an
ontology that is a repair of O=Ost ∪Ort w.r.t. the consequence α. ♦

Proof. For every axiom β in Ort we consider the length of the longest �-chain issuing from
it, and then sum up these numbers over all axioms in Ort. The resulting number is linearly
(polynomially) bounded by the size of the ontology (assuming that this size is given as
sum of the sizes of all its axioms). Let us call this number the chain-size of the ontology.
Obviously, if β is replaced by β ′ with β � β ′, then the length of the longest �-chain issuing
from β ′ is smaller than the length of the longest �-chain issuing from β . Consequently, if
O
(i+1)
rt is obtained from O

(i)
rt in the i-th iteration of the algorithm, then the chain-size of O(i)rt
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is strictly larger than the chain-size of O(i+1)
rt . This implies that there can be only linearly

(polynomially) many iterations.
Consider a terminating run of the algorithm that has produced the sequence of ontologies

Ort =O
(0)
rt ,O(1)rt , . . . ,O(n)rt . Then we have

Con(Ost ∪Ort) ⊇ Con(Ost ∪O
(1)
rt ) ⊇ . . . ⊇ Con(Ost ∪O

(n)
rt )

since � is a weakening relation. If the algorithm has terminated due to the fact that
α 6∈ Con(Ost ∪O

(n)
rt ), then O

(n)
rt is a repair of O w.r.t. α. Otherwise, the only reason for

termination could be that, although α ∈ Con(Ost ∪O
(n)
rt ), the algorithm cannot generate a

new ontology O
(n+1)
rt . In the unmodified gentle repair approach this means that there is an

axiom β in the hitting set H such that there is no axiom γ with β � γ such that (4.1) is
satisfied. However, using a tautology as the axiom γ actually allows us to satisfy the condition
(4.1). Thus, completeness of � implies that this reason for termination without success
cannot occur. An analogous argument can be used for the modified gentle repair approach.�

When describing our (modified) gentle repair algorithm, we have said that the chosen
axiom β needs to be replaced by a weaker axiom γ such that (4.1) or (4.2) holds. But we
have not said how such an axiom γ can be found. This of course depends on which ontology
language and which weakening relation is used. In the abstract setting of this section, we
assume that an “oracle” provides us with a weaker axiom.

Definition 4.11. Let � be a weakening relation. An oracle for � is a computable function
W that, given an axiom β that is not �-minimal, provides us with an axiom W (β) such that
β �W (β). For �-minimal axioms β we assume that W (β) = β . ♦

If the weakening relation is complete and well-founded (i.e., there are no infinite descending
�-chains β1 � β2 � β2 � · · · ), we can effectively find an axiom γ such that (4.1) or (4.2)
holds. We show this formally only for (4.2), but condition (4.1) can be treated similarly.

Lemma 4.12. Assume that J is a justification for the consequence α, and β ∈ J. If � is a
well-founded and complete weakening relation and W is an oracle for �, then there is an n≥ 1
such that (4.2) holds for γ=W n(β). If � is additionally linear (polynomial), then n is linear
(polynomial) in the size of β .

Proof. Well-foundedness implies that the �-chain β � W (β) � W (W (β)) � . . . is finite,
and thus there is an n such that W n+1(β) =W n(β), i.e., W n(β) is �-minimal. Since � is
complete, this implies that W n(β) is a tautology. Minimality of the justification J then yields
Ost ∪ (J \ {β})∪ {W n(β)} 6|= α. Linearity (polynomiality) of � ensures that the length of the
�-chain β �W (β)�W (W (β))� . . . is linearly (polynomially) bounded by the size of β .�

Thus, to find an axiom γ satisfying (4.1) or (4.2), we iteratively apply W to β until an
axiom satisfying the required property is found. The proof of Lemma 4.12 shows that at the
latest this is the case when a tautology is reached, but of course the property may already be
satisfied before that by a non-tautological axiom W i(β).

In order to weaken axioms as gently as possible, W should realize small weakening steps.
The smallest such step is one where there is no step in between.
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Definition 4.13. Let � be a pre-order. The one-step relation3 induced by � is defined as

�1 := {(β ,γ) ∈ � | there is no δ such that β � δ � γ}.

We say that �1 covers � if its transitive closure is again �, i.e., �+1 =�. In this case we also
say that � is one-step generated. ♦

If � is one-step generated, then every weaker element can be reached by a finite sequence of
one-step weakenings, i.e., if β � γ, then there are finitely many elements δ0, . . . ,δn (n≥ 1)
such that β = δ0 �1 δ1 �1 . . .�1 δn = γ. This leads us to the following characterization of
pre-orders that are not one-step generated.

Lemma 4.14. The pre-order� is not one-step generated iff there exist two comparable elements
β � γ such that every finite chain β = δ0 � δ1 � . . .� δn = γ can be refined in the sense that
there is an i, 0≤ i < n, and an element δ such that δi � δ � δi+1.

If β � γ are such that any finite chain between them can be refined, then obviously there
cannot be an upper bound on the length of the chains issuing from β . Thus, Lemma 4.14
implies the following result.

Proposition 4.15. If � is bounded, then it is one-step generated. ♦

The following example shows that well-founded pre-orders need not be one-step generated.

Example 4.16. Consider the pre-order � on the set

P := {β} ∪ {δi | i ≥ 0},

where β � δi for all i ≥ 0, and δi � δ j iff i > j. It is easy to see that � is well-founded and
that �1 = {(δi+1,δi) | i ≥ 0}. Consequently, �1

+ contains none of the tuples (β ,δi) for i ≥ 0,
which shows that �1 does not cover �. In particular, any finite chain between β and δi can be
refined. Interestingly, if we add elements γi (i ≥ 0) with β � γi � δi to this pre-order, then it
becomes one-step generated. ♦

One-step generated weakening relations allow us to find maximally strong weakenings
satisfying (4.1) or (4.2). Again, we consider only condition (4.2), but all definitions and
results can be adapted to deal with (4.1) as well.

Definition 4.17. Let J be a justification for the consequence α, and β ∈ J. We say that γ is a
maximally strong weakening of β in J if Ost∪(J \{β})∪{γ} 6|= α, but Ost∪(J \{β})∪{δ} |= α
for all δ with β � δ � γ. ♦

In general, maximally strong weakenings need not exist. As an example, assume that the
pre-order introduced in Example 4.16 (without the added axioms γi) is a weakening relation
on axioms, and assume that J = {β} and that none of the axioms δi have the consequence.
Obviously, in this situation there is no maximally strong weakening of α in J .

Next, we introduce conditions under which maximally strong weakenings always exist, and
can also be computed. We say that the one-step generated weakening relation � is effectively
finitely branching if for every axiom β the set {γ | β �1 γ} is finite and can effectively be
computed.

3This is sometimes also called the transitive reduction of �.
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Proposition 4.18. Let � be a well-founded, one-step generated, and effectively finitely branch-
ing weakening relation and assume that the consequence relation |= is decidable. Then all
maximally strong weakenings of an axiom in a justification can effectively be computed. ♦

Proof. Let J be a justification for the consequence α, and β ∈ J . Since � is well-founded,
one-step generated, and finitely branching, König’s Lemma implies that there are only finitely
many γ such that β � γ, and all these γ can be reached by following �1. Thus, by a breadth-
first search, we can compute the set of all γ such that there is a path β �1 δ1 �1 . . .�1 δn �1 γ

with Ost ∪ (J \ {β})∪ {γ} 6|= α, but Ost ∪ (J \ {β})∪ {δi} |= α for all i, 1 ≤ i ≤ n. If this set
still contains elements that are comparable w.r.t. � (i.e., there is a �1-path between them),
then we remove the weaker elements. It is easy to see that the remaining set consists of all
maximally strong weakenings of β in J . �

Note that the additional removal of weaker elements in the above proof is really necessary.
In fact, assume that β �1 δ1 �1 γ and β �1 δ2 �1 γ, and that Ost ∪ (J \ {β}) ∪ {γ} 6|= α,
Ost ∪ (J \ {β})∪ {δ1} |= α, but Ost ∪ (J \ {β})∪ {δ2} 6|= α. Then both δ2 and γ belong to
the set computed in the breadth-first search, but only δ2 is a maximally strong weakening
(see Example 4.27, where it is shown that this situation can really occur when repairing EL
ontologies). In particular, this also means that iterated application of a one-step oracle, i.e.,
an oracle W satisfying β �1 W (β), does not necessarily yield a maximally strong weakening.

4.4 Weakening Relations for EL Axioms

In this section, we restrict the attention to ontologies written in EL, but some of our ap-
proaches and results could also be transferred to other DLs. We start with observing that
weakening relations for EL axioms need not be one-step generated.

Proposition 4.19. If we define β �g γ if Con(γ) ⊂ Con(β), then �g is a weakening relation
on EL axioms that is not one-step generated.

Proof. It is obvious that �g is a weakening relation.4 To see that it is not one-step generated,
consider a GCI β that is not a tautology and an arbitrary tautology γ. Then we have β � γ.
Let β = δ0 �g δ1 �g . . .�g δn = γ be a finite chain leading from β to γ. Then δn−1 must be
a GCI that is not a tautology. Assume that δn−1 = C v D. Then δ := ∃r.C v ∃r.D satisfies
δn−1 �g δ �g γ. By Lemma 4.14, this shows that � is not one-step generated. �

Our main idea for obtaining more well-behaved weakening relations is to weaken a GCI
C v D by generalizing the right-hand side D and/or by specializing the left-hand side C .
Similarly, a concept assertion D(a) can be weakened by generalizing D. For role assertions
we can use as weakening an arbitrary tautological axiom, but will no longer consider them
explicitly in the following.

Proposition 4.20. If we define

C v D �s C ′ v D′ if C ′ v C , D v D′ and {C ′ v D′} 6|= C v D,
D(a)�s D′(a) if D À D′,

4In fact, it is the greatest one w.r.t. set inclusion.
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then �s is a complete weakening relation. ♦

Proof. To prove that �s is a weakening relation we must show that β �s γ consequently
implies Con({γ}) ⊂ Con({β}). If C ′ v C and D v D′ hold, then it follows that

Con({C ′ v D′}) ⊆ Con({C v D}) and Con({a : D′}) ⊆ Con({a : D}).

The second inclusion is strict iff D À D′. For the first inclusion to be strict, C ′ À C or
D À D′ is a necessary condition, but it is not sufficient. This is why we explicitly require
{C ′ v D′} 6|= C v D, which yields strictness of the inclusion. Completeness is trivial due to
the availability of all tautologies of the form C v> and >(a). �

To see why, e.g., D À D′ does not imply Con({C v D′}) ⊂ Con({C v D}), notice that
Au ∃r.AÀ ∃r.A, but Con({Av ∃r.A}) = Con({Av Au ∃r.A}). Unfortunately, the weakening
relation �s introduced in Proposition 4.20 is not well-founded since left-hand sides can be
specialized infinitely. For example, we have

>v A�s ∃r.>v A�s ∃r.∃r.>v A�s · · · .

To avoid this problem, we now restrict the attention to sub-relations of�s that only generalize
the right-hand sides of GCIs. We will not consider concept assertions, but they can be treated
similarly.

4.4.1 Generalizing the Right-Hand Sides of GCIs

We define
C v D �sub C ′ v D′ if C ′ = C and C v D �s C ′ v D′.

Theorem 4.21. The relation �sub on EL axiom is a well-founded, complete, and one-step
generated weakening relation, but it is not polynomial.

Proof. Proposition 4.20 implies that �sub is a weakening relation and completeness fol-
lows from the fact that C v D �sub C v> whenever C v D is not a tautology. In EL, the
inverse subsumption relation is well-founded, i.e., there cannot be an infinite sequence
C0 À C1 À C2 À . . . of EL concepts. Looking at the proof of this result given in [BM10], one
sees that it actually shows that À is bounded. Obviously, this implies that �sub is bounded as
well, and thus one-step generated by Proposition 4.15.

It remains to show that �sub is not polynomial. Let n≥ 1 and Nn := {A1, . . . , A2n} be a set
of 2n distinct concept names. Then we have

∃r.
l

Nn À
l

X⊆Nn∧|X |=n

∃r.
l

X .

Note that the size of ∃r.
d

Nn is linear in n, but that the conjunction on the right-hand side of
this strict subsumption consists of exponentially many concepts ∃r.

d
X that are incomparable

w.r.t. subsumption. Consequently, by removing one conjunct at a time, we can generate
an ascending chain w.r.t. À of EL concepts whose length is exponential in n. Using these
concepts as right-hand sides of GCIs with left-hand side B for a concept name B 6∈ Nn, we
obtain an exponentially long descending chain w.r.t. �sub. �
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To be able to apply Proposition 4.18, it remains to show that �sub is effectively finitely
branching. For this purpose, we first investigate the one-step relation À1 induced by À. Given
an EL concept C , we want to characterize the set of its upper neighbors

Upper(C) := {D | C À1 D},

and show that it can be computed in polynomial time. To show this, we first assume that the
given EL concepts needs to be reduced that can be done in polynomial time.

Definition 4.22. Given a reduced EL concept C, we define the set U(C) by induction on the
role depths of C. More precisely, U(C) consists of the concepts D that can be obtained from C as
follows:

• Remove a concept name A from the top-level conjunction of C.

• Remove an existential restriction ∃r.E from the top-level conjunction of C, and replace it
by the conjunction of all existential restrictions ∃r.F for F ∈ U(E). ♦

For example, if C = Au ∃r.(B1 u B2 u B3), then U(C) consists of the two concepts, which
are ∃r.(B1 u B2 u B3) and Au ∃r.(B1 u B2)u ∃r.(B1 u B3)u ∃r.(B2 u B3). While the former is
obvious, the latter is obtained since each B1 u B2, B1 u B3, and B2 u B3 is an element of U(C).
The following characterization for Upper(C) is shown in [Kri18].

Proposition 4.23. Let C be a reduced EL concept. Then we have Upper(C) = U(C) up to
equivalence. In particular, this implies that the cardinality of Upper(C) is polynomial in the size
of C and that this set can be computed in polynomial time in the size of C. ♦

Following the proposition above, a given EL concept has only polynomially many upper
neighbors, each of which is of polynomial size. As an easy consequence we obtain the
following lemma:

Lemma 4.24. The one-step relation À1 induced by À on EL concepts is decidable in polynomial
time.

Unfortunately, this result does not transfer immediately from concept subsumption to
axiom weakening. In fact, as we have seen before, strict subsumption need not produce a
weaker axiom (see the remark below Proposition 4.20). Thus, to find all GCIs C v D′ with
C v D �sub

1 C v D′, it is not sufficient to consider only concepts D′ with D À1 D′. In case
C v D′ is equivalent to C v D, we need to consider upper neighbors of D′, etc.

Proposition 4.25. The one-step relation�sub
1 induced by�sub is effectively finitely branching.♦

Proof. SinceÀ is one-step generated, finitely branching, and well-founded, for a given concept
D, there are only finitely many concepts D′ such that D À D′. Thus, a breadth first search along
À1 can be used to compute all concepts D′ such that there is a path D À1 D1 À1 . . . Dn À1 D′

where C v D is equivalent to C v Di for i = 1, . . . , n, and C v D �sub C v D′. Since À is
one-step generated, it is easy to see that all axioms γ with C v D �sub

1 γ can be obtained
this way. However, the computed set of axioms may contain elements that are not one-step
successors of C v D. Thus, in a final step, we remove all axioms that are weaker than some
axiom in the set. �
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>v Au ∃r.A

>v Au ∃r.> >v ∃r.A

>v ∃r.>

|=

|=

|=
6|=

|=
6|= |=6|=

Figure 4.26: One-step weakening

Example 4.27. To see that the final step of removing axioms in the proof of Proposition 4.25
is needed, consider the axiom β = > v Au ∃r.A. The right-hand side Au ∃r.A has two upper
neighbors, namely ∃r.A and Au ∃r.>. The first yields the axiom > v ∃r.A, which satisfies
>v Au ∃r.A�sub

1 >v ∃r.A. The second yields the axiom >v Au ∃r.>, which is equivalent to
β . Thus, the only upper neighbor >v ∃r.> is considered, but this concept yields an axiom that
is actually weaker than >v ∃r.A, and thus needs to be removed.

A similar, but simpler example can be used to show that the additional removal of weaker
elements in the proof of Proposition 4.18 is needed. Let α be the consequence >v A, J = {β}
for β := > v Au B, δ1 := > v A, δ2 := > v B, and γ := > v >. Then we have exactly the
situation described below the proof of Proposition 4.18, with �sub as the employed weakening
relation. ♦

Corollary 4.28. All maximally strong weakenings w.r.t. �sub of an axiom in a justification can
effectively be computed.

Proof. By Proposition 4.18, this is an immediate consequence of the fact that �sub is well-
founded, one-step generated, and effectively finitely branching. �

The algorithm for computing maximally strong weakenings described in the proof of
Proposition 4.18 has non-elementary complexity for �sub. In fact, the bound for the depth of
the tree that must be searched grows by one exponential for every increase in the role-depth
of the concept on the right-hand side. It is not clear how to obtain an algorithm with a better
complexity. Example 4.38 below yields an exponential lower-bound, which still leaves a
huge gap. We can also show that even deciding whether a given axiom is a maximally strong
weakening w.r.t. �sub is coNP-hard.

Before we can prove this hardness result, we must introduce the coNP-complete problem
that will be used in our proof by reduction. A monotone Boolean formula ϕ is built from
propositional variables using the connectives conjunction (∧) and disjunction (∨) only. If
V is the set of propositional variables occurring in ϕ, then propositional valuations can be
seen as subsets W of V . Since ϕ is monotone, the valuation V clearly satisfies ϕ, and the
valuation ; falsifies ϕ. We are now interested in maximal valuations falsifying ϕ, where
valuations are compared using set inclusion.

Definition 4.29. The all-maximal-valuations problem receives as input

• a monotone Boolean formula ϕ with propositional variables V , and
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• a set V of maximal valuations falsifying ϕ.

The question is then whether V is the set of all maximal valuations falsifying ϕ. ♦

As shown in [Nys09] (Lemma 6.13), the all-maximal-valuations problem is coNP-complete.

Proposition 4.30. The problem of deciding whether a given EL GCI C v D′ is a maximally
strong weakening of the EL GCI C v D w.r.t. �sub is coNP-hard. ♦

Proof. Given an instanceϕ, V of the all-maximal-valuations problem, we construct an instance
of our problem as follows. For every subformula ψ of ϕ, we introduce a new concept name
Bψ. If ψ is not a propositional variable, we define the TBox:

Tψ :=

¨

{Bψ1
u Bψ2

v Bψ} ψ=ψ1 ∧ψ2,

{Bψ1
v Bψ, Bψ2

v Bψ} ψ=ψ1 ∨ψ2.

Let V be the set of all propositional variables appearing in ϕ, and let csub(ϕ) be the set of
all subformulas of ϕ that are not in V .

We construct the ontology that has only one refutable axiom

Av ∃r.
l
{Bp | p ∈ V},

and as static part the ontology

Ts =
⋃

ψ∈csub(ϕ)

Tψ ∪ {∃r.Bϕ v C}.

Clearly, the refutable axiom is a justification for Av C .
Given a set W of valuations, define the concept

XW :=
l

W∈W

∃r.
l
{Bp | p ∈W}.

It follows that {Av XW} ∪ Ts 6|= Av C iff no valuation in W satisfies ϕ.
We claim that V is the set of all maximal valuations not satisfyingϕ iff Av XV is a maximally

strong weakening of Av ∃r.
d
{Bp | p ∈ V}.

First, assume that V is the set of all maximal valuations not satisfying ϕ. It implies that
{A v XV} ∪ Ts 6|= A v C and clearly Av ∃r.

d
{Bp | p ∈ V} �sub Av XV . If A v XV is not

maximally strong, then there is a concept E such that ∃r.
d
{Bp | p ∈ V} À E À XV and

{Av E} ∪ Ts 6|= Av C . The strict subsumption relationships imply the E contains a top-level
conjunct ∃r.

d
{Bp | p ∈ U} for a set U ⊆ V such that U is incomparable w.r.t. set inclusion

with all the sets in V. Since V is the set of all maximal valuations not satisfying ϕ, this implies
that U satisfies ϕ. Consequently, {Av E} ∪ Ts |= Av C , which yields a contradiction to our
assumption that Av XV is not maximally strong.

Conversely, assume that V is not the set of all maximal valuations not satisfyingϕ, i.e., there
is a maximal valuation U not satisfyingϕ such that U 6∈ V. This implies that U is incomparable
w.r.t. inclusion with any of the elements of V, and thus ∃r.

d
{Bp | p ∈ V} À XV∪{U} À XV .

In addition, we know that {A v XV∪{U}} ∪ Ts 6|= A v C , which shows that A v XV is not
maximally strong. �
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4.4.2 Syntactic Generalizations

In order to obtain a weakening relation that has better algorithmic properties than �sub,
we consider a syntactic approach for generalizing EL concepts. Basically, the concept D
is a syntactic generalization of the concept C if D can be obtained from C by removing
occurrences of subconcepts. To ensure that such a removal really generalizes the concept,
we work here with reduced concepts.

Definition 4.31. Let C , D be EL concepts. Then D is a syntactic generalization of C (written
C Àsyn D) if it is obtained from the reduced form of C by replacing some occurrences of
subconcepts 6=> with >. ♦

For example, the concept C = A1u∃r.(A1uA2) is already reduced, and its syntactic general-
izations include, among others,>u∃r.(A1uA2)≡; ∃r.(A1uA2), A1u∃r.(>uA2)≡; A1u∃r.A2,
∃r.>, and >.

Lemma 4.32. If C Àsyn D, then C À D, and the length of any Àsyn-chain issuing from C is
linearly bounded by the size of C.

Proof. We use a modified definition of size (called m-size) where only occurrences of concept
and role names are counted. Reducing a concept preserves equivalence and never increases
the m-size. Since the concept constructors of EL are monotonic, C Àsyn D implies C v D. In
addition, the m-size of the reduced form of C is strictly larger than the m-size of the reduced
form of D since concepts 6= > have an m-size > 0 whereas > has m-size 0. This shows
C 6≡; D (and thus C À D), since these reduced forms then cannot be equal up to associativity
and commutativity of u. In addition, it clearly yields the desired linear bound on the length
of Àsyn-chains. �

By Proposition 4.15, this linear bound implies that Àsyn is one-step generated. In the
corresponding one-step relation Àsyn

1 , the replacements can be restricted to subconcepts that
are concept names or existential restriction of the form ∃r.>. For example, we have (modulo
equivalence)

∃r.(A1 u A2 u A3) À
syn
1 ∃r.(A1 u A2) À

syn
1 ∃r.A2 À

syn
1 ∃r.> Àsyn

1 >.

However, not all such restricted replacements lead to single steps w.r.t. Àsyn. For example,
consider the concept C = ∃r.(A1 u A2) u ∃r.(A2 u A3). Then replacing A3 by > leads to
D = ∃r.(A1uA2)u∃r.(A2u>)≡ ∃r.(A1uA2), but we have C Àsyn ∃r.(A1uA2)u∃r.A3 Àsyn D.

Before proving that every Àsyn
1 -step can be realized by such restricted replacements, we use

the fact that any EL concept can be written as a conjunction of concept names and existential
restrictions to give a recursive characterization of Àsyn. Let C be an EL concept, and assume
that its reduced form is

C ′ = A1 u . . .u Ak u ∃r1.C1 u . . .u ∃r`.C`.

Then we have Ai 6= A j for all i 6= j in {1, . . . , k} and rµ 6= rν or Cµ 6v Cν for all ν 6= µ
in {1, . . . ,`}, since otherwise C ′ would not be reduced. Replacing some occurrences of
subconcepts with > then corresponds (modulo equivalence) to
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• removing some of the conjuncts of the form Ai ,

• removing some of the conjuncts of the form ∃rµ.Cµ,

• replacing some of the conjuncts of the form ∃rν.Cν with a conjunct of the form ∃rν.Dν
where Cν Àsyn Dν

such that at least one of these actions is really taken. Thus, C Àsyn
1 D implies that D can

be obtained from the reduced form of C by taking exactly one of these actions for exactly
one conjunct. In fact, either taking several actions has the same effect as taking one of
them, or taking the actions one after another leads to a sequence of several strict syntactic
generalizations steps, which is precluded by the definition of Àsyn

1 .

Lemma 4.33. Let C 6≡; > with reduced form C ′ = A1 u . . .u Ak u ∃r1.C1 u . . .u ∃r`.C`, and
assume that C Àsyn

1 D. Then D is obtained (modulo equivalence) from C ′ by either

1. removing exactly one of the concept names Ai ,

2. removing exactly one of the existential restrictions ∃rµ.Cµ for Cµ ≡; >, or

3. replacing exactly one of the existential restrictions ∃rν.Cν with ∃rν.Dν
for Cν À

syn
1 Dν.

Proof. As argued above, C Àsyn
1 D implies that D is obtained from C ′ by performing one of

the following three actions:

• Removing exactly one of the conjuncts of the form Ai: in this case, we are done.

• Removing exactly one of the conjuncts of the form ∃rµ.Cµ: in this case we are done
if Cµ ≡; >. Thus, assume that Cµ 6≡; >. Let D′ be obtained from C ′ by replacing
∃rµ.Cµ with ∃rµ.>. Then we either have C Àsyn D′ Àsyn D or D′ ≡; D. The first case
contradicts our assumption that C Àsyn

1 D. The second case is dealt with below since
Cµ Àsyn >.

• Replacing exactly one of the conjuncts of the form ∃rν.Cν with a conjunct of the form
∃rν.Dν where Cν Àsyn Dν: in this case we are done if Cν À

syn
1 Dν. Thus, assume that

there is an EL concept D′ν such that Cν Àsyn D′ν À
syn Dν. Since we already know that

Àsyn is one-step generated, we can assume without loss of generality that Cν À
syn
1 D′ν.

Let D′ be obtained from C ′ by replacing ∃rν.Cν with ∃rµ.D′ν. Then we either have
C Àsyn D′ Àsyn D or D′ ≡; D. The first case contradicts our assumption that C Àsyn

1 D.
In the second case, we are done.

Since there are no other cases, this completes the proof of the lemma. �

Based on this lemma, the following proposition can now easily be shown by induction on
the role depth of C .

Proposition 4.34. Let C be an EL concept and C ′ its reduced form. If C Àsyn
1 D, then D can be

obtained (modulo equivalence) from C ′ by either replacing a concept name or a subconcept of
the form ∃r.> by >. ♦

As an immediate consequence we obtain that Àsyn is effectively linearly branching.



70 Chapter 4. Repairing Description Logic Ontologies

Corollary 4.35. For a given EL concept C, the set {D | C Àsyn
1 D} has a cardinality that is

linear in the size of C and it can be computed in polynomial time.

Proof. That the cardinality of {D | C Àsyn
1 D} is linearly bounded by the size of C is an

immediate consequence of Proposition 4.34. To compute the set, one first computes all
concepts that can be obtained by replacing in the reduced form of C a concept name or
a subconcept of the form ∃r.> by >. The polynomially many concepts obtained this way
contain all the elements of {D | C Àsyn

1 D}. Additional elements in this set are obviously
strictly subsumed by an element of {D | C Àsyn

1 D}, and thus we can remove them by removing
elements that are not subsumption minimal. �

Now, we define our new weakening relation, which syntactically generalizes the right-hand
sides of GCIs:

C v D �syn C ′ v D′ if C = C ′, D Àsyn D′ and {C ′ v D′} 6|= C v D.

It is clear that syntactically generalizing the right-hand side of GCIs is a fragment of mechan-
isms to semantically generalize the right-hand side of GCIs that has been applied by �sub,
which means that �syn⊆�sub. Now, the following theorem is an easy consequence of the
properties of Àsyn and of Corollary 4.35.

Theorem 4.36. The relation �syn on EL axiom is a linear, complete, one-step generated, and
effectively linearly branching weakening relation.

Due to fact that �syn
1 -steps do not increase the size of axioms, the linear bounds on the

branching of �syn
1 and the length of �syn-chains imply that the algorithm described in the

proof of Proposition 4.18 has an exponential search space.

Corollary 4.37. All maximally strong weakenings w.r.t. �syn of an axiom in a justification can
be computed in exponential time.

The following example shows that there may be exponentially many maximally strong
weakenings w.r.t. �syn, and thus the exponential complexity stated above is optimal.

Example 4.38. Let βi := Pi uQ i v B for i = 1, . . . , n and β := Av P1 uQ1 u . . . u Pn uQn.
We consider the ontology O = Ost ∪Ort, where Ost := {βi | 1 ≤ i ≤ n} and Ort := {β}.
Then J = {β} is a justification for the consequence α = Av B, and all axioms of the form
Av X1 u X2 u . . .u Xn with X i ∈ {Pi ,Q i} are maximally strong weakenings w.r.t. �syn of β in J.
The same is true for �sub since in the absence of roles, these two weakening relations coincide.♦

A single maximally strong weakening can however be computed in polynomial time.

Proposition 4.39. A single maximally strong weakening w.r.t. �syn can be computed in poly-
nomial time. ♦

Proof. The algorithm that computes a maximally strong weakening works as follows. Starting
from the concept D′ :=>, it looks at all possible ways of making one step in the direction
of D using Ásyn

1 , i.e., it considers all D′′ where D vsyn D′′ Àsyn
1 D′. The concepts D′′ can be

obtained by adding a concept name A or an existential restriction ∃r.> at a place where (the
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reduced form of) D has such a concept or restriction. Obviously, there are only polynomially
many such concepts D′′. For each of them we check whether

Ost ∪ (J \ {C v D})∪ {C v D′′} |= α.

If this is the case for all D′′, we return C v D′. Otherwise, we choose an arbitrary D′′ with
Ost ∪ (J \ {C v D})∪ {C v D′′} 6|= α, and continue with D′ := D′′.

This algorithm terminates after linearly many iterations since in each iteration the size
of D′ is increased and it cannot get larger than D. In addition, C v D′ is maximally strong
since for every axiom C v E such that C v D �syn C v E �syn C v D′ there is a sequence
E Àsyn

1 . . . Àsyn
1 D′′ Àsyn

1 D′. Consequently, C v D′′ has the consequence, and thus also
C v E. �

Nevertheless, we can show that deciding whether an axiom is a maximally strong weaken-
ing w.r.t. �syn is coNP-complete.

Proposition 4.40. The problem of deciding whether a given EL GCI C v D′ is a maximally
strong weakening of the EL GCI C v D w.r.t. �syn is coNP-complete. ♦

Proof. First, we show the coNP upper bound. Let O =Ost ∪Ort, J ⊆Ort a justification of the
consequence α, C v D an element of J , and C v D′ a GCI. Obviously, we can decide in polyno-
mial time whether C v D �syn C v D′ and whether Ost∪(J \{C v D})∪{C v D′} 6|= α. To dis-
prove that C v D′ is maximally strong, we guess an EL concept D′′ such that D Àsyn D′′ Àsyn D′.
This requires only polynomially many guesses: in fact, D′ is obtained from D by replacing
linearly many occurrences of subconcepts with >, and we simply guess which of these
replacements are not done when going from D to D′′. We then check in polynomial time
whether C v D′′ satisfies

• Ost ∪ (J \ {C v D})∪ {C v D′′} 6|= α, and

• {C v D′} 6|= C v D′′.

If both tests succeed then C v D′′ is a counterexample to C v D′ being maximally strong.
For the hardness proof, we use again the all-maximal-valuations problem. Given an instance

ϕ, V of the all-maximal-valuations problem, we construct an instance of our problem as
follows. For every subformula ψ of ϕ, we introduce a new concept name Bψ. If ψ is not a
propositional variable, we define the TBox:

Tψ :=

¨

{Bψ1
u Bψ2

v Bψ} ψ=ψ1 ∧ψ2

{Bψ1
v Bψ, Bψ2

v Bψ} ψ=ψ1 ∨ψ2.

Let V be the set of all propositional variables appearing in ϕ, and let csub(ϕ) be the set of
all subformulas of ϕ that are not in V . Define the concept

XV :=
l

W∈V

∃r.
l
{Bp | p ∈W}.

We construct the ontology that has only one refutable axiom

XV v ∃r.
l
{Bp | p ∈ V},
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and as static part the ontology

Ts =
⋃

ψ∈csub(ϕ)

Tψ ∪ {∃r.Bϕ v C}

Clearly, the refutable axiom is the only justification for XV v C .
For every valuation W ⊆ V , if W is a subset of some valuation in V, then

XV v ∃r.
l
{Bp | p ∈W} is equivalent to XV v>.

We claim that XV v> is a maximally strong weakening w.r.t. �syn of the only refutable axiom
iff V is the set of all maximal valuations not satisfying ϕ.

To prove this claim, first assume that V is not the set of all maximal valuations not satisfying
ϕ, i.e., there is a maximal valuation W not satisfying ϕ such that W 6∈ V. On the one hand,
this implies that W is incomparable w.r.t. inclusion with any of the elements of V, and thus
XV v ∃r.

d
{Bp | p ∈W} is not a tautology. On the other hand, we have

Ts ∪ {XV v ∃r.
l
{Bp | p ∈W}} 6|= XV v C ,

and XV v ∃r.
d
{Bp | p ∈ V} �syn XV v ∃r.

d
{Bp | p ∈W}. This shows that the tautology

XV v > is not a maximally strong weakening w.r.t. �syn of the only refutable axiom
XV v ∃r.

d
{Bp | p ∈ V}.

Conversely, assume that V is the set of all maximal valuations not satisfying ϕ, and that γ
is a maximally strong weakening w.r.t. �syn of XV v ∃r.

d
{Bp | p ∈ V}. If γ= XV v>, then

we are done. Otherwise, there is a set W ⊆ V such that γ = XV v ∃r.
d
{Bp | p ∈W}. But

then Ts ∪ {γ} 6|= XV v C implies that W does not satisfy ϕ, and thus W is a subset of some
valuation in V. Consequently, γ is a tautology and thus equivalent to XV v >. This shows
that XV v> is a maximally strong weakening w.r.t. �syn of XV v ∃r.

d
{Bp | p ∈ V}. �

The standard reasoning procedures for EL first normalize the given TBox, where normaliz-
ation breaks up large GCIs into smaller ones [BHL+17]. In some cases, applying classical
repair to the normalized TBox also leads to more gentle repairs. For example, consider
the refutable TBox T = {A v B1 u B2}, the strict ABox A = {A(a)}, and the consequence
α = (B1 u B2)(a). The TBox T is normalized to T ′ = {Av B1, Av B2}, which has the two
classical repairs T ′1 = {Av B1} and T ′2 = {Av B2}. This is exactly what our gentle repair
approach (using �sub or �syn) would yield. However, normalization does not always do the
job as illustrated by the following two examples. As a first example, consider the refutable
TBox {Av ∃r.B}, the strict ABox {A(a)}, and the consequence ∃r.B(a). Here, the TBox is
normalized, and classical repair removes the GCI. In contrast, our gentle repair approach
can weaken the GCI to Av ∃r.>. Another problem with using normalization in this setting
is that in general it introduces new concept names. As a second example, consider the
refutable TBox {Av ∃r.∃r.B} and the strict ABox {A(a)}, where the unwanted consequence is
∃r.∃r.B(a). Normalizing the TBox yields {Av ∃r.X , X v ∃r.B}; thus, classical repair yields as
repairs the TBoxes consisting of Av ∃r.X or X v ∃r.B. These two axioms do not make sense
for the user since X is a name without meaning in the application. Thus, some post-processing
that can get rid of the new names (similar to forgetting [NR14]) would be required. While
an approach based on appropriate variants of normalization and forgetting may be able
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to generate gentle repairs akin to what our approach produces using �syn, it would not be
able to deal with more sophisticated weakening relations such as �sub. In addition, classical
repair applied to the normalized TBox would not distinguish between more or less gentle
repairs, and would also produce all classical repairs of the original TBox.

4.5 Weakening Relations for ALC Axioms

We have seen in Proposition 4.19 that �g is not one-step generated so that we cannot apply
this weakening relation for ALC axioms. If we move to �s defined in Proposition 4.20, then
we cannot use it either to specialize the left-hand side of ALC GCIs and unfortunately this
weakening relation also cannot be employed for generalizing the right-hand size of ALC
GCIs since the right-hand sides can be generalized infinitely as illustrated below

B v A�s B v At∀r.⊥�s B v At∀r.∀r.⊥�s B v At∀r.∀r.∀r.⊥�s . . .

To deal with this issue, we introduce weakening relations that have restrictions as defined in
the remainder of this section. Note that we again focus only on ALC GCIs since ALC concept
assertions can be treated similarly.

4.5.1 Generalizations and Specializations in ALC w.r.t. Role Depth

Here we define a weakening relation for ALC that generalizes (specializes) the concepts C
such that the generalized (specialized) concepts are built over the signature of C and have
role-depth bounded by the role-depth of C .

Definition 4.41. Let C , D be ALC concepts. We say that

• D is a bounded specialization of C, denoted by C Ábosp D, if C Á D, rd(D)≤ rd(C), and
D contains only concept and role names occurring in C.

• D is a bounded generalization of C, denoted by C Àboge D, if C À D, rd(D) ≤ rd(C),
and D contains only concept and role names occurring in C. ♦

Lemma 4.42. The relations Ábosp and Àboge are well-founded.

Proof. This is an easy consequence of the fact that, for fixed finite sets of concept names NC
and role names NR and a fixed bound n≥ 0, there are only finitely many ALC concepts that
are of role depth at most n and are only built over concept names and roles names from
NC ∪NR. So, if we assume that C0 Ábosp C1 Ábosp C2 Ábosp . . ., then there is an i < j such that
Ci ≡ C j, which violates the fact that Ci Ábosp Ci+1 Ábosp . . . Ábosp C j. These arguments also
work for Àboge. �

Proposition 4.43. Assume that our axioms are GCIs formulated in ALC. If we define

C v D �b C ′ v D′ if C ′ Ábosp C , D Àboge D′ and {C ′ v D′} 6|= C v D,

then �b is a well-founded, complete, and one-step generated weakening relation. ♦
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Proof. �b is well-founded due to Lemma 4.42. Then, the completeness follow from the fact
that there is a concept > (⊥) as bounded generalization (specialization) of ALC concepts.
Since this is bounded, by Proposition 4.15, �b is one-step generated. �

Note that weakening relations for EL axioms defined in Theorem 4.21 is contained in �b.
Consequently, it also follows that �b is not polynomial.

4.5.2 Syntactical Generalizations and Specializations in ALC

In order to obtain a linear weakening relation for ALC, we generate more general or more
specific concepts by syntactically replacing subconcepts with > and ⊥, depending on whether
these subconcepts occur positively or negatively. Intuitively, a positive occurrence of a
subconcept is under an even number of negations whereas a negative one is under an odd
number of negations. To define this formally, let us consider the syntax trees of ALC concepts
that are defined as follows.

Definition 4.44 (Syntax Tree of ALC). Let C be an ALC concept such that C 6≡ > or C 6≡ ⊥.
The syntax tree TC of C is a tuple (V, E ,ε), where V is the set of concept names and constructors
occurring in C, E ⊆ V × V is the set of edges, and ε is the root node. TC is inductively defined as
follows

• if C = A∈ NC, then E = ;, and ε = A,

• if C = ◦D, where ◦ ∈ {¬} ∪ {∀r∃r. | role name r occurs in C}, then
– E = {(¬, D)} ∪ E ′ and
– ε = ◦,

where E ′ is the set of edges in TD, respectively, and

• if C = D1 ◦ D2, where ◦ ∈ {u,t}, then
– E = {(◦, D1), (◦, D2)} ∪ E1 ∪ E2 and
– ε = ◦, ♦

where E1 and E2 are the set of nodes and edges in TD1
and TD2

, respectively.

Occurrences of subconcepts correspond to nodes in the tree. Such a node is positive if on
the path from root to this node, an even number of negations is encountered. Otherwise, it
is negative. Occurrences of subconcepts are called positive (negative) if the corresponding
nodes in the syntax tree are positive (negative).

Definition 4.45. Let C , D be ALC concepts.

1. D is a direct syntactic specialization of C if it is obtained from C by replacing a positive
occurrence of a subconcept 6=⊥ by ⊥ or a negative occurrence of a subconcept 6=> by >;

2. D is a direct syntactic generalization of C if it is obtained from C by replacing a positive
occurrence of a subconcept 6=> by > or a negative occurrence of a subconcept 6=⊥ by ⊥;

The concept D is a syntactic specialization (generalization) of C iff it is obtained from C by a
finite sequence of direct syntactic specializations (generalizations). ♦
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The following lemma is an easy consequence of the fact that negation is anti-monotonic w.r.t.
subsumption and all the other concept constructors of ALC are monotonic w.r.t. subsumption.

Lemma 4.46. Let C , D be ALC concepts.

1. If D is a syntactic specialization of C, then D v C.

2. if D is a syntactic generalization of C, then C v D.

We write D Àsyge C to indicate that D is a syntactic specialization of C and C Ásysp D to
indicate that D is a syntactic generalization of C .

Lemma 4.47. The relations Àsyge and Ásysp are well-founded and for every ALC concept C, the
length of the longest Àsyge-chain(Ásysp-chain) issuing from C is linearly bounded by the size of
C.

Proof. First, consider Àsyge. We must show that there cannot be an infinite sequence
C0 Àsyge C1 Àsyge C2 Àsyge . . .. For this purpose, we define the size | C | of an ALC concept C
by counting

• every occurrence of a concept constructor as 1,

• every occurrence of a concept name as 2,

• every positive occurrence of > and every negative occurrence of ⊥ by 2, and

• every negative occurrence of > and every positive occurrence of ⊥ by 1. �

If D is a direct syntactic specialization of C , then | C |>| D |. In fact, the replacement
generates a new negative occurrence of > or a new positive occurrence of ⊥, whose size is
counted by 1. However, the subconcept that was replaced yields a contribution of at least 2
to the size of C . This shows well-foundedness of Àsyge.

More precisely, this argument shows that the length of the longest Àsyge-chain issuing from
C is bounded by | C |. Note that our definition of | C | is not the standard definition of | C |,
but w.l.o.g. any reasonable definition for the size of C 5 is also linear in C . The relation Ásysp

can also be treated similarly, but different definition of size should be considered first.

The following proposition is an easy consequence of the lemma above.

Proposition 4.48. Assume that our axioms are GCIs formulated in ALC. If we define

C v D �syt C ′ v D′ if C ′ Àsyge C , D Ásysp D′, and {C ′ v D} 6|= C v D,

then �syt is a linear and complete weakening relation. ♦

Similar to relationships between �sub and �syn, we can also clearly see that the mechan-
ism to syntactically generalize (specialize) ALC concepts C based on positive or negative
occurrences of subconcepts is a fragment of the procedure to generalize (specialize) ALC

5e.g., one where the size of concept names and all constructors are counted as 1
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concepts C based on the role-depth and the signature of C . This implies that �syt⊂�b, which
means that �syt provides less iterations to reach a gentle repair than �b.

However, the well-foundedness, boundedness, and the completeness properties are still
not enough to make sure that we can always compute maximally strongest weakenings
w.r.t. �b and �syt. It will be interesting to see whether these two weakening relations are
effectively finitely branching, which means that it might be the case that we need to find a
procedure for looking upper neighbors or lower neighbors of ALC concepts w.r.t. �b and
�syt.



Chapter 5

Privacy-Preserving Ontology Publishing for
EL Instance Stores

We have seen that repairing ontologies can be an alternative way to eliminate unwanted
consequences, or particularly consequences that should be hidden when we deal with a
privacy setting. In this context, we may say that the ontology has been compliant with privacy
constraints which will be called privacy policies in the following. However, if information
about individuals contained in the ontology should be publicly published, then one needs to
be aware that compliance property per se is not enough. In previous sections, we may assume
that the background knowledge of attackers is also a part of the input ontology. Within
the publication phase of data transactions, this may be the case that a possible attacker
can also obtain relevant information from other sources, which together with the published
information might violate the privacy policy. Safety requires that the combination of the
published information with any other compliant information is again compliant. If both
compliance and safety are not satisfied, then the ontology needs to be modified in a minimal
way. The latter condition is ensured by the optimality property.

All three properties above are stated in [GK16; GK19] which lay the foundations of privacy-
preserving data publishing (PPDP), well-studied in [FWC+10], in the context of Linked
Data. However, the papers do not consider the case where the information is augmented
by background knowledge or an ontology. In this chapter, we make a first step towards
privacy-preserving ontology publishing (PPOP), which leads us to one of the goals aiming at
building an ontology that satisfies three aforementioned properties. Instead of proposing a
framework that can yield such ontologies, as what we did in the previous chapter for the
topic on ontology repair, we realize an initial step of studying PPOP by considering a setting
where the ontology consists of an ABox containing only concept assertions. In [HLT+04],
such an ABox is called an instance store. In addition, we assume that the ontology is written
in the Description Logic EL and is not augmented by TBoxes. As a consequence, we may
assume that all information about individuals are given by an EL concept. 1

A privacy policy is given by an instance query, i.e., by an EL concept D. A concept C (giving
information about some individual a) is compliant with this policy, if it is not subsumed by
D, i.e., if C(a) does not imply D(a). In our example, the policy could be formalized as the
EL concept.

D = Patientu ∃seen_by.(Doctoru ∃works_in.Oncology),

1Since EL concepts are closed under conjunction, we can assume that the ABox contains only one assertion for
a.
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which says that one should not be able to find out who are the patients that are seen by a
doctor that works for the oncology department. The concept

C = PatientuMaleu ∃seen_by.(Doctoru Femaleu ∃works_in.Oncology)

is not compliant with the policy D since C v D. The concept

C ′ =Maleu ∃seen_by.(Doctoru Femaleu ∃works_in.Oncology)

is a compliant generalization of C , i.e., C v C ′ and C ′ 6v D.
However, this concept C ′ may not be safe to publish if there is an attacker using his own

background knowledge, which together with C ′ may issue again the fact that a is an instance
of D. For example, if the attacker’s knowledge is represented by an EL concept and he knows
that a is an instance of a concept Patient, then together with C ′(a), the hidden information
D is revealed, i.e., C ′ uPatient v D. In contrast,

C ′′ =Maleu ∃seen_by.(Doctoru Femaleu ∃works_in.>),

is a safe generalization of C , though it is less obvious to see this. This concept is, however,
not optimal since more information than necessary is removed. In fact, the concept

C ′′′ =Maleu ∃seen_by.(Doctoru Femaleu ∃works_in.>) u
∃seen_by.(Femaleu ∃works_in.Oncology)

is a safe generalization of C that is more specific than C ′′, i.e. C v C ′′′ À C ′′.
In another case, if we assume that the knowledge of the attacker is now encoded in

differents DLs, such as FL0 or FLE , then C ′′′ is no longer safe. Suppose that the attacker
knows that a is an instance of an FL0 concept

E = Patientu∀seen_by.(∀works_in.Oncology),

which is not subsumed by D. This implies that C ′′′ u E v D, which again reveals the fact that
a is an instance of D. To deal with this issue, one can compute the following optimal safe
generalization bC of C for D such that it is safe whenever it is conjoined with other compliant
FL0 concepts, where

bC = PatientuMaleu ∃seen_by.(Doctoru Female)

Nevertheless, this concept bC may still be not safe for P if there is an attacker whose knowledge
is written in FLE that is more expressive than EL and FL0. Suppose the attacker knows that
a is an instance of an FLE concept

F = ∀seen_by.(∃works_in.Oncology).

The conjunction of bC u F may again issue the fact that a is an instance of D. In this setting,
the results shown in this chapter imply that eC =Male is the optimal safe generalization of C
w.r.t. the policy D.
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Relating these simple settings with the general setting we have in Chapter 4, we can apply
the weakening relation�sub when weakening concept assertions C(a) by generalizing C . The
algorithm in Proposition 4.18 obviously can be used to get a maximally strong weakening of
C(a). However, since the algorithm has non-elementary complexity for �sub, we will present
algorithms for computing such optimal compliant (safe) generalizations that run only either
in PTIME or EXPTIME depending on the formulation of attackers’ knowledge.

Furthermore, the absence of TBoxes in all the settings above are justified by the following
reasons. First, we may argue that when investigating a new inference problem in DL, it
is usually quite hard to start with the most general situation. So, we explore this setting
as a starting point of learning the problem of PPOP. A second reason is that, in a medical
application that uses, for instance, SNOMED CT as an ontology, the TBox can be reduced
away by expanding concept definitions since SNOMED CT is an acyclic TBox [Sun09]. In
addition, patient data are usually annotated with SNOMED concepts, but not with SNOMED
roles, which justifies considering an instance store rather than a general ABox. Finally,
considering FL0 concepts as one of languages formulating the attacker’s knowledge makes
sense since in SNOMED CT roles have implicit typing constraints [Sun09], which are not
explicitly stated using value restrictions, but which may be known to an attacker.

We will distribute the discussions on this topic to the following sections. In Section 5.1, we
begin the study of PPOP with the formalization of sensitive information in EL instance store.
In Section 5.2 and Section 5.3, we characterize the notion of compliant (safe) EL concepts
as well as compute optimal compliant (safe) generalizations of EL concepts. In addition,
Section 5.4 views the optimality as a decision problem and investigate its complexity. It is
still assumed that the knowledge of possible attackers is written in EL from Section 5.2 to
Section 5.4. Next, we consider that the attacker has knowledge encoded in the DL FL0. With
respect to this new setting, we also provide a new characterization for the safety problem in
Section 5.5 and construct a different algorithm to compute optimal safe generalizations of
EL concept, which is then continued by showing the complexity of the optimality problem
in Section 5.6. This setting is then extended again with a condition where the information
owned by the attacker is now written in the DL FLE covering the expressiveness of EL and
FL0, which will be explained in Section 5.7.

5.1 Formalizing Sensitive Information in EL Instance Stores

In this section, we introduce formal definitions for compliance, safety, and optimality. In
particular, for safety and optimality, we introduce three variants of their definitions based on
DLs that formalize the attacker’s knowledge. Moreover, instead of only considering one policy
concept as shown in the patient example above, we allow for a finite set of EL concepts as a
policy. In addition, We assume that the concepts occurring in the policy are not equivalent to
top since otherwise there would not be compliant concepts.

Definition 5.1. A policy is a finite set P = {D1, . . . , Dp} of EL concepts such that > 6≡ Di for
i = 1, . . . , p. Let C be an EL concept, Q ∈ {∃,∀,∀∃} and L∃ = EL, L∀ = FL0, L∀∃ = FLE . We
say that

• the LQ concept C ′ is compliant with P if C ′ 6v Di for all i = 1, . . . , p and

• the EL concept C ′ is
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Computation
Problems

Q = ∃ Q = ∀ Q = ∀∃

Optimal P-Compliant
Generalization

EXPTIME

(Thm. 5.13)
Optimal P-SafeQ

Generalization
EXPTIME

(Cor. 5.20)
EXPTIME

(Thm. 5.39)
PTIME

(Thm. 5.44)

Table 5.3: Complexity of computing One
optimal P-compliant (safeQ) generalization

– a P-compliant generalization of C if C v C ′ and C ′ is compliant with P;
– an optimal P-compliant generalization of C if it is a P-compliant generalization of

C and there is no P-compliant generalization C ′′ of C such that C ′′ À C ′;
– safeQ for P if for all LQ concepts C ′′ that are compliant with P, C ′ u C ′′ is also

compliant with P, i.e., C ′ u C ′′ 6v Di for all i = 1, . . . , p;
– a P-safeQ generalization of C if C v C ′ and C ′ is safeQ for P;
– an optimal P-safeQ generalization of C if it is a P-safe generalization of C and

there is no P-safe generalization C ′′ of C such that C ′′ À C ′. ♦

The compliance problem asks whether C ′ is compliant with P. The safetyQ problem asks whether
C ′ is safeQ for P. If Q′ ∈ {∀,∀∃}, then we say that the optimalityQ′ problem asks whether C ′ is
an optimal P-safeQ′ generalization of C, while the optimality∃ problem asks whether C ′ is an
optimal P-compliant (safe∃) generalization of C.

It is easy to see that safetyQ implies compliance since the top concept is always compliant: if
C ′ is safeQ for P, then >u C ′ ≡ C ′ is compliant.

We call an EL policy P redundancy-free if P does not contain distinct concepts D, D′

such that D v D′. Particularly, when we discuss about the safetyQ problem, without loss of
generality, we can restrict our attention to redundancy-free policies since removing redundant
concepts (i.e., concepts D′ ∈ P such that there is D ∈ P \ {D′} with D v D′) does not change
the sets of compliant and safe concepts. This is justified by the following lemma that is easy
to prove.

Lemma 5.2. Let P be a policy, Q ∈ {∃,∀,∀∃}, and assume that Di ∈ P is redundant. Then the
following holds for all EL concepts C:

• C is compliant with P iff C is compliant with P \ {Di};

• C is safeQ for P iff C is safeQ for P \ {Di}.

In the following sections, we will show how to compute an optimal compliant (safeQ)
generalization. The complexity of algorithms for computing those generalizations are sum-
marized in Table 5.3. Apart from that, we also consider the problems written in Definition
5.1 as a decision problem, the corresponding results for each of them are shown in Table 5.4.
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Decision
Problems

Q = ∃ Q = ∀ Q = ∀∃

compliance
PTIME

(Prop. 5.6)

safeQ PTIME

(Thm. 5.16 )
PTIME

(Thm. 5.31)
PTIME

(Thm. 5.44)

optimalityQ CONP
(Cor. 5.27)

CONP
(Lem. 5.41)

PTIME

(Thm. 5.44)

Table 5.4: Complexity results of decision problems
on PPOP for EL instance stores

5.2 Computing Optimal Compliant Generalizations

In this section, we characterize the concepts that are compliant with a given policy P, and
use this to develop an algorithm that computes all optimal P-compliant generalizations of a
given EL concept C .

But first, we need to introduce some more notations. Let us recall that con(C) is the
set of all atoms occurring in the top-level conjunction of concept C . As a special case of
Lemma 2.22, subsumption between atoms can be characterized as follows. If E, F are atoms,
then E v F iff

• E = F ∈ NC or

• E, F are existential restrictions of the form E = ∃r.E′, F = ∃r.F ′ such that E′ v F ′.

Definition 5.5. Let S, T be sets of atoms. Then we say that S covers T if for every F ∈ T there
is E ∈ S such that E v F. ♦

With this notation, Lemma 2.22 can be reformulated as follows: C v D iff con(C) covers
con(D). The following (polynomial-time decidable) characterization of compliance is thus
an immediate consequence of Lemma 2.22.

Proposition 5.6. The EL concept C ′ is compliant with the policy P = {D1, . . . , Dp} iff con(C ′)
does not cover con(Di) for any i = 1, . . . , p, i.e., for every i = 1, . . . , p, at least one of the
following two properties holds:

• there is a concept name A∈ con(Di) such that A 6∈ con(C ′); or

• there is an existential restriction ∃r.D ∈ con(Di) such that C 6v D for all existential
restrictions of the form ∃r.C ∈ con(C ′). ♦

Now assume that we are given an EL concept C and a policy P = {D1, . . . , Dp}, and we
want to construct a P-compliant generalization C ′ of C . For C ′ to satisfy the condition of
Proposition 5.6, there needs to exist for every i = 1, . . . , p an element of con(Di) that is not
covered by any element of con(C ′). In case con(C) contains elements covering such an atom,
we need to remove or generalize them appropriately.
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Definition 5.7. We call H ⊆ con(D1) ∪ . . . ∪ con(Dp) a hitting set of con(D1), . . . ,con(Dp)
if H ∩ con(Di) 6= ; for every i = 1, . . . , p. This hitting set is minimal if there is no other hitting
set strictly contained in it. ♦

Basically, the idea is now to choose a hitting set H of con(D1), . . . ,con(Dp) and use H to
guide the construction of a compliant generalization of C . In order to make this generalization
as specific as possible, we use minimal hitting sets. In case the policy contains concepts
Di with which C is already compliant (i.e., C 6v Di holds), nothing needs to be done w.r.t.
these concepts. This is why, in the following definition, con(Di) does not take part in the
construction of the hitting set if C 6v Di .

Definition 5.8. Let C be an EL-concept and P = {D1, . . . , Dp} a policy. The set SCG(C , P) of
specific compliant generalizations of C w.r.t. P consists of the concepts that can be constructed
from C as follows:

• If C is compliant with P, then SCG(C , P) = {C}.

• Otherwise, choose a minimal hitting set H of con(Di1), . . . ,con(Diq) where i1, . . . , iq are
exactly the indices for which C v Di . Note that q ≥ 1 since we are in the case where C is
not compliant with P. In addition, according to our definition of a policy, none of the
concepts Di is equivalent to >, and thus the sets con(Di j

) are non-empty. Consequently, at
least one minimal hitting set exists. Each minimal hitting set yields a concept in SCG(C , P)
by removing or modifying atoms in the top-level conjunction of C in the following way:

– For every concept name A∈ con(C), remove A from the top-level conjunction of C if
A∈ H;

– For every existential restriction ∃ri .Ci ∈ con(C), consider the set

Pi := {G | there is ∃ri .G ∈ H such that Ci v G}.

∗ If Pi = ; then leave ∃ri .Ci as it is.
∗ If > ∈ Pi , then remove ∃ri .Ci .
∗ Otherwise, replace ∃ri .Ci with

d
F∈SCG(Ci ,Pi) ∃ri .F. ♦

We will show below that every element of SCG(C , P) is a compliant generalization of C ,
and that all optimal compliant generalizations of C belong to SCG(C , P). However, SCG(C , P)
may also contain compliant generalizations of C that are not optimal, as illustrated by the
following example.

Example 5.9. Let C = ∃r.(A1 u A2 u A3 u A4) and P = {D1, D2}, where

D1 = ∃r.A1 u ∃r.(A2 u A3) and D2 = ∃r.A2 u ∃r.A4.

We have C v D1 and C v D2, and thus C is not compliant with P. Consequently, the elements
of SCG(C , P) are obtained by considering the minimal hitting sets of {∃r.A1,∃r.(A2 u A3)} and
{∃r.A2,∃r.A4}.

If we take the minimal hitting set H = {∃r.(A2 u A3),∃r.A2} and consider the only existential
restriction in con(C), the corresponding set Pi consists of A2 u A3 and A2. It is easy to see that
SCG(A1 u A2 u A3 u A4, Pi) = {A1 u A3 u A4} since the only minimal hitting set of {A1, A2} and
{A2} is {A2}. Thus, we obtain C ′ := ∃r.(A1 u A3 u A4) as an element of SCG(C , P).
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However, if we take the minimal hitting set H ′ = {∃r.A1,∃r.A2} instead, then the set P ′i
corresponding to the only existential restriction in con(C) is {A1, A2}. Consequently, in this case
SCG(A1 u A2 u A3 u A4, P ′i ) = {A3 u A4} since the only minimal hitting set of {A1} and {A2} is
{A1, A2}. This yields C ′′ := ∃r.(A3 u A4) as another element of SCG(C , P). Since C ′ À C ′′, the
element C ′′ cannot be optimal. ♦

Next, we show that the elements of SCG(C , P) are compliant generalizations of C .

Proposition 5.10. Let C be an EL-concept and P = {D1, . . . , Dp} a policy. If C ′ ∈ SCG(C , P),
then C ′ is a P-compliant generalization of C. ♦

Proof. In case C is already compliant with P, then C = C ′ and we are done. Thus, assume
that C is not compliant with P. We show that C ′ is a compliant generalization of C by
induction on the role depth of C .

First, we show that C ′ is a generalization of C , i.e., C v C ′. This is an easy consequence of
the fact that, when constructing C ′ from C , atoms from the top-level conjunction of C are left
unchanged, are removed, or are replaced by a conjunction of more general atoms. The only
non-trivial case is where we replace an existential restriction ∃ri .Ci with the conjunctiond

F∈SCG(Ci ,Pi) ∃ri .F . By induction, we know that Ci v F for all F ∈ SCG(Ci , Pi), and thus
∃ri .Ci v

d
F∈SCG(Ci ,Pi) ∃ri .F .

Second, we show that C ′ is compliant with P, i.e., C ′ 6v Di holds for i = 1, . . . , p. For
the indices i with C 6v Di, we clearly also have C ′ 6v Di since C v C ′. Now, consider
one of the remaining indices i j ∈ {i1, . . . , iq}, where i1, . . . , iq are exactly the indices for
which C v Di. The concept C ′ was constructed by taking some minimal hitting set H of
con(Di1), . . . ,con(Diq). If the element in H hitting con(Di j

) is a concept name, then this
concept name does not occur in con(C ′), and thus C ′ 6v Di j

. Thus, assume that it is an
existential restriction ∃ri .G. But then each existential restriction ∃ri .Ci in con(C) with
Ci v G is either removed or replaced by a conjunction of existential restrictions ∃ri .F such
that (by induction) F 6v G. In addition, other existential restrictions are either removed
or generalized. This clearly implies C ′ 6v Di j

since ∃ri .G in con(Di j
) is not covered by any

element of con(C ′). �

The next lemma states that every compliant generalization of C subsumes some element
of SCG(C , P).

Lemma 5.11. Let C be an EL-concept and P = {D1, . . . , Dp} a policy. If C ′′ is a P-compliant
generalization of C, then there is C ′ ∈ SCG(C , P) such that C ′ v C ′′.

Proof. If C is compliant with P, then we have C ∈ SCG(C , P) and C v C ′′ since C ′′ is a
generalization of C . Thus, assume that C is not compliant with P, and let i1, . . . , iq be exactly
the indices for which C v Di .

Now, let i j be such an index. We have C v C ′′ 6v Di j
and C v Di j

. Since C ′′ 6v Di j
, there

is an element E j ∈ con(Di j
) that is not covered by any element of con(C ′′). Obviously,

H ′′ := {E1, . . . , Eq} is a hitting set of con(Di1), . . . ,con(Diq). Thus, there is a minimal hitting
set H of con(Di1), . . . , con(Diq) such that H ⊆ H ′′. Let C ′ be the element of SCG(C , P) that
was constructed using this hitting set H. We claim that C ′ v C ′′. For this, it is sufficient to
show that con(C ′) covers con(C ′′).
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First, consider a concept name A∈ con(C ′′). Since C v C ′′, we also have A∈ con(C). If
A 6∈ H ′′, then A 6∈ H, and thus A is not removed in the construction of C ′. Consequently,
A∈ con(C ′) covers A∈ con(C ′′). If A∈ H ′′, then A is not covered by any element of con(C ′′)
according to our definition of H ′′, which contradicts our assumption that A∈ con(C ′′).

Second, consider an existential restriction ∃ri .E ∈ con(C ′′). Since C v C ′′, there is an
existential restriction ∃ri .Ci in con(C) such that Ci v E. If this restriction is not removed
or generalized when constructing C ′, then we are done since this restriction then belongs
to con(C ′) and covers ∃ri .E. Otherwise, Pi = {G | there is ∃ri .G ∈ H such that Ci v G} is
non-empty.

If > ∈ Pi , then ∃ri .> ∈ H ⊆ H ′′. However, then ∃ri .E ∈ con(C ′′) covers an element of H ′′,
which is a contradiction.

Consequently, > 6∈ Pi , and thus ∃ri .Ci is replaced with
d

F∈SCG(Ci ,Pi) ∃ri .F when construct-
ing C ′ from C . According to our definition of H ′′ and the fact that H ⊆ H ′′, none of the
existential restrictions ∃ri .G considered in the definition of Pi is covered by ∃ri .E ∈ con(C ′′).
This implies that E is a Pi-compliant generalization of Ci . By induction (on the role depth)
we can thus assume that there is an F ∈ SCG(Ci , Pi) such that F v E. This shows that
∃ri .E ∈ con(C ′′) is covered by ∃ri .F ∈ con(C ′). �

As an easy consequence of this lemma, we obtain that all optimal compliant generalizations
of C must belong to SCG(C , P).

Proposition 5.12. Let C be an EL-concept and P = {D1, . . . , Dp} a policy. If C ′′ is an optimal
P-compliant generalization of C, then C ′′ ∈ SCG(C , P) (up to equivalence of concepts). ♦

Proof. Let C ′′ be an optimal P-compliant generalization of C . By Lemma 5.11, there is
an element C ′ ∈ SCG(C , P) such that C ′ v C ′′. In addition, by Proposition 5.10, C ′ is a
P-compliant generalization of C . Thus, optimality of C ′′ implies C ′′ ≡ C ′.

We are now ready to formulate and prove the main result of this section.

Theorem 5.13. Let C be an EL-concept and P = {D1, . . . , Dp} a policy. Then the set of all
optimal P-compliant generalizations of C can be computed in time exponential in the size of C
and D1, . . . , Dp.

Proof. It is sufficient to show that the set SCG(C , P) can be computed in exponential time.
In fact, given SCG(C , P), we can compute the set of all optimal P-compliant generalizations
of C by removing elements that are not minimal w.r.t. subsumption, which requires at most
exponentially many subsumption tests. Each subsumption test takes at most exponential time
since subsumption in EL is in PTIME, and the elements of SCG(C , P) have at most exponential
size, as shown below.

We show by induction on the role depth that SCG(C , P) consists of at most exponentially
many elements of at most exponential size. The at most exponential cardinality of SCG(C , P)
is an immediate consequence of the fact that there are at most exponentially many hitting
sets of con(Di1), . . . ,con(Diq), and each yields exactly one element of SCG(C , P) (see Defini-
tion 5.8). Regarding the size of these elements, note that we may assume by induction that
an existential restriction may be replaced by a conjunction of at most exponentially many
existential restrictions, where each is of at most exponential size. The overall size of the
concept description obtained this way is thus also of at most exponential size. Given this, it
is easy to see that the computation of these elements also takes at most exponential time.�
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The following example shows that the exponential upper bounds can indeed by reached.

Example 5.14. Let C = P1uQ1u . . .u PnuQn and P = {Pi uQ i | 1≤ i ≤ n}. Then SCG(C , P)
contains 2n elements since the sets {P1,Q1}, . . . , {Pn,Qn} obviously have exponentially many
hitting sets. To be more precise,

SCG(C , P) = {X1 u . . .u Xn | X i ∈ {Pi ,Q i} for i = 1, . . . , n}.

This example can easily be modified to enforce an element of exponential size. Consider bC = ∃r.C
and bP = {∃r.(Pi uQ i) | 1 ≤ i ≤ n}. Then SCG(bC , bP) = {

d
F∈SCG(C ,P) ∃r.F}. We leave it to

the reader to further modify the example in order to obtain exponentially many elements of
exponential size. ♦

5.3 Computing Optimal Safe∃ Generalizations

As mentioned at the end of Section 5.1, since we will investigate the safety∃ problem, we
assume that the policy used in this section is redundant-free. Then, we prove the following
proposition which states a characterization for safety∃.

Proposition 5.15. Let P = {D1, . . . , Dp} be a redundancy-free policy. The EL concept C ′ is safe∃

for P iff there is no pair of atoms (E, F) such that E ∈ con(C ′), F ∈ con(D1)∪ . . .∪ con(Dp),
and E v F. ♦

Proof. First, assume that C ′ is not safe∃ for P, i.e., there is an EL concept C ′′ that is compliant
with P, but for which C ′uC ′′ is not compliant with P. The latter implies that there is Di ∈ P
such that C ′ u C ′′ v Di , which is equivalent to saying that con(C ′)∪con(C ′′) covers con(Di).
On the other hand, we know that con(C ′′) does not cover con(Di) since C ′′ is compliant with
P. Thus, there is an element F ∈ con(Di) that is covered by an element E of con(C ′). This
yields (E, F) such that E ∈ con(C ′), F ∈ con(D1)∪ . . .∪ con(Dp), and E v F .

Conversely, assume that there is a pair of atoms (E, F) such that E ∈ con(C ′), F ∈ con(Di),
and E v F . Let C ′′ be the concept obtained from Di by removing F from the top-level
conjunction of Di. Then we clearly have Di v C ′′. In addition, since Di is normalized, we
also have C ′′ 6v Di. Consider Dj ∈ P different from Di, and assume that C ′′ v Dj. But then
Di v C ′′ v Dj contradicts our assumption that P does not contain redundant elements. Thus,
we have shown that C ′′ is compliant with P. In addition, con(C ′)∪ con(C ′′) covers con(Di).
In fact, the elements of con(Di) \ {F} belong to con(C ′′), and thus cover themselves. In
addition, F is covered by E ∈ con(C ′). Thus C ′ u C ′′ v Di , which shows that C ′ is not safe∃

for P. �

Clearly, the necessary and sufficient condition for safety∃ stated in this proposition can be
decided in polynomial time. If needed, the policy can first be made redundancy-free, which
can also be done in polynomial time.

Theorem 5.16. Safety∃ of an EL concept for an EL policy is in P.

We now consider the problem of computing optimal P-safe generalizations of a given
EL concept C . First note that, up to equivalence, there can be only one optimal P-safe
generalization of C . This is an immediate consequence of the fact that the conjunction of
safe∃ concepts is again safe, which in turn is an easy consequence of Proposition 5.15.
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Lemma 5.17. Let C ′1, C ′2 be two EL concepts that are P-safe∃ generalizations of C, where P is
redundancy-free. Then C ′1 u C ′2 is also a P-safe∃ generalization of C.

Thus there cannot be non-equivalent optimal P-safe∃ generalizations of a given EL concept
C since their conjunction would then be more specific, contradicting their optimality. This
property is independent of whether the policy is redundancy-free or not since turning a
policy into one that is redundancy-free preserves the set of concepts that are compliant with
(safe∃ for) the policy.

Proposition 5.18. If C ′1, C ′2 are optimal P-safe∃ generalizations of the EL concept C, then
C ′1 ≡ C ′2. ♦

The following theorem shows how an optimal safe∃ generalization of C can be constructed.

Theorem 5.19. Let C be an EL concept and P = {D1, . . . , Dp} a redundancy-free policy. We
construct the concept C ′ from C by removing or modifying atoms in the top-level conjunction of
C in the following way:

• For every concept name A ∈ con(C), remove A from the top-level conjunction of C if
A∈ con(D1)∪ . . .∪ con(Dp);

• For every existential restriction ∃ri .Ci ∈ con(C), consider the set of concepts

Pi := {G | there is ∃ri .G ∈ con(D1)∪ . . .∪ con(Dp) such that Ci v G}.

– If Pi = ; then leave ∃ri .Ci as it is.
– If > ∈ Pi , then remove ∃ri .Ci .
– Otherwise, replace ∃ri .Ci with

d
F∈OCG(Ci ,Pi) ∃ri .F, where OCG(Ci , Pi) is the set of

all optimal Pi-compliant generalizations of Ci .

Then C ′ is an optimal P-safe∃ generalization of C.

Proof. Obviously C v C ′ since, when constructing C ′ from C , atoms from the top-level
conjunction of C are left unchanged, are removed, or are replaced by a conjunction of more
general atoms.

To show that C ′ is safe∃ for P, we must show that the condition of Proposition 5.15 holds.
Thus assume that it is violated, i.e., there is a pair of atoms (E, F) such that E ∈ con(C ′),
F ∈ con(D1)∪ . . .∪ con(Dp), and E v F .

• First, we consider the case where E = A is a concept name. Then E v F implies that
F = A, and thus A is a concept name occurring in con(D1)∪ . . .∪ con(Dp). However,
all such concept names have been removed from the top-level conjunction of C when
constructing C ′. This contradicts our assumption that E = A belongs to con(C ′).

• Second, assume that E is an existential restriction E = ∃ri .E
′. Then F is of the form

F = ∃ri .G
′ and E′ v G′. In addition, there is an existential restriction ∃ri .Ci ∈ con(C)

from which E = ∃ri .E
′ was derived. By construction, Ci v E′. In the construction of C ′,

we consider the set Pi := {G | there is ∃ri .G ∈ con(D1)∪. . .∪con(Dp) such that Ci v G}.
Since Ci v E′ v G′, this set is non-empty, and since ∃ri .E

′ is derived from ∃ri .Ci, it
does not contain >. Consequently, we have E′ ∈ OCG(Ci , Pi). However, G′ ∈ Pi then
implies that E′ 6v G′, which yields the desired contradiction.
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It remains to show that C ′ is optimal. Thus assume that C ′′ is a P-safe∃ generalization of
C . It is sufficient to show that C ′ v C ′′, i.e., that con(C ′) covers con(C ′′).

• Assume that A ∈ con(C ′′) is a concept name. Then C v C ′′ implies that A ∈ con(C).
Since C ′′ is safe∃ for P, Proposition 5.15 implies that A 6∈ con(D1) ∪ . . . ∪ con(Dp).
Thus, A is not removed in the construction of C ′, which yields A∈ con(C ′).

• Second, consider an existential restriction ∃ri .E ∈ con(C ′′). Since C v C ′′, there is
an existential restriction ∃ri .Ci in con(C) such that Ci v E. If this restriction is not
removed or generalized when constructing C ′, then we are done since this restriction
then belongs to con(C ′) and covers ∃ri .E. Otherwise,

Pi = {G | there is ∃ri .G ∈ con(D1)∪ . . .∪ con(Dp) such that Ci v G}

is non-empty. If > ∈ Pi, then ∃ri .> ∈ con(D1) ∪ . . . ∪ con(Dp). However, then
∃ri .E ∈ con(C ′′) covers an element of con(D1) ∪ . . . ∪ con(Dp), which is a contra-
diction to our assumption that C ′′ is safe∃ for P. Consequently, > 6∈ Pi, and thus
∃ri .Ci is replaced with

d
F∈OCG(Ci ,Pi) ∃ri .F when constructing C ′ from C . Since C ′′ is

safe∃ for P, none of the existential restrictions ∃ri .G considered in the definition of
Pi is covered by ∃ri .E ∈ con(C ′′). This implies that E is a Pi-compliant generalization
of Ci. Consequently, there is an F ∈ OCG(Ci , Pi) such that F v E. This shows that
∃ri .E ∈ con(C ′′) is covered by ∃ri .F ∈ con(C ′). �

Since, by Theorem 5.13, OCG(Ci , Pi) can be computed in exponential time, the construction
described in Theorem 5.19 can also be performed in exponential time.

Corollary 5.20. Let C be an EL concept and P = {D1, . . . , Dp} a redundancy-free policy. Then
an optimal P-safe∃ generalization of C can be computed in exponential time.

Example 5.14 can easily be modified to provide an example that shows that this exponential
bound can actually not be improved since there are cases where the safe∃ generalization is
of exponential size.

5.4 Deciding Optimality∃ in EL Instance Stores

In this section, we consider optimality∃ as a decision problem, i.e., given EL concepts C , C ′

such that C v C ′ and a policy P, decide whether C ′ is an optimal P-compliant (P-safe∃)
generalization of C .

Theorem 5.13 and Corollary 5.20 show that the optimality problem is in EXPTIME both
for compliance and for safety. In fact, according to Theorem 5.13, given C and P, we can
compute the set of all optimal P-compliant generalizations of C (up to equivalence) in
exponential time. Consequently, this set contains at most exponentially many elements and
each element has at most exponential size. This implies that we can test, in exponential
time, whether a give concept C ′ is equivalent to one of the elements of this set. If this is the
case, then C ′ is an optimal P-compliant generalization of C , and otherwise not. The case of
safety∃ can be treated similarly, using Corollary 5.20 instead of Theorem 5.13.
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In the following, we show that this complexity upper bound can be improved to CONP.
Actually, we will prove this upper bound not just for compliance and safety∃, but for a whole
class of properties.

Definition 5.21. Let F be a function that assigns a set of EL concepts to every input consisting of
an EL concept C and a policy P. We say that the function F defines a polynomial, upward-closed
property if the following holds for every input C , P:

• for every EL concept C ′, we can decide C ′ ∈ F(C , P) in time polynomial in C , C ′, P
(polynomiality);

• if C ′ ∈ F(C , P) and C ′ v C ′′, then C ′′ ∈ F(C , P) (upward-closedness).

We say that C ′ is an optimal F -generalization of C w.r.t. P if C v C ′, C ′ ∈ F(C , P), and there
is no C v C ′′ À C ′ such that C ′′ ∈ F(C , P). ♦

It is easy to see that compliance and safety∃ are polynomial, upward-closed properties. In
fact, upward-closedness is an obvious consequence of the definition of compliance (safety∃).
For compliance, polynomiality follows from the fact that subsumption in EL can be decided
in polynomial time. For safety∃, it is stated in Corollary 5.16. In addition, the notion
of optimality∃ introduced in the above definition coincides with the notion of optimality∃

introduced in Definition 5.1 for compliance and safety∃.
We will show that, for polynomial, upward-closed properties, the optimality∃ problem is

in CONP, i.e., there is an NP-algorithm that, on input C v C ′ and P, succeeds iff C ′ is not
an optimal F -generalization of C w.r.t. P. Basically, this algorithm proceeds as follows. It
guesses a lower neighbor C ′′ of C ′ subsuming C , i.e., a concept C ′′ such that (i) C v C ′′ v C ′

and (ii) there is no concept C ′′′ with C ′′ À C ′′′ À C ′. If C ′′ ∈ F(C , P), then the algorithm
succeeds, and otherwise it fails.

In Section 4.4.1, we have seen that the relation v is one-step generated, i.e., the transitive
closure of v1 is again v and defined the notion of upper neighbor which is obviously the
converse of lower neighbor, i.e., if C ′′ À1 C ′ then we call C ′ an upper neighbor of C ′′ and C ′′ a
lower neighbor of C ′. In the context of the optimality problem for polynomial, upward-closed
properties, this implies the following: whenever there is a counterexample to the optimality
of C ′ (i.e., a concept C ′′ such that C À C ′′ À C ′ and C ′′ ∈ F(C , P)), then there is a lower
neighbor of C ′ that provides such a counterexample. To see this, just note that C ′′ À C ′

implies that C ′ can be reached by a À1-chain from C ′′. The last element in this chain before
C ′ is a lower neighbor of C ′, and it belongs to F(C , P) since F is upward-closed. Then, it is
also mentioned in Lemma 4.24 that a given EL concept has only polyomially many upper
neighbors, each of which is polynomial size.

Regarding lower neighbors, it is sufficient for our purposes to show that they can be
guessed in non-deterministic polynomial time. Thus, we are looking for an NP-algorithm
that, given input concepts C v C ′, generates exactly the lower neighbors of C ′ that subsume
C . Below, we sketch how an appropriate NP-algorithm can be obtained. A more detailed
description as well as proofs can be found in [Kri18]. First, note that the lower neighbors C ′′

of C ′ can be obtained by conjoining an atom not implied by C ′ to C ′. In addition, C v C ′′
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implies that sig(C ′′) ⊆ sig(C). Given an EL concept C ′ and a finite set Σ of concept and role
names, the set of lowering atoms for C ′ w.r.t Σ is defined as

LAΣ(C ′) := {A∈ Σ∩NC | A 6∈ con(C ′)} ∪ {∃r.D | r ∈ Σ∩NR, sig(D) ⊆ Σ,

C ′ 6v ∃r.D, and C ′ v ∃r.E for all E with D À1 E}.

Lemma 5.22. Let C ′ be an EL concept and Σ a finite set of concept and role names with
sig(C ′) ⊆ Σ. Then C ′′ is a lower neighbor of C ′ with sig(C ′′) ⊆ Σ iff there is an atom At ∈ LAΣ(C ′)
such that C ′′ ≡ C ′ uAt.

Intuitively, adding a single atom to the top-level conjunction of C ′ is sufficient to obtain a
lower neighbor since adding two (non-redundant) atoms would step too far down in the
subsumption hierarchy. The same is true for adding an existential restriction ∃r.D for which
∃r.E with D À1 E does not subsume C ′ since then C ′ u ∃r.D À C ′ u ∃r.E À C ′ would hold.

Example 5.23. Let Σ := {r, A1, A2, B1, B2, C1, C2} and

C ′ := ∃r.(A1 u A2 u B1 u B2)u ∃r.(A1 u A2 u C1 u C2)u ∃r.(B1 u B2 u C1 u C2).

Then, for all i, j, k ∈ {1,2}, the existential restriction ∃r.D with D := Ai u B j u Ck belongs to
LAΣ(C ′). In fact, C ′ 6v ∃r.D is obviously true, and since the upper neighbors of D are Ai u B j,
B j u Ck, and Ai u Ck, we also have C ′ v ∃r.E for all E with D À1 E. Obviously, by using n
instead of three pairs of concept names, we can produce a generalized version of this example
that shows that the cardinality of LAΣ(C ′) can be exponential in the size of C ′ and Σ. ♦

In order to obtain an NP-algorithm that generates exactly the lower neighbors of C ′ that
subsume C , it is sufficient to generate all lowering atoms for C ′ w.r.t Σ := sig(C), and then
remove the ones that do not subsume C . Unfortunately, the definition of lowering atoms
given above Lemma 5.22 does not tell us directly how appropriate existential restrictions
∃r.D can be found. The following necessary conditions follows from the characterization of
lower neighbors given in [Kri18].

Lemma 5.24. Let C ′ be reduced. If ∃r.D ∈ LAΣ(C ′), then there is a set of existential restrictions
{∃r.F ′1, . . . ,∃r.F ′k} ⊆ con(C ′) and F1 ∈ LAΣ(F ′1), . . . , Fk ∈ LAΣ(F ′k) such that D ≡ F1 u . . .u Fk.

We illustrate this lemma using the lowering atom D = Ai u B j u Ck in Example 5.23. Here
we take the set of all existential restrictions in con(C ′) and choose Ck ∈ LAΣ(A1uA2uB1uB2),
B j ∈ LAΣ(A1uA2uC1uC2), and Ai ∈ LAΣ(B1uB2uC1uC2). Obviously, D is indeed equivalent
to the conjunction of these three atoms.

In general, not all choices of subsets and lower neighbors yields an appropriate existential
restriction. For instance, if we take a smaller set of existential restrictions in our example (e.g.,
{∃r.(A1 u A2 u C1 u C2),∃r.(B1 u B2 u C1 u C2)}), then the obtained conjunction of lowering
atoms (e.g., B1 u A2) is not appropriate since the corresponding existential restriction (e.g.,
∃r.(B1 u A2)) is subsumed by C ′.

The NP-algorithm generating exactly the elements of LAΣ(C ′) works as follows: given a
reduced concept C ′ and a finite set Σ of concept and role names such that sig(C ′) ⊆ Σ, it
non-deterministically chooses one of the following two alternatives:



90 Chapter 5. Privacy-Preserving Ontology Publishing for EL Instance Stores

1. Choose a concept name A ∈ Σ \ con(C ′), and output A. If there is no such concept
name, fail.

2. Choose r ∈ Σ∩NR, a set of existential restrictions {∃r.F ′1, . . . ,∃r.F ′k} ⊆ con(C ′), and
recursively guess elements F1 ∈ LAΣ(F ′1), . . . , Fk ∈ LAΣ(F ′k). If for some i, 1 ≤ i ≤ k,
the attempt to produce the atom Fi ∈ LAΣ(F ′i ) fails, or if C ′ v ∃r.(F1 u . . .u Fk), or if
F1 u . . .u Fk has an upper neighbor E such that C ′ 6v ∃r.E, then fail. Otherwise, output
∃r.(F1 u . . .u Fk).

Lemma 5.25. The algorithm described above runs in non-deterministic polynomial time, and
its non-failing runs produce exactly the elements of LAΣ(C ′).

Proof. Soundness of the algorithm is an immediate consequence of the fact that, in the second
case, we explicitly test whether the conditions in the definition of lowering atoms are satisfied.
Completeness is an easy consequence of Lemma 5.24. Finally, the choice of a concept name,
a role name, and a subset of the existential restrictions in con(C ′), can clearly be achieved by
making polynomially many binary choices. By induction on the role depth, we can assume
that the algorithm can produce the elements Fi ∈ LAΣ(F ′i ) in non-deterministic polynomial
time, which shows that the overall algorithm runs in non-deterministic polynomial time. �

With this lemma in place, we can now show that the optimality problem for polynomial,
upward-closed properties is in coNP.

Theorem 5.26. Let F be a polynomial, upward-closed property. The problem of deciding, for a
given input C , C ′, P, whether C ′ is an optimal F-generalization of C w.r.t. P is in coNP.

Proof. We show that non-optimality can be decided by an NP-algorithm, i.e., we describe
an NP-algorithm that, given C , C ′, P, succeeds iff C ′ is not an optimal F -generalization of C
w.r.t. P.

1. Check whether C v C ′ and C ′ ∈ F(C , P). If this is not the case, then succeed. Otherwise,
continue with the next step. Polynomiality of F and of subsumption in EL implies that
this test can be done in polynomial time.

2. SetΣ := sig(C) and guess a lowering atom At ∈ LAΣ(C ′). If C 6v At, then fail. Otherwise,
we know that C ′′ := C ′uAt is a lower neighbor of C ′ that subsumes C , and we continue
with the next step. As shown above, the elements of LAΣ(C ′) can be generated by an
NP-algorithm.

3. Check whether C ′′ ∈ F(C , P). If this is the case, then succeed, and otherwise fail.

It is easy to see that this algorithm is correct and runs in non-deterministic polynomial time.�

Since compliance and safety are polynomial, upward-closed properties, the following
corollary is an immediate consequence of this theorem.

Corollary 5.27. The optimality∃ problem is in CONP for compliance and for safety.

At the moment, we do not know whether these problems are also CONP-hard. We can
show, however, that the Hypergraph Duality Problem [EG02] can be reduced to them. Note
that this problem is in CONP, but conjectured to be neither in P nor coNP-hard [FK96; GM18].
Given two finite families of inclusion-incomparable sets G and H, the Hypergraph Duality
Problem (DUAL) asks whether H consists exactly of the minimal hitting sets of G.
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Proposition 5.28. There is a polynomial reduction of DUAL to the optimality∃ problem that
works both for compliance and for safety∃.

Proof. Let G = {G1, . . . , Gg}, H = {H1, . . . , Hh} be finite families of inclusion-incomparable
sets and G := G1 ∪ . . .∪ Gg . Since it can be checked in polynomial time whether a given set
H is a minimal hitting set of G, we can assume without loss of generality that all sets Hi are
indeed minimal hitting sets of G.

The problem to be decided by our reduction is thus whether H really contains all minimal
hitting sets of G. We view the elements of G as concept names, for S ⊆ G write

d
S for the

conjunction of the concept names in S, and define

• C := ∃r1.
d

G and P := {D1 := ∃r1.
d

G1, . . . , Dg := ∃r1.
d

Gg};

• C ′ := ∃r1.
d
(G \H1)u . . .u ∃r1.

d
(G \Hh).

It is easy to see that C ′ is a P-compliant and P-safe∃ generalization of C .
According to Definition 5.8 and the proof of Theorem 5.13, C has exactly one optimal

P-compliant generalization, which is obtained as follows. First, note that the top-level
conjunctions of C and D1, . . . , Dg respectively consist of a single existential restriction for
the same role r1, and that the concepts Di are pairwise incomparable. This implies that on
this level only one hitting set is considered, which is P. On the next role level, we have
P1 = {

d
G1, . . . ,

d
Gg}. The optimal P1-compliant generalizations of C1 :=

d
G are obtained

by considering all minimal hitting sets of G1, . . . , Gg , and removing their elements from the
top-level conjunction of C1. Consequently, the optimal P-compliant generalization of C is
given as

C ′′ :=
l

H minimal hitting set of G

∃r1.
l
(G \H).

A close look at Theorem 5.19 reveals that C ′′ is also the optimal P-safe generalization of C .
This shows that C ′ is optimal for compliance (safety∃) iff H contains all minimal hitting sets
of G. �

5.5 Characterizing Safety∀

We now turn our attention to the safety∀ problem in which knowledge of the attackers is
represented as an FL0 concept. For this setting, we note that a value restriction can never
imply an existential restriction. Thus, if C ′′ is an FL0 concept and D and EL concept of role
depth > 0, then C ′′ 6v D. This shows that an FL0 concept C ′′ is compliant with any EL policy
that does not contain a concept of role depth 0.

Before characterizing safety∀, we need to characterize subsumption between an FLE
concept and an EL concept. For this, we need the notion of filler∀r (C

′′), which is the set of
all FLE concepts that becomes a filler of ∀r in con(C ′′). Formally, given an FLE concept C ′′,
a role name r ∈ NR, and a quantifier ∀, we define filler∀r (C

′′) := {E | ∀r.E ∈ con(C ′′)}.
In Theorem 24 in [BKM99], it is written that the subsumption between two FLE concepts

can be decided if there is a homomorphism function from the tree representation of one
concept to the tree representation of another concept. Now, if one of the input is written as
an EL concept, then the following lemma also works for characterizing subsumption between
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an FLE concept and an EL concept and thus this lemma is an obvious consequence of that
homomorphism characterization.

Proposition 5.29. Let C ′′ be an FLE concept and D be an EL concept. It holds that C ′′ v D iff

a.) for all A∈ con(D), there is A∈ con(C ′′) and

b.) for all ∃r.D′ ∈ con(D), there is ∃r.C ′ ∈ con(C ′′) such that

C ′ u
l

filler∀r (C
′′)v D′.

It is obvious to see that the characterization above can be done in polynomial time. Now,
we are ready to characterize the safety∀ problem.

Proposition 5.30. Let C be an EL concept and P a redundancy-free policy. Then, C is safe∀

for P iff the following two conditions hold for all D ∈ P:

1.) if rd(D) = 0, then con(C)∩ con(D) = 0,

2.) if rd(D)> 0, then there is ∃r.D′ ∈ con(D) such that
a.) if rd(D′) = 0, then there is no concept of the form ∃r.C ′ ∈ con(C),
b.) if rd(D′)> 0, then for all ∃r.C ′ ∈ con(C), C ′ is safe∀ for {D′}. ♦

Proof. Assume that C is not safe∀ for P. Then, there is an EL concept D ∈ P and an
FL0 concept C ′′ that complies with P such that C u C ′′ v D. Since C u C ′′ is an FLE
concept, Proposition 5.29 applies to this subsumption. First, we consider the case where
rd(D) = 0. Proposition 5.29 implies that every concept name A ∈ con(D) is contained in
con(C)∪ con(C ′′). However, since C ′′ complies with P, we have C ′′ 6v D, and hence there
must be an A∈ con(D) that is not contained in con(C ′′). Consequently this A must belong
to con(C), and thus property 1.) above is violated.

Now, let rd(D)> 0, i.e., there is an existential restriction ∃r.D′ ∈ con(D). By Proposition
5.29 and since C is an EL and C ′′ an FL0 concept, C u C ′′ v D implies that there is an
existential restriction ∃r.C ′ ∈ con(C) such that C ′ u

d
filler∀r (C

′′) v D′. If rd(D′) = 0,
then this clearly violates 2a.). If rd(D′)> 0, then 2b.) is violated since

d
filler∀r (C

′′) then
cannot be subsumed by D′, and thus C ′ u

d
filler∀r (C

′′)v D′ shows that C ′ is not ∀-safe
for {D′}.

To show the only-if-direction, we assume that one of the conditions 1.) or 2.) is violated,
and prove that this implies that C is not safe∀ for P.

First, assume that 1.) is violated, i.e., there is D ∈ P such that rd(D) = 0 and there is
A ∈ con(C)∩ con(D). Then, C ′′ :=

d
(con(D) \ {A}) is an FL0 concept that complies with

D, and satisfies C u C ′′ v D. To conclude that C is not safe∀ for P, it remains to shows
that C ′′ also complies with all D̂ ∈ P \ {D}. However, if we assume that C ′′ v D̂ for some
D̂ ∈ P \ {D}, then the fact that D v C ′′ implies D v D̂, which contradicts our assumption
that P is redundancy-free.

Second, assume that 2.) is violated. Then there is D ∈ P such that rd(D)> 0 and for all
∃r.D′ ∈ con(D), we have
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• if rd(D′) = 0, then there is a concept of the form ∃r.C ′ ∈ con(C) and

• if rd(D′)> 0, then there is ∃r.C ′ ∈ con(C) such that C ′ is not safe∀ for {D′} .

We define the concept C ′′ as follows:
d

(1)
Au

d

(2)
∀r.D′ u

d

(3)
∀r.F, where

(1) A∈ con(D);

(2) r ∈ NR,∃r.D′ ∈ con(D), and rd(D′) = 0;

(3) r ∈ NR,∃r.D′ ∈ con(D),rd(D′) > 0, and F is an FL0 concept complying with D′, but
C ′ u F v D′. �

Note that C ′′ is an FL0 concept and is compliant with P. To see the latter, assume that D̂ ∈ P.
If rd(D̂)> 0, then C ′′ 6v D̂ since an FL0 concept cannot imply an existential restriction. If
rd(D̂) = 0, then C ′′ v D̂ would imply D v D̂, which contradicts our assumption that P is
redundancy-free.

It remains to prove that C u C ′′ v D, which we show using Proposition 5.29. First note
that, by the construction of C ′′, each concept name A ∈ con(D) satisfies A ∈ con(C ′′),
and thus A ∈ con(C u C ′′). Second, consider an existential restriction ∃r.D′ ∈ con(D).
If rd(D′) = 0, then there is ∃r.C ′ ∈ con(C), but also ∀r.D′ ∈ con(C ′′). Thus, we have
C ′ u

d
filler∀r (C u C ′′) v C ′ u D′ v D′, as required by Proposition 5.29. If rd(D′) > 0,

then we have ∃r.C ′ ∈ con(C) for an EL concept C ′ that is not safe∀ for {D′}. In addition,
∀rD ∈ con(C ′′), we here F is an FL0 concept such that C ′ u F v D′. Consequently, we have
C ′ u

d
filler∀r (C u C ′′)v C ′ u F v D′.

Obviously, the conditions for safety∀ stated above can be decided in polynomial time and
it brings us to the following theorem.

Theorem 5.31. The safety∀ problem can be decided in P.

Since 1.) and 2.) in Proposition 5.30 are formulated for each D ∈ P separately, the
following lemma is an immediate consequence of this proposition.

Lemma 5.32. Let C be an EL concept and P be a redundant-free EL policy. Then C is safe∀

for P iff C is ∀-safe for {D} for all D ∈ P.

However, unlike safe∃ concepts that have the closed-under conjunction property, safe∀

concepts do not have such property. This is illustrated as follows.

Example 5.33. Let C1 = ∃r.(Au B), C2 = ∃s.(Au B), and P = {∃r.Au ∃s.A} be a policy. We
have C1 and C2 as safe∀ concepts for P, but C1 u C2 is not safe∀ for P. ♦

5.6 Optimal P-safe∀ Generalizations

First, we plan to compute optimal P-safe∀ generalizations of C . For this task, we consider
the following notion. Given a concept D such that rd(D)> 0, the set con∃(D) consists of all
atoms that are of the form existential restrictions and occur in the top-level conjunctions
of D. Then, one idea to compute an optimal P-safe∀ generalization of C is removing all
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concept names from con(C) that also occurs in the concepts D ∈ P, where rd(D) = 0, and
then taking one existential restriction ∃r.D′ in each concept in P, which has role depth, to
subsequently remove or generalize the corresponding existential restriction in C that is not
safe for ∃r.D′. For this, we again need the notion of hitting set that can guide us to choose
those existential restrctions from each concept in P. Now, we define a set that later we will
show that it contains all optimal P-safe∀ generalizations of C .

Definition 5.34. Let C be an EL concept and P be an EL policy. The set SSG∀(C , P) of all
specific P-safe∀ generalizations C ′ of C consists of the concepts C ′ that are obtained from C by
considering the following steps:

• if C is safe∀ for P, then SSG∀(C , P) = {C}.

• Otherwise, perform the following steps:
– For all concept names A∈ con(C) such that A∈ con(D), where D ∈ {Di1 , . . . , Diq}

and rd(D) = 0, remove A from con(C).
– If Dj1 , . . . , Djp are all concepts in P such that rd(Dj∨)> 0, then construct a minimal

hitting set H of con∃(Dj1), . . . ,con∃(Djp) and do the following:

∗ For all ∃r.E ∈ con(C) such that there is a concept of the form ∃r.D′ in H with
rd(D′) = 0, remove them from con(C).

∗ Then, for each concept ∃ri .Ci ∈ con(C) that was not removed in the previous
step, consider the set

Pi := {D′ | ∃ri .D
′ ∈ H and rd(D′)> 0}.

If Pi 6= ;, then replace ∃ri .Ci in con(C) with
d
∃ri .F, where F ∈ SSG∀(Ci , Pi).

If Pi is empty, then leave ∃ri .Ci as it is.

We show that each element in SSG∀(C , P) is a P-safe∀ generalization of C .

Lemma 5.35. Let C be an EL concept, P be an EL policy, and C ′ ∈ SSG∀(C , P). It holds that
C ′ is a P-safe∀ generalization of C.

Proof. First, we show that C v C ′. This is an easy consequence from the fact that, when
constructing C ′ from C , atoms from the top-level conjunction of C are either kept unchanged
or removed. The only non-trivial case is when ∃r.Ci in con(C) is replaced with

d
∃r.F , where

F ∈ SSG∀(Ci , Pi). By induction, we know that Ci v F and thus ∃r.Ci v ∃r.F . This finally
implies that C v C ′.

To prove that C ′ is safe for P, we use the characterization given in Proposition 5.30. Thus,
let D ∈ P. If rd(D) = 0, then con(D) is a set of concept names, and each of them has
been removed in the construction of C ′. Thus, con(C ′)∩ con(D) = ;, as required by 1.) in
Proposition 5.30.

If rd(D) > 0, then the minimal hitting set H used in the construction of C ′ contains an
existential restriction ∃r.D̂ ∈ con(D). If rd(D̂) = 0, then all existential restrictions for the
role r are removed from the top-level conjunction of C , and thus 2a.) of Proposition 5.30
is satisfied. Finally, consider the case where rd(D̂) > 0. If ∃r.E ∈ con(C ′), then there is
∃ri .Ci ∈ con(C) such that

Pi = {D′ | ∃ri .D
′ ∈ H and rd(D′)> 0} 6= ;,
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and r = ri and E ∈ SSG∀(Ci , Pi). Note that D̂ ∈ Pi, and thus P = ; is not possible for an
existential restriction ∃ri .Ci ∈ con(C) with ri = r. Induction (over the role depth) yields that
E is safe∀ for Pi , and thus for its subset {D̂}. Hence, 2b.) of Proposition 5.30 is satisfied. �

However, SSG∀(C , P)may also contain P-safe∀ generalizations C ′ of C that are not optimal.
Let us consider the following example.

Example 5.36. Let C = ∃r1.(Au B)u ∃r2.B u ∃r3.A and P = {D1, D2}, where

D1 = ∃r1.Au ∃r2.> and D2 = ∃r1.B u ∃r3.>.

We have C v D1 and C v D2, and thus C is not even compliant, let alone safe∀, for P. Applying
the construction of Definition 5.34 to C and P, we first construct the minimal hitting set
H1 = {∃r1.A,∃r1.B} of con∃(D1) and con∃(D2). Since rd(A) = 0 = rd(B), we remove the atom
∃r1.(Au B) from con(C), which yields the concept C ′1 = ∃r2.B u ∃r3.A∈ SSG∀(C , P).

If we take the minimal hitting set H2 = {∃r1.A,∃r3.>} instead, then we need to remove
the atoms ∃r1.(Au B) and ∃r3.A from con(C), which yields C ′2 = ∃r2.B ∈ SSG∀(C , P). Since
C ′1 À C ′2, the concept C ′2 cannot be optimal.

The next lemma states every P-safe∀ generalization of C subsumes some element of
SSG∀(C , P).

Lemma 5.37. Let C be an EL concept and P be an EL policy. For all P-safe∀ generalizations
C ′′ of C, there is C ′ ∈ SSG∀(C , P) such that C ′ v C ′′.

Proof. If C is safe∀ for P, then obviously C ∈ SSG∀(C , P) and we have C v C ′. Now, let
us assume that C is not safe∀ for P. Since C ′′ is a P-safe∀ generalization of C , we have
C v C ′′ and C ′′ satisfies the properties 1.) and 2.) in Proposition 5.30. Due to 1.), con(C ′′)
contains no concept name A such that A ∈ con(D) for some D ∈ P with rd(D) = 0. In
addition, for all Dj ∈ P such that rd(Dj) > 0, there is ∃r.G j ∈ con(Dj) such that 2a.) or
2b.) of Proposition 5.30 holds. The set H ′ := {G j1 , . . . , G jp} is a hitting set of the sets

con∃(Dj1), . . .con∃(Djp) considered in Definition 5.34. Thus, there is a minimal hitting set

H of con∃(Dj1), . . .con∃(Djp) such that H v H ′. Let C ′ be the element of SSG∀(C , P) that is
constructed by using H. We shows that C ′ v C ′′ using Proposition 5.29.

First, consider a concept name A∈ con(C ′′). Since C v C ′′, we know that A∈ con(C). In
addition, as mentioned above, con(C ′′) contains no concept name A such that A∈ con(D)
for some D ∈ P with rd(D) = 0. Consequently, when constructing C ′ from C , the concept
name A is not removed, which yields A∈ con(C ′).

Second, consider an existential restriction ∃r.E ∈ con(C ′′). Since C v C ′′, there is
∃r.Ci ∈ con(C) such that Ci v E. If ∃r.Ci is not removed or generalized when constructing
C ′, then ∃r.Ci ∈ con(C ′), and we are done. If ∃r.Ci is removed from con(C) to construct C ′,
then there is ∃r.D′ ∈ H ⊆ H ′ such that rd(D′) = 0. By the definition of H ′, we thus know that
∃r.D′ must satisfy 2a.) of Proposition 5.30. But then, ∃r.E ∈ con(C ′′) would not be possible.

Finally, if ∃r.Ci is generalized in the construction of C ′ from C by replacing it withd
F∈SSG∀(Ci ,Pi) ∃r.F , then we know that Pi is non-empty. Now, consider an element D′ of

Pi. Then, ∃r.D′ ∈ H ⊆ H ′ and rd(D′) > 0 imply that ∃r.D′ satisfies 2b.) of Proposition
5.30. Since ∃r.E ∈ con(C ′′), we thus know that E is safe∀ for {D′}. Since this is true for all
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element D′ of Pi, Lemma 5.32 yields that E is safe∀ for Pi and thus induction yields that
there is F ∈ SSG∀(Ci , Pi) such that F v E. Since ∃r.F ∈ con(C ′), this concludes our proof
that C ′ v C ′′. �

The following proposition states that all optimal P-safe∀ generalizations of C for P are
contained in SSG∀(C , P).

Proposition 5.38. Let C be an EL concept and P = {D1, . . . , Dp} a redundancy-free policy. If
C ′′ is an optimal P-safe∀ generalization of C, then C ′′ ∈ SSG∀(C , P) (up to equivalence). ♦

The following theorem is an easy consequence of this proposition and the definition of
SSG∀(C , P).

Theorem 5.39. Let C be an EL concept and P = {D1, . . . , Dp} a redundancy-free policy. The
cardinality of the set of all optimal P-safe∀ generalization of C is at most exponential and each
of its elements has exponential size in the size of C. Additionally, the set of all optimal P-safe∀

generalizations of C can be computed in exponential time in the size of C and D1, . . . , Dp.

Proof. It is sufficient to show that the set SSG∀(C , P) satisfies the properties stated above.
The cardinality of SSG∀(C , P) is at most exponential due to exponentially many of hitting
sets that should be constructed in the Definition 5.34 and each of them yields exactly one
element of SSG∀(C , P). Moreover, the size of each element C ′ in SSG∀(C , P) may become
exponential since during constructing C ′, we may also need to compute a conjunction
of at most exponentially many existential restrictions and each of them also has at most
exponential size by induction. To compute the set of all optimal P-safe∀ generalizations of
C , we need to remove all concepts in SSG∀(C , P) that are not minimal w.r.t. subsumption.
This implies that there are exponentially many subsumption tests that need to be done. �

The example below shows that the exponential time of the complexity of the algorithm
above are indeed optimal.

Example 5.40. Let us define an EL concept

C = ∃r1.(∃s1.>u∃s2.>)u . . .u ∃rn.(∃s1.>u∃s2.>)

and an EL policy
P = {∃ri .∃s1.>u∃ri .∃s2.> | 1≤ i ≤ n}.

Then, using the algorithm defined in Theorem 5.39, there are 2n optimal P-safe∀ generalizations
of C, that are of the form ∃r1.∃s j1 .>u . . . u ∃rn.∃s jn .>, where ji ∈ {1,2} for all i = 1, . . . , n.
Thus all of them belong to SSG∀(C , P) ♦

Next, we turn our attention to show the complexity of the optimality∀ problem.

Lemma 5.41. The optimality∀ problem can be decided in coNP.

Proof. According to Definition 5.21, safety∀ is polynomial and upward-closed property. Poly-
nomiality follows from Lemma 5.30, whereas upward-closedness is an obvious consequence
of the definition of safety∀. By Theorem 5.26, it is stated that deciding whether C ′ is an
optimal F -generalization of C w.r.t. P is in coNP. It implies that the optimality∀ problem is
also in coNP. �
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Similar to the optimality∃ problem, we do not know whether the optimality∀ problem is
also coNP-hard. But then, we can also show that the Hypergraph Duality Problem can be
reduced to the optimality∀ problem.

Proposition 5.42. There is a polynomial time reduction of DUAL to the optimality∀ problem.♦

Proof. Let G = {G1, . . . , Gg}, H = {H1, . . . , Hh} be finite families of inclusion-incomparable
sets and G := G1 ∪ . . .∪ Gg . We again assume without loss of generality that Hi is indeed a
minimal hitting set. We view the elements in G as distinct unqualified existential restrictions
∃si .> and then for every S ⊆ G, we write

d
S for the conjunction of the unqualified existential

restrictions in S. Now, we define

• C := ∃r.
d

G and P := {D1 := ∃r.
d

G1, . . . , Dg := ∃r.
d

Gg};

• C ′ = ∃r.
d
(G \H1)u . . .u ∃r.

d
(G \Hh)

Since each Hi is a minimal hitting set, it is easy to see that C ′ is a P-safe∀ generalization
of C . We will show that there is only one optimal P-safe∀ generalization of C . According
to Definition 5.34, we only consider all Di1 , . . . , Diq ∈ P, where these are all indices for

which C is not safe∀ for Di. Since all concepts in P do not have concept names in their
top-level conjunction, we just consider the step where rd(Di)> 0. It means that we construct
a minimal hitting set H of con∃(Di1), . . . ,con∃(Diq) and there is only one H that can be
constructed and it is equal to P. Then, for each ∃r.

d
G j , we have rd(G j)> 0, so that we go

to the next step that consider the set Pi for each concept ∃ri .Ci ∈ con(C). On this level, we
only have one C1 =

d
G and P1 = {

d
G1, . . . ,

d
Gg}. Then, we compute all optimal P-safe∀

generalizations of C1 that is obtained by computing all minimal hitting sets of G1, . . . , Gg
and for each of this hitting set, we remove exactly one ∃si .> from the top-level conjunction
of C1. As a consequence, the optimal P-safe∀ generalization of C is

C ′′ :=
l

H minimal hitting set of G

∃r.
l
(G \H)

It is easy to see that H contains all minimal hitting sets of G iff C ′′ is the optimal P-safe∀

generalization of C . �

5.7 Characterizing Safety∀∃ and Optimality∀∃

As in the case of characterizing safety∃ and safety∀, we also require the policy P to be
redundant-free. Now, the following lemma shows the characterization for safe∀∃ concepts.

Lemma 5.43. Let C be an EL concept and P = {D1, . . . , Dp} be a redundancy-free EL policy.
C is safe∀∃ for P iff

1.) for all concept names A∈ con(D1)∪ . . .∪ con(Dp), A 6∈ con(C) and

2.) for all existential restrictions ∃r.D′ ∈ con(D1)∪ . . .∪ con(Dp), there is no concept of the
form ∃r.E in con(C).
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Proof. First, assume that C is not safe∀∃ for P. Hence, there is Di ∈ P and an FLE
concept C ′′ such that C ′′ complies with P, but C u C ′′ v Di. This subsumption implies
that A ∈ con(C) ∪ con(C ′′) holds for all A ∈ con(Di). If there is an A ∈ con(Di) such that
A ∈ con(C), then property 1.) is violated. Otherwise, all A ∈ con(Di) belong to con(C ′′).
But then C ′′ 6v Di can only be due to the fact that there is ∃r.D′ ∈ con(Di) such that, for
all ∃r.C ′ ∈ con(C ′′), we have C ′

d
filler∀r (C

′′) 6v D′. Applying Proposition 5.29 again
to the subsumption C u C ′′ v Di thus yields that that there is ∃r.E ∈ con(C) such that
E

d
filler∀r (C

′′)v D′. Consequently, property 2.) is violated.
To show the other direction, assume that condition 1.) or 2.) is violated. If 1.) is violated,

then there are Di ∈ P and a concept name A such that A∈ con(C)∩ con(Di). We modify Di
to C ′′ by removing A from the top-level conjunction of Di. Then C ′′ is an EL concept, and
thus also an FLE concept, such that C ′′ 6v Di and C u C ′′ ≡ C u Di v Di . Given D ∈ P \ {Di}
we have C ′′ 6v D since otherwise Di v C ′′ v D would contradict our assumption that P is
redundancy-free. Thus C is not safe∀∃ for P.

If condition 2.) is violated, then there are Di ∈ P and existential restrictions ∃r.D′ ∈ con(Di)
and ∃r.E ∈ con(C). Let C ′′ be obtained from Di by replacing every existential restriction
∃r.F from the top-level conjunction of Di with the corresponding value restriction ∀r.F . To
show that C uC ′′ v Di , it is sufficient to show that C uC ′′ v ∃r.F for all ∃r.F ∈ con(Di). This
is the case since C u C ′′ v ∃r.E u∀r.F v ∃r.(E u F)v ∃r.F .

It remains to show that C ′′ is compliant with P, i.e., for all D ∈ P we have C ′′ 6v D. If
D contains an existential restriction for r, then this holds since C ′′ does not contain an
existential restriction for r. In particular, this covers the case where D = Di. If D does not
contain an existential restriction for r, then the changes we made when going from Di to
C ′′ are not relevant for D, i.e., we have C ′′ v D iff Di v D. Since P is redundancy-free, this
yields C ′′ 6v D. �

Due to the simplicity of the conditions 1.) and 2.) in this proposition, it is now easy to
show that all relevant computation or decision problems for safety∀∃ are tractable.

Theorem 5.44. Given EL concepts C , C ′′ and an EL policy P that is redundant-free, we can

• decide whether C is safe∀∃ for P,

• compute the optimal P-safe∀∃ generalization of C, and

• decide whether C ′′ is an optimal P-safe∀∃ of C

in polynomial time.

Proof. First, note that the characterization of safety∀∃ given in Proposition 5.43 can obviously
be checked in polynomial time. Secondly, to obtain the optimal safe∀∃ generalization of C
for P, we simply remove from con(C) all concept names A with A∈ con(D1)∪ . . .∪ con(Dp),
and all existential restrictions ∃r.E such that con(D1)∪ . . .∪ con(Dp) contains an existential
restriction for the role r. This can clearly be done in polynomial time. Finally, to decide
whether C ′′ is an optimal safe∀∃ generalization of C for P, apply the procedure just described
to C , and check whether the resulting concept C ′ is equivalent to C ′′. Since the subsump-
tion problem is polynomial in EL, this yields a polynomial-time decision procedure for the
optimality problem. �



Chapter 6

Privacy-Preserving Ontology Publishing for
EL ABoxes

In this chapter, we extend the privacy setting defined in the previous chapter by assuming
that the information about individuals as well as the knowledge of attackers are given by EL
ABoxes consisting of concept and role assertions, while the privacy policy is either an instance
query (EL concept) or a conjunctive query. We set the EL ABoxes in this chapter to contain
axioms stating information about known and anonymous individuals which correspond to
constants and nulls, respectively, in relational datasets formulated by [GK16; GK19]. If
constants are treated in that papers as an object whose information needs to be protected,
then here we assume that the individuals whose information is not allowed to be disclosed
are the known ones. In this setting, we still do not include (general) TBoxes as a part of
the input in this setting. However, as argued before in the previous chapter, ontologies that
use acyclic TBoxes, such as SNOMED CT, NCI, or GeneOntology, still can make use of the
results presented in this chapter since the TBoxes can be reduced away by unfolding concept
definitions [Sun09].

Analogous to the formalization of sensitive information in EL instance stores, here we
define compliance if an ABox does not reveal any sensitive answer to the policy and safety
if the combination of the ABox and any other policy-compliant EL ABox does not disclose
any sensitive answer to the policy. If the given ABox does not satisfy such two properties,
an anonymization operator, called anonymizer, is applied to it such that the anonymized
ABox fulfill the two privacy requirements. The optimality property is also mentioned here
to guarantee that the modified ABox, which is compliant and safe, still preserves as much
information from the original ABox as possible. To modify EL ABoxes, we will weaken the
concept assertions C(a) by semantically generalizing C as we performed in Chapter 4 and
5, and additionally, we rename individuals occurring in the concept or role assertions. We
call the combination of concept generalization and individuals renaming an anonymization
approach applied to EL ABoxes.

This sort of approach also sounds common in the privacy area as a mainstream technique
to prevent the disclosure of sensitive data in information systems. Some popular and recent
anonymization techniques in databases or linked data can be found in [Swe02a; MW04;
GK16], which commonly either replace constants (or null values) with new null values in
the context of RDF graph or suppress characters of values of databases’ attributes with a
new anonymous character ∗ in the context of relational databases. As an illustration of
our anonymization approach, we extend the previous medical example in the beginning of
Chapter 5 with some role assertions.

99
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We define an EL ABox A0 consisting of the following assertions:

A0 = {(MaleuPatientu ∃suffer.(Diseaseu ∃symptom.Coughu ∃symptom.Fatigue))(BOB),
(FemaleuDoctoru ∃works_in.Oncology)(DIANA),
seen_by(BOB,DIANA)}

Basically, A0 says that BOB is a male patient who suffers from a disease which has coughing
and fatigue as its symptoms. Then, A0 additionally states that BOB is seen by DIANA who is
a female doctor working in an oncology department. The following EL concept D is a policy
such that one should not be able to find out the following information from any individual

D = Patient u∃suffer.(Diseaseu ∃symptom.Coughu ∃symptom.Fatigue) u
∃seen_by(Doctoru ∃works_in.Oncology).

Nonetheless, the ABox A0 entails the axiom D(BOB). According to the formal definition of
compliance in this chapter, A0 is not compliant with the policy D since there is an individual,
which is BOB, that belongs to D w.r.t. the given ABox. Now, we construct A1, which is an
anonymization of A0 and compliant with D.

A1 = {(MaleuPatientu ∃suffer.(Diseaseu ∃symptom.Coughu ∃symptom.Fatigue))(BOB),
(FemaleuDoctoru ∃works_in.Oncology)(y),
seen_by(BOB, x)}

The anonymization operation works in this example by renaming all occurrences of the known
individual DIANA with anonymous individuals x and y . We still can make this anonymization
as optimal as possible by taking the ABox A0 and sufficiently renaming the known individual
DIANA in one of the assertions, but not generalizing any concept as described as follows.

A2 = {(MaleuPatientu ∃suffer.(Diseaseu ∃symptom.Coughu ∃symptom.Fatigue))(BOB),
(FemaleuDoctoru ∃works_in.Oncology)(DIANA),
seen_by(BOB, x)}

However, this ABox A2 still can be attacked by other users who know that BOB is seen by
DIANA, where the assertion seen_by(BOB,DIANA) is compliant with D, but

A2 ∪ {seen_by(BOB,DIANA)} |= D(BOB).

To alleviate this issue, the safety property is considered and thus the following anonymization
A3 of A0 is safe for D such that for each EL ABox A′ complying with D, the union A3 ∪A′

also complies with D.

A3 = {(Maleu ∃suffer.(Diseaseu ∃symptom.Fatigue))(BOB),
(Femaleu ∃works_in.>)(DIANA),
seen_by(BOB, x)}
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Despite being safe for D, the ABox A3 is still not optimal in keeping more information from
A0 as much as possible. In fact, the following EL ABox A4 is also a safe anonymization w.r.t.
D and more informative than A3.

A4 = {Maleu ∃suffer.(Diseaseu ∃symptom.Cough) u
∃suffer.(Diseaseu ∃symptom.Fatigue) u
∃suffer.(∃symptom.Coughu ∃symptom.Fatigue))(BOB),

(Femaleu ∃works_in.>)(DIANA),
seen_by(BOB, x)}

Motivated by the illustration above, within this chapter, we will show how to address the
following decision problems:

• Is a given EL ABox compliant with a policy? (compliance)

• Is a given EL ABox safe for a policy? (safety)

• Does a given ABox anonymizer yield an anonymization that is not only compliant with
(safe for) a policy, but also preserves information from the original ABox as much as
possible? (optimality)

Before providing the formal definitions for each problem and giving the corresponding
algorithms for each of them, in Section 6.1, we discuss how to characterize logical entailments
between EL ABoxes that contain information about anonymous individuals. Then, in Section
6.2, we introduce an approach to anonymize EL ABoxes and then provide a small illustration
explaining that our approach has more features for performing anonymization than the
approach in [GK16; GK19]. Further, in Section 6.3, we present formal definitions for each
privacy property, which are compliance, safety, and optimality for EL ABoxes, and then define
the corresponding decision problems asking whether each property is guaranteed. This is
followed by introducing characterizations for compliance and safety problems in Section
6.4, which afterwards provide us complexity results for both problems. Finally, we close this
chapter in Section 6.5, by defining algorithms for deciding the optimality of EL ABoxes and
presenting reductions from an existing problem in graph theory to our optimality problems.

6.1 Logical Entailments in EL ABoxes with Anonymous Individuals

As stated in the beginning of this chapter that in this setting the EL ABoxes are specified to
have axioms about known and anonymous individuals. Within this section, we explain how
to characterize the entailment between ABoxes and the conjunctive query entailment problem
when the input ABoxes include anonymous individuals in their axioms. When talking about
signature in this kind of EL ABoxes A, we only restrict twithin o concept names, role names,
and known individuals occurring in A as the elements of sig(A). To clarify the symbol we
use for these two types of individuals, we write x , y to denote anonymous individuals, a, b, c
for known individuals, and u to symbolize individual names in general regardless of the
type. In this privacy setting, we also assume that the set NKI of known individuals contains
at least one known individual that does not occur in the given ABox A. Differing with how
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we treat anonymous individuals in Chapter 3 as an object that hides the ‘real name’ of a
known individual, in this chapter we treat them as an existentially quantified object, which
means that these anonymous individuals cannot be interpreted under the standard notion of
interpretation. Consequently, in the semantics sense, this gives us more notions to define the
semantics of EL ABoxes with anonymous individuals.

Given an interpretation I, an assignment θ w.r.t. I is a function θ : NAI→∆I . For every
u ∈ NI, if I is an interpretation and θ is an assignment w.r.t. I, then we have uI,θ = uI

if u ∈ NKI and uI,θ = θ(u) if u ∈ NAI. Given an EL ABox A, an interpretation I and an
assignment θ w.r.t. I satisfies A, denoted by (I,θ ) |= A iff for all concept and role assertions
C(u) and r(u1, u2), respectively, in A, we have uI,θ ∈ CI and (uI,θ

1 , uI,θ
2 ) ∈ rI , respectively.

Then, we call an interpretation I a model of A iff there exists an assignment θ w.r.t. I such
that (I,θ ) |= A.

Another consequence of having anonymous individuals as an existentially quantified object
is if we are given two different EL ABoxes A and A′, then we assume that anonymous
individuals in A and A′ are renamed apart so that every anonymous individual in A cannot
be linked to other anonymous individuals in A’. Now, given EL ABoxes A and A′, one may
be interested in knowing whether an ABox A′ is entailed by another ABox A. Formally, A
entails A′, denoted by A |= A′, iff every model of A is a model of A′. We say that two EL
ABoxes A, A′ are equivalent iff A |= A′ and A′ |= A.

Another important reasoning task over EL ABoxes that becomes a basis for reasoning
problems considered in this chapter is the CQ entailment problem w.r.t. EL ABoxes. To
characterize this problem for EL ABoxes with anonymous individuals, we can emulate what
the authors in [GK16; GK19] do to their conjunctive queries and datasets. For this reason,
we first need to know how these relational datasets are formally defined.

Definition 6.1. Let Const and Null be pairwise disjoint sets of constants and nulls, respectively,
and Rel be a set of first-order predicates with n-arity, where n> 0. A dataset D is a finite set of
atomic formulas that are built over Rel and Const∪Null.

In the following, we describe a decomposition process applied to EL ABoxes such their rep-
resentation is similar to a dataset consisting of atomic assertions only. As stated in Subsection
2.1.3, an EL ABox A is semantically equivalent to its first-order representation π(A). Note
that all variables in π(A) are existentially quantified. Since anonymous individuals are also
existentially quantified, we may replace the variable names w in π(A) with new anonymous
individuals x . Without loss of generality, we may now see this first-order representation
as ∃~z.
∧

Ad , where Ad is the set of all atomic formulas of the form of unary and binary
predicates occurring in π(A) with arguments from known and anonymous individuals and ~z
are anonymous individuals in Ad . We can also view Ad is essentially an EL ABox consisting
of atomic concept assertions A(u) and role assertions r(u, u′), where u, u′ ∈ NI. We will call
Ad the decomposed ABox of A afterwards. Using this representation, ∃~z.

∧

Ad is basically
the same with the first order formula used to represent datasets in [GK16; GK19]. Then,
our decomposed ABox is the same with a dataset built over Const,Null, unary, and binary
predicates only. Note that this decomposition process can be readily performed in linear
time. Nevertheless, if it is known from the context that all assertions in the original ABox
A are already in the form A(u) or r(u, u′), then we do not need to do the decomposition
process above.
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A0d
= {Male(BOB) (α1)

Patient(BOB) (α2)
suffer(BOB, x1) (α3)
Disease(x1) (α4)
symptom(x1, x2) (α5)
symptom(x1, x3) (α6)
Cough(x2) (α7)
Fatigue(x3) (α8)
Female(DIANA) (α9)
Doctor(DIANA) (α10)
works_in(DIANA, x4) (α11)
Oncology(x4) (α12)
seen_by(BOB,DIANA)} (α13)

Figure 6.3: The decomposed ABox A0d
obtained from the decomposition applied to A0

Example 6.2. As an example, let us consider the ABox A0 defined in the beginning of this
chapter. If the decomposition process explained above is applied to it, then we obtain the
decomposed ABox A0d

depicted in Figure 6.3. In particular, the concept assertion containing
BOB is decomposed into assertions (α1), . . . , (α8), the concept assertion containing DIANA is
decomposed into assertions (α9), . . . , (α12), and the role assertion seen_by(BOB,DIANA) does
not need to be decomposed since it is already atomic. ♦

We have explained our assumptions for EL ABoxes with anonymous individuals above.
Now, for the conjunctive queries we consider in this setting it is important to note that it
may only make sense if individual names in the arguments are only restricted to known
individuals since the anonymous ones can also be semantically replaced by existentially
quantified variables in q. This is again different with how we treat conjunctive queries in the
view-based identity problem in Chapter 3 since anonymous individuals are not necessarily
treated as an existentially quantified object.

Using all these representations and referring to the notion of homomorphism between the
body of CQs and the datasets in [GK16; GK19], we are ready to characterize the CQ entailment
problem for EL ABoxes with anonymous individuals. Given a CQ q(~v)← ∃~w.φ(~v, ~w) and
an EL ABox A, a homomorphism from the body of q to the decomposed ABox Ad of A is a
mapping h : NKI ∪ ~v ∪ ~w→ NKI ∪NAI such that

h(a) = a for all known individuals and h(φ(~v, ~w)) ⊆ Ad .

We say that ~u is an answer to q(~v) w.r.t. A iff there exists a homomorphism from the body of
q to Ad such that h(~v) = ~u.

6.2 Anonymizing EL-ABoxes

Now, we introduce our anonymization function that will be applied to EL ABoxes. In this
context, we proceed anonymizations by renaming known or anonymous individuals with
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new anonymous individuals both in concept and role assertions. In addition to individual
renaming, our anonymization function may generalize the concept C occurring in concept
assertions C(u) ∈ A.

When generalizing concepts C , intuitively this anonymization function will map C to a
more general concept C ′ such that C v C ′, where concept names and role names occurring
in C ′ obviously occur in C , or, in general, sig(C ′) ⊆ sig(A). For this reason, given an ABox A,
we define CA

EL as the set of EL concepts that are built over the signature of A, and then we
put CA

EL as a part of the range of our anonymization function.
Similar to [GK16; GK19], we need the notion of position that basically represents an

occurrence of a concept or an individual in an ABox A. A position ρ in A is a pair 〈β , j〉 for a
role or a concept assertion β in A and j ∈ {1,2}. Then, the value val(s, A) of ρ in A is the
j-th argument of β . If β is a role assertion r(a, b), then a and b are the first and the second
arguments of β , respectively. Likewise, if β is a concept assertion C(a), then C and a are the
first and the second arguments of β , respectively.

Definition 6.4. Let A be an EL-ABox and CA
EL be the set of all EL concepts that are built over the

signature Σ of A. An A-anonymizer is a function f mapping positions in A to NKI ∪NAI ∪ CA
EL

such that for all positions ρ and ρ′ in A,

• if val(ρ, A), val(ρ′, A) ∈ NAI ∪NKI, then

– f (ρ) ∈ NKI ∪NAI,
– f (ρ) ∈ NKI implies val(ρ, A) = f (ρ), and
– f (ρ) = f (ρ′) implies val(ρ, A) = val(ρ′, A).

• if val(ρ, A) is an EL concept C, then f (ρ) is an EL concept C ′ ∈ CA
EL such that C v C ′.

Given an A-anonymizer f , an ABox A′ is an anonymization of A w.r.t. f , written f (A) = A′,
iff A′ is obtained from A by

• for each β = r(a1, a2) ∈ A, replace them with r(u1, u2) such that u1 = f (〈β , 1〉) and
u2 = f (〈β , 2〉), and

• for each β = C(a) ∈ A, replace them with C ′(u), where f (〈β , 1〉) = C ′ and f (〈β , 2〉) = u.
♦

The following example illustrates how to anonymize an EL ABox using an anonymizer.

Example 6.5. Let us consider again the ABox A0 and A4 defined in the beginning of this chapter.
We will show how to obtain A4 from an anonymizer applied to A0. From the representation of
A0, there are six positions β1, . . . ,β6 in A0, where

– val(β1, A) =MaleuPatientu∃suffer.(Diseaseu∃symptom.Coughu∃symptom.Fatigue),

– val(β2, A) = BOB,

– val(β3, A) = FemaleuDoctoru ∃works_in.Oncology,

– val(β4, A) = DIANA,

– val(β5, A) = BOB, and
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– val(β6, A) = DIANA.

We construct an A-anonymizer f such that f maps each position to the following individuals
or concepts and f (A0) = A4:

– f (β1) =Maleu ∃suffer.(Diseaseu ∃symptom.Cough)
u ∃suffer.(Diseaseu ∃symptom.Fatigue)
u ∃suffer.(∃symptom.Coughu ∃symptom.Fatigue),

– f (β2) = BOB,

– f (β3) = Femaleu ∃works_in.>,

– f (β4) = DIANA,

– f (β5) = BOB, and

– f (β6) = x .

Additionally, Figure 6.6 depicts a graphical illustration of anonymizing A0 to A4 via f . Note
that in the figure the black nodes represent a known individual, the gray nodes represent
an anonymous individual, and the white nodes represent a filler of an existential restriction
occurring as a subconcept in an ABox. ♦

One may see this A-anonymizer as a weakening operator applied to each axiom in A
since it weakens each axiom by either renaming individuals in assertion or generalizing the
concept. The next question is whether the anonymizers also weaken the whole ABox. The
following lemma shows that an anonymization of A w.r.t. an A-anonymizer f is indeed a
logical consequence of A.

Lemma 6.7. Let A, A′ be EL ABoxes and f be an A-anonymizer such that f (A) = A′. It holds
that A entails A′.

Proof. Let I be a model of A. Then, there is an assignment θ w.r.t. I such that (I,θ) |= A.
To prove this lemma, we only need to show that I is also a model of A′. Note that for all
C(u) ∈ A and C ′(u′) ∈ A, where val(ρ, A) = C and f (ρ) = C ′, we have CI ⊆ C ′I . Now, let
us construct an assignment θ ′ w.r.t. I such that

• for all anonymous individuals x occurring in A′ and A, we have θ ′(x) := θ (x) and

• for all anonymous individuals y occurring in A′, but it does not occur in A, and
f (ρ) = y , we have θ ′(y) := uI,θ , where val(ρ, A) = u.

By taking the interpretation I and the construction of θ ′ into account, we have

u(I,θ ) ∈ CI implies u′(I,θ ′) ∈ C ′I for all C(u) ∈ A,

where val(β1, A) = C , val(β2, A) = u, f (β1) = C ′, f (β2) = u′, and C ′(u′) ∈ A′. In addition to
that, we have

(u(I,θ )
1 , u(I,θ )

2 ) ∈ rI implies (u(I,θ ′)
1 , u(I,θ ′)

2 ) ∈ rI for all r(u1, u2) ∈ A,

where val(β3, A) = u1, val(β4, A) = u2, f (β3) = u1, f (β4) = u2, and r(u1, u2) ∈ A′. This
implies that (I,θ ′) satisfies A′, and thus I is a model of A′. �



106 Chapter 6. Privacy-Preserving Ontology Publishing for EL ABoxes

BOB A0
{Male,
Patient}

DIANA
{Female,
Doctor} {Disease}

{Oncology} {Cough} {Fatigue}

seen_by suffer

works_in symptom symptom

A-anonymizer f

BOB
A4{Male}

x {Disease} {Disease}

{Cough} {Fatigue} {Cough} {Fatigue}

{Female}

DIANA

seen_by suffer suffer
suffer

symptom symptom symptom symptom

works_in

Figure 6.6: An illustration of anonymizing A0 to A4 via an A0-anonymizer f
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Unlike the approach we used in Chapter 5 that we apply to strictly weaken EL instance
stores by generalizing EL concepts, here we show that the anonymizers we defined do not
strictly weaken the original ABox in general.

Example 6.8. Consider the EL ABox A= {∃r.>(a), r(a, b)}. If we apply an A-anonymizer f
that does not rename any individual, but only generalizes ∃r.> to >, then we have the following
anonymized ABox A′ = {>(a), r(a, b)}. It can be easily seen that A is equivalent to A′. ♦

Next, one may also wonder whether for every EL ABoxes A and A′ such that A |= A′,
we can always construct an A-anonymizer f such that f (A) = A′. This kind of desiderata,
however, is countered by the following example.

Example 6.9. Consider the EL ABoxes A= {r(a, a)} and A′ = {∃r.∃r.∃r.>(a)}. It holds that
A |= A′. However, there is no A-anonymizer f that can weaken r(a, a) to a concept assertion
∃r.∃r.∃r.>(a) since f can only rename a or leave it as it is. ♦

Now, we will compare our anonymizers with suppressors defined in [GK16; GK19]. By
making use of the decomposition process we described in Section 6.1 to obtain Ad from a
given EL ABox, we will show that our anonymizers actually provide more features to ‘split’
labeled nulls and ‘add’ more atoms when generalizing a concept than the suppressors defined
in [GK16; GK19]. This is more clearly illustrated in the following toy example.

Example 6.10. Suppose that we have an EL ABox A = {(∃r.(B1uB2))(a)}. Then, we translate
A to a dataset

DA = {r(a, w), B1(w), B2(w)},

where a and w are constant and null, respectively. Applying suppressors defined in Definition 1
of [GK16] to DA, we are only able to rename a, or rename w, or just keep them as what they
are. For instance, we want to hide the information that a has an r-successor that is also an
instance of B1 u B2. One way to achieve this is by renaming w with a new anonymous one in
one of its occurrences.

f̂ (DA) = {(r(a, w), B1(w), B2(w
′))}.

Using this dataset, the information we want to hide is exactly not inferred from the dataset.
Likewise, if we rename w in the other occurrence, i.e., change B1(w) with B1(w′). However, as
an implication, the consequence stating that a has a relation to an instance of B2 is lost with
respect to f̂ (DA). But then, using our anonymizers defined in Definition 6.4, we can preserve
that consequence by generalizing ∃r.(B1uB2) to ∃r.B1u∃r.B2 such that if f is an A-anonymizer,
then we may have

f (A) = {(∃r.B1 u ∃r.B2)(a)}.

Now, if we transform f (A) above to the corresponding dataset D f (A), then we have

D f (A) = {(r(a, w1), r(a, w2), B1(w1), B2(w2))}.

By looking at the representation of D f (A), our anonymizer has a sort of feature to ‘split’ null w
to w1 and w2, and thus D f (A) explicitly says that w1 and w2 are also instances of B1 and B2
respectively. This kind of feature does not belong the suppressors defined in [GK16; GK19].



108 Chapter 6. Privacy-Preserving Ontology Publishing for EL ABoxes

In the context of preserving privacy of information of individuals as well as publishing
them to the external Web, the notions of information privacy and information availability
becomes a trade-off considered frequently. One needs to ensure that the information about
individuals are protected in terms of their confidentiality but remains practically useful. To
guarantee this property, similar to [GK16; GK19], we introduce an order on anonymizers.
Given anonymizers f1 and f2, intuitively f1 is more informative than f2 if it can be obtained
from f2 by keeping more known individuals, identifying more distinct anonymous individuals,
or specializing more EL concepts.

Definition 6.11. Let A be an EL ABox and f1, f2 be A-anonymizers. The function f1 is more
informative than f2, written f1 ≥ f2, if and only if for all positions ρ and ρ′ in A,

1.) if val(ρ, A), val(ρ′, A) ∈ NAI ∪NKI, then
a.) if f2(ρ) ∈ NKI, then f1(ρ) = f2(ρ) and
b.) if f2(ρ) = f2(ρ′), then f1(ρ) = f1(ρ′).

2.) if val(ρ, A) is an EL concept, then f1(ρ)v f2(ρ). ♦

We write f1 > f2 if f1 ≥ f2, but f2 ≥ f1 does not hold. If f1 ≥ f2 and f2 ≥ f1, then we have
f1 ' f2, which means that f1 is as informative as f2.

One obvious consequence which happens due to the informativeness order defined above
is that if f1, f2 are A-anonymizers, then f1 ≥ f2 implies A1 |= A2, where f1(A) = A1 and
f2(A) = A2.

6.3 Formalizing Sensitive Information in EL ABoxes

As mentioned before that in this setting we plan to formalize the sensitive information into
policies which are given either as an instance query (EL concept) or a conjunctive query. For
the first type of policy, we emphasize that the sensitive answers for a given EL concept D w.r.t.
an ABox are all known individuals, while for the second one, we consider that an answer of
a conjunctive query q w.r.t. a given ABox A is sensitive if it is a tuple ~a of known individuals.
Now, we are ready to define privacy properties that should be satisfied in PPOP in EL ABoxes.

Definition 6.12. A policy P is either an EL concept D such that D 6≡ > or a conjunctive query
q. Given an EL ABox A, an A-anonymizer f , the EL ABox A is

• compliant with D iff A 6|= D(a), for all a ∈ NKI,

• compliant with q iff A 6|= q(~a) for all tuples ~a of known individuals, and

• safe for P iff A∪A′ complies with P for all A′ complying with P.

The A-anonymizer f is an optimal P-compliant (safe) anonymizer of A iff

• f (A) is compliant with (safe for) P, and

• there is no A-anonymizer f ′ such that f ′(A) is compliant with (safe for) P, where f ′ > f .
♦
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X = IQ X = CQ

COMPLIANCEX
PTIME

(Cor. 6.14)
CONP-complete

(Cor. 6.14)

SAFETYX
PTIME

(Thm. 6.23)
Π

p
2 and DP-hard
(Thm. 6.23)

OPTIMAL-COMPLIANCEX
CONP

(Thm. 6.34)
Π

p
2 and DP-hard
(Thm. 6.34 )

OPTIMAL-SAFETYX
CONP

(Thm. 6.34)
Π

p
3 and DP-hard
(Thm. 6.34)

Table 6.13: Complexity Results on PPOP in EL ABoxes

The standardization apart between anonymous individual names in A and A′ also implies
that the anonymous individuals are first renamed apart before constructing the set-theoretic
union between A and A′.

We are now ready to define the decision problems that will be investigated throughout
this chapter. Let D be an EL concept, A be an EL ABox, and f be an A-anonymizer. The
formal definitions for the decision problems mentioned in the beginning of this chapter are
as follows:

• The COMPLIANCEIQ problem asks whether A is compliant with D

• The SAFETYIQ problem asks if A is safe for D, and

• The OPTIMAL-COMPLIANCEIQ (OPTIMAL-SAFETYIQ) problem asks whether f is an op-
timal D-compliant (safe) anonymizer of A.

We define COMPLIANCECQ, SAFETYCQ, OPTIMAL-COMPLIANCECQ, and OPTIMAL-SAFETYCQ ana-
logously by requiring the policy to be a conjunctive query. The complexity results of all these
problems are summarized in Table 6.13.

6.4 Compliance and Safety for EL-ABoxes

First, we focus on the characterization of compliance in EL ABoxes. One may easily see that
solving the compliance problem where the policy is an EL concept is the same as solving
the complement of the instance problem in EL as characterized in Lemma 2.23, and thus by
Lemma 2.24, the complexity is in in PTIME. Meanwhile, the compliance problem, where the
policy is now a CQ, is the complement of the CQ entailment problem, described in Lemma
2.25, and thus the complexity of it is CONP-complete.

Corollary 6.14. The COMPLIANCEIQ problem is in PTIME and the COMPLIANCECQ problem is
CONP-complete.

Now, we move our attention to SAFETYIQ. Before we can characterize this problem, we
need to assume that D should be reduced. It is easy to see that A is safe for D iff A is safe
for the reduced form of D. Moreover, during the proof of a characterization for SAFETYIQ,
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written in Lemma 6.16, a condition stating that A is safe for a reduced EL concept D′ and
an anonymous individual x will be taken into account to support the arguments within the
proof. Thus, a mechanism to check whether this condition holds should be considered first.

Given an EL ABox A, a reduced EL concept D′, and an anonymous individual x occurring
in A, the ABox A is safe for D′ and x iff for all A′, we have A∪A′ 6|= D′(x). In the following
lemma, we show how to characterize this problem.

Lemma 6.15. Let A be an EL ABox, D′ be a reduced EL concept, and x ∈ NAI occurring in A.
The ABox A is safe for D′ and x iff D′ 6≡ > and one of the following conditions holds:

1.) there is A∈ con(D′) such that for all F(x) ∈ A, A 6∈ con(F) or

2.) there is ∃r.D′′ ∈ con(D′) such that
a.) for all F(x) ∈ A and all ∃r.F ′ ∈ con(F), we have F ′ 6v D′′ and
b.) for all role assertions r(x , u) ∈ A, we have u 6∈ NKI and A is safe for D′′ and u.

Proof. First, we assume that A is not safe for D′ and x . We show that D′ ≡ > or the two
conditions above are violated. If A is not safe for D′ and x , then there is A′ such that
A∪A′ |= D′(x). Note that anonymous individuals in A and A′ are renamed apart, and thus
x does not occur in A′. However, first consider that A′ |= D′(x). If this the case and x does
not occur in A′, then it implies that D′ is > since >(x) is a tautology and entailed by any
ABox.

Now, consider that A′ 6|= D′(x), but A∪A′ |= D′(x). The first item in Lemma 2.23 implies
that for all A∈ con(D′), there is F(x) ∈ A∪A′ such that A∈ con(F), while the second item in
Lemma 2.23 implies that for all ∃r.D′′ ∈ con(D′), there is F(x) ∈ A∪A′ and ∃r.F ′ ∈ con(F)
such that F ′ v D′′ or there is r(x , u) ∈ A ∪A′ such that A ∪A′ |= D′′(u). However, the
assertions F(x) and r(x , u) only exist in A since x ∈ NAI and all anonymous individuals in A′

and A are named differently. Since F(x) ∈ A, this implies that the conditions 1.) and 2a.)
are violated. Now, let r(x , u) ∈ A. Then, there are two possibilities, which is either u ∈ NKI
or u ∈ NAI. If u ∈ NKI, then this violates the condition 2b.) and if u ∈ NAI, then it directly
implies that A is not safe for D′′ and u, which also violates the condition 2b.)

To show the converse direction, we assume that D′ ≡ > or all the conditions above are
false. If the former assumption holds, then it is easy to see that A is not safe for D′ and x .
Now, let the conditions 1.) and 2.) be violated. Suppose that all atoms in con(D′) satisfy
one of the following two conditions, which are the complement of conditions 1.) and 2a.),
respectively:

• for all A∈ con(D′), there is F(x) ∈ A such that A∈ con(F) and

• for all ∃r.D′′ ∈ con(D′), there is F(x) ∈ A and ∃r.F ′ ∈ con(F) such that F ′ v D′′.

Then, it directly implies that A is not safe for D′ and x since A |= D′(x). However, if there
are existential restrictions ∃r.D′′ ∈ con(D′) that satisfies the converse of the condition 2b.),
which are

*.) there is r(x , u) ∈ A, where u ∈ NKI or

**.) there is r(x , u) ∈ A, where u ∈ NAI and A is not safe for D′′ and u,
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then the following considerations should be taken into account. First, let us consider all exist-
ential restrictions ∃r1.D′′1 , . . . ,∃rp.D′′p ∈ con(D′) which satisfy conditions *) or **). Without
loss of generality, we may assume that there are two groups of these existential restrictions
such that the first group consists of ∃r j .D

′′
j satisfying condition *.) for all j = 1, . . . , i and the

second group consists of ∃rk.D′′k satisfying condition **.) for all k = i + 1, . . . , p. For each
∃r j .D

′′
j in the first group, we take one u ∈ NKI such that r(x , u) ∈ A, and then we construct an

EL ABox A j = {D′′j (u)}. Then, for each ∃rk.D′′k in the second group, we take one r(x , u) ∈ A,
where u ∈ NAI, and then take one EL ABox Ak not implying D′′k (u), but A∪Ak |= D′′k (u).

If we construct the union of all A j and Ak, then we have

⋃

1≤ j≤i

A j ∪
⋃

i+1≤k≤q

Ak 6|= D(x).

This is because x does not occur as an individual in A j which only consists of known
individuals and, additionally, since Ak is constructed when making a union of A and Ak, all
anonymous individuals in Ak do not occur in A, which means that x also does not occur in
Ak. Nevertheless, we have

A∪
⋃

1≤ j≤i

A j ∪
⋃

i+1≤k≤q

Ak |= D(x).

This can be shown by sufficiently considering all those existential restrictions atoms
satisfying only conditions *.) or **.). For those atoms ∃r j .D

′′
j fulfilling condition *.), there is

r j(x , u) ∈ A and D′′j (u) ∈ A j such that it finally holds that

A∪
⋃

1≤ j≤i

A j |= ∃r.D′′j (x).

Then, for those ∃rk.D′′k ∈ con(D′) fulfilling condition **.), there is rk(x , u) ∈ A and Ak,
where A∪Ak |= Dk(u), such that

A∪
⋃

i+1≤k≤q

Ak |= ∃ri .D
′′
k (x).

To summarize, since the conditions 1.) and 2a.) are violated in A and either the condition *)
or **) is satisfied by the some existential restrictions in con(D′), this finally shows that A is
not safe for D′ and x ∈ NAI. �

Using the characterization above, clearly, it can be decided in polynomial time to check
whether an ABox is safe for a reduced EL concept D′ and x ∈ NAI. Besides considering this
problem, we also require the notion of a tree-shaped ABox of an EL concept, that will also be
used within the proof of Lemma 6.16.

Let D be a reduced EL concept. Referring to a translation from DL concepts to a first-
order formula in Subsection 2.1.2, we construct πw(D). Then, we replace all variables in
πw(D) with new anonymous individuals, and thus we have the following formula ∃~x .

∧

AD,
where AD is an EL ABox consisting of all assertions of the form A(x1) or r(x1, x2) and ~x are
anonymous individuals occurring in AD. From now on, we call AD the tree-shaped ABox of D.
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Note that every anonymous individual in AD corresponds to an occurrence of a subconcept
of D.

Further, for the anonymous individual x replacing the universally quantified variable
w which occurs in πw(D), we call x the individual root of AD. An individual y in AD is
called leaf if it does not have any role assertion r(y, y ′) for all r ∈ NR. The depth of an
individual x ′ in AD, denoted by dep(x ′, AD), is m ∈ N iff there is a chain of role assertions
r1(x ′, x1), . . . rm(xm−1, y) starting from x ′ to a leaf y and for all chains of role assertions
r1(x ′, x1), . . . rm′(xm′−1, y ′) starting from x ′ to leaves y ′, we have m′ ≤ m.

Now, we are ready to characterize SAFETYIQ described in the following lemma.

Lemma 6.16. Let A be an EL ABox and D be a reduced EL concept such that D 6≡ >. The ABox
A is safe for D iff for all a ∈ NKI, the following holds

1.) if C(a) ∈ A and E ∈ sub(D), then C is safe∃ for {E} and

2.) if r(a, u) ∈ A and ∃r.D′ ∈ sub(D), then u 6∈ NKI and A is safe for D′ and u.

Proof. First, we show the ‘if direction’ by assuming that A is not safe for D such that there
are c ∈ NKI and an ABox A′ where A′ complies with D, but A∪A′ |= D(c). Instead of only
considering the known individual c to prove that one of the conditions 1.) and 2.) above is
violated, we use the following claim, that is more general, saying that if u ∈ NI is a known
individual or an anonymous individual occurring in A′ and A′ 6|= D(u), but A∪A′ |= D(u),
then either the condition 1.) or 2.) is not satisfied.

Claim 6.17. Let A, A′ be EL ABoxes, D be a reduced EL concept, and u ∈ NI be a known
individual or an anonymous individual occurring in A′. If A′ 6|= D(u), but A∪A′ |= D(u), then
there is b ∈ NKI such that

*.) there are C(b) ∈ A and E ∈ sub(D) such that C is not safe∃ for {E} or

**.) there are r(b, u′) ∈ A and ∃r.D′ ∈ sub(D) such that u′ ∈ NKI or A is not safe for D′ and
u′.

To show the claim above, we distinguish the following two cases step by step.

Case 1: Let u ∈ NKI. Since A′ 6|= D(u), one of the following two conditions should be
considered:
• there is A∈ con(D) such that for all C(u) ∈ A′, A 6∈ con(C) or
• there is ∃r.D′ ∈ con(D) such that

– for all C(u) ∈ A′ and all ∃r.C ′ ∈ con(C), we have C ′ 6v D′, and
– for all r(u, u′) ∈ A′, we have A′ 6|= D′(u′).

In contrast, A ∪A′ |= D(u). The only possible situations that make this entailment
holds are:
• For all concept names A that are imposed by the former condition above, there is

C(u) ∈ A such that A∈ con(C) or
• For all existential restrictions ∃r.D′ that satisfy the latter condition above,

– there is C(u) ∈ A such that there is ∃r.C ′ ∈ con(C) and C ′ v ∃r.D′ or
– there is r(u, u′) ∈ A∪A′ such that A∪A |= D′(u′).
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If such assertions C(u) occur in A, then this directly implies that there is u ∈ NKI such
that there are C(u) ∈ A and atoms of the form A or ∃r.D′ in con(D) ⊆ sub(D) such that
C is not safe∃ for either {A} or {∃r.D′}. Consequently, the condition *.) is fulfilled. Now,
we consider the situation where there are ∃r.D′ ∈ con(D) and r(u, u′) ∈ A∪A′ such
that A∪A |= D′(u′). If r(u, u′) ∈ A and u′ is a known individual, then the condition
**.) is satisfied. Likewise, if r(u, u′) ∈ A and u′ is an anonymous individual, which
directly means that u′ occur in A, but does not occur in A′, then A is not safe for
D′ and u′ and thus the condition **.) is satisfied. Now, let r(u, u′) ∈ A′ and u′ be a
known individual or an anonymous individual occurring in A′. Since A′ 6|= D′(u′),
A∪A′ |= D′(u′), and D′ is reduced, by induction on the role depth of D, it shows that
one of the conditions *.) and **.) holds. Finally, all possible situations that make
A∪A′ |= D(u) indeed ensure that one of the conditions *.) and **.) holds in the case
that u ∈ NKI

Case 2: Let u be an anonymous individual occurring in A′. Since A′ 6|= D(u) and A∪A′ |= D(u),
it is easy to see that the only possible cause why A′ 6|= D(u), but A∪A′ entails D(u) is
that there is ∃r.D′ ∈ con(D) such that
• for all C(u) ∈ A′ and all ∃r.C ′ ∈ con(C), we have C ′ 6v D′ and
• for all r(u, u1) ∈ A′, A′ 6|= D′(u1), but there is r(u, u2) ∈ A′ such that A∪A′ |= D′(u2).

Note that we only consider role assertions r(u, u2) ∈ A′ since u is an anonymous
occurring in A′ and thus it is not possible that r(u, u2) ∈ A. Let u2 be a known individual
or an anonymous individual occurring in A′. Since A′ 6|= D′(u2), A∪A′ |= D′(u2), and
D′ is reduced, by induction on the role depth of D, it shows that one of the conditions
*.) and **.) holds.

We have proved the claim above and now we are back to our assumption that A is not safe for
D because there are c ∈ NKI and an ABox A′, where A′ complies with D, but A∪A′ |= D(c).
Since c is a known individual, Claim 6.17 finally helps us show that one of the conditions 1.)
and 2.) is violated.

To show the ‘only if direction’, we assume that one of the conditions 1.) and 2.) is violated,
and then prove that A is not safe for D. This means that there are three possible conditions
that are able to make A being not safe for D as described as follows:

*.) there are a ∈ NKI, C(a) ∈ A, and E ∈ sub(D) such that C is not safe∃ for {E}, or

**.) there are a ∈ NKI, r(a, u) ∈ A, and ∃r.D′ ∈ sub(D) such that u ∈ NKI, or

***.) there are a ∈ NKI, r(a, u) ∈ A, and ∃r.D′ ∈ sub(D) such that u 6∈ NKI and A is not safe
for D′ and u.

First, let us consider the condition *). Since C is not safe∃ for {E}, as stated in Proposition
5.15, there are atoms F1 ∈ con(E) and F2 ∈ con(C) such that F2 v F1. Then, we construct C ′

that is obtained from E by removing F1 from con(E). This implies that C ′ 6v E, but CuC ′ v E.
Moreover, we construct a syntactic generalization G of D that is obtained from D by replacing
one occurrence of E in D with >.

For this condition, we will construct two EL ABoxes AC ′ and A
bG such that AC ′ = {C ′(a)}

and A
bG is obtained from the tree-shaped EL ABox AG of G by the following considerations:

• If the individual root x in AG is the occurrence of E in D that is replaced by >, then
replace x with a.
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• Otherwise, replace x with c ∈ NKI such that c does not occur in A and for the individual
x ′ in AG, where x ′ is the occurrence of E in D that is replaced by >, we replace x ′

with a.

Note that if G is >, then the corresponding tree-shaped EL ABox AG is empty and A
bG is

also empty. Now, we show that the union AC ′ ∪A
bG complies with D. Since the only known

individuals occurring in A
bG are c and a, it follows that AC ′∪A

bG 6|= D(b), where b ∈ NKI\{c, a}.
To show whether AC ′ ∪A

bG entails neither D(a) nor D(c), but A ∪AC ′ ∪A
bG entails either

D(a) or D(c), the following cases are distinguished.

Case 1. Let A
bG be an empty set. This implies that D = E and the only known individual

occurring in AC ′ ∪A
bG is a. However, C ′ 6v E and thus AC ′ 6|= D(a), which implies that

AC ′ complies with D. But, in this case we have A∪AC ′ |= D(a) since the occurrence
of C(a) ∈ A implies C u C ′ v D, and thus a is an instance of D w.r.t. A∪AC ′ .

Case 2. Let A
bG be not empty and the individual root of A

bG be a. This implies that the only
known individual occurring in AC ′ ∪A

bG is a and E occurs in the top-level conjunction
of D. Now, assume that D = E u E′, which implies that G = E′ and A

bG = {E
′(a)}.

Note that E and E′ are incomparable w.r.t. subsumption order since D is reduced.
However, for the atom F1 ∈ con(E) ⊂ con(D), since C ′ 6v E, and E and E′ are also
not subsumed by each other, we know that there is no atom F2 ∈ con(C ′)∪ con(E′),
where C ′(a) ∈ AC ′ , such that F2 v F1. This consequently means that AC ′ ∪A

bG 6|= D(a)
and thus AC ′ ∪A

bG is compliant with D. However, we have A∪AC ′ ∪A
bG |= D(a) since

again we have C(a) ∈ A, which implies that C u C ′ v D, and thus a is an instance of
D w.r.t. A∪AC ′ ∪A

bG .

Case 3. Let A
bG be not empty and the individual root of A

bG be c. This implies that the known
individuals occurring in AC ′ ∪ A

bG are c and a. Then, since a is not the individual
root of A
bG and a is the occurrence of E in D that is replaced by >, we know that E

is a subconcept of D that does not occur in the top-level conjunction of D and thus
rd(D)> 0.
• Assume that AC ′ ∪A

bG |= D(a). Since AC ′ ∪A
bG is tree-shaped, AC ′ ∪A

bG |= D(a)
implies that dep(a, A

bG) ≥ rd(D) or rd(C ′) ≥ rd(D). However, the individual
a itself is an occurrence of E and E does not occur in the top-level conjunction
of D, and thus dep(a, A

bG) < rd(D). Meanwhile, by the construction of C ′, the
concept C ′ itself is a subconcept of E, and hence rd(C ′)< rd(D). This obviously
contradicts our assumption that AC ′ ∪A

bG |= D(a).
• Assume that AC ′ ∪A

bG |= D(c). Let Aa
bG
⊂ A
bG such that Aa

bG
is tree-shaped and

all individuals in Aa
bG

are reachable from a in A
bG . Note that AC ′ ∪A

bG |= D(c) iff
AC ′ |= E(a) or Aa

bG
|= E(a). However, the former, which is AC ′ |= E(a), does not

hold since C ′ 6v E and the latter, which is Aa
bG
|= E(a), does not hold either due

to the similar arguments as written in Case 1 and 2 above. This consequently
implies that our assumption saying that AC ′ ∪A

bG |= D(c) is wrong.
These two assumptions above finally yield a consequence that AC ′ ∪A

bG is compliant
with D. However, it is easy again to see that A∪AC ′ ∪A

bG |= D(c) due to the existence
of C(a) ∈ A, which implies that C u C ′ v D. As the same as the arguments in the
previous cases, we finally see that c is an instance of D w.r.t. A∪AC ′ ∪A

bG .
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Using three cases above, we are able to show that the condition *.) makes A being not safe
for D. Now, we move to the condition **.) and show that A is also not safe for D. For this
condition, we have a ∈ NKI, r(a, u) ∈ A, and ∃r.D′ ∈ sub(D) such that u ∈ NKI. We construct
again a syntactic generalization G of D that is obtained by replacing an occurrence of ∃r.D′

in D with >. Next, we construct two ABoxes A
bG, as analogously defined before for the

condition *.), and AD′ consisting of a single assertion D′(u) only. This construction implies
that there are only c, a, and u as known individuals in A

bG ∪AD′ (u may be the same or
different with a). However, it is easy to see that A

bG ∪AD′ 6|= D(u) since A
bG ∪AD′ |= D(u) iff

AD′ |= D(u), but we know that D is reduced and D′ ∈ sub(D) does not occur in the top-level
conjunction of D, and thus D′ 6v D and AD′ 6|= D(u). It remains to show that A

bG ∪AD′ entails
neither D(a) nor D(c).

We skip the case where A
bG is empty or the case where A

bG is not empty and the individual
root of A
bG is a since the arguments within these cases to show that A is not safe for D

are similar to Case 1 and Case 2 for the condition *.). We focus on the case where A
bG is

not empty and c is the individual root of A
bG. If we assume that AD′ ∪A

bG |= D(a), then
this implies that dep(a, A

bG) ≥ rd(D) or rd(D′) ≥ rd(D). However, as written in Case 3
above, we know that dep(a, A

bG) < rd(D), whereas D′ is a subconcept of D not occurring
in the top-level conjunction of D and thus rd(D′) < rd(D). This contradiction shows that
AD′ ∪A
bG 6|= D(a). Further, it is easy to see that AD′ ∪A

bG |= D(c) iff AD′ ∪Aa
bG
|= ∃r.D′(a).

However, it does not hold since D′ 6v ∃r.D′ and there is no r(a, x) ∈ Aa
bG

such that Aa
bG
|= D′(x)

as analogously argued in Case 1 or 2 for the condition *.) above. This consequently implies
that AD′ ∪A

bG 6|= D(c).
Now, the arguments written in the previous paragraph show that AD′ ∪A

bG is compliant
with D, but it is easy to see that A ∪ AD′ ∪ A

bG |= D(c) since there is r(a, u) ∈ A, where
u ∈ NKI, and A∪AD′ ∪A

bG |= D′(u). This finally shows that A is not safe for D by assuming
that the condition **.) holds.

We turn our attention now to the last condition ***.). This condition consists of an
assumption that there are r(a, u) ∈ A and ∃r.D′ ∈ sub(D) such that u ∈ NAI and A is not safe
for D′ and u. This implies that there is A′ such that A ∪A′ |= D′(u). In the case D′ ≡ >
or, otherwise, D′ 6≡ >, but rd(D′) = 0, then A∪A′ |= D′(u) iff for all A∈ con(D′), there is
C(u) ∈ A such that A∈ con(C). For this case, we have A |= D′(u). Now, we need to construct
a syntactic generalization G of D that is obtained from D by replacing an occurrence of ∃r.D′

in D with >, and then construct A
bG as defined before for the conditions *.) and **.). Similar

to the condition **.), A
bG does not entail both D(a) and D(c), which implies that A

bG complies
with D. But, it is easy to see that A ∪A

bG |= D(c) iff there are r(a, u) ∈ A and A |= D′(u).
Thus, we know that A is not safe for D if the condition ***.) holds, where rd(D′) = 0 or
D′ ≡>.

Now, we go to the assumption that rd(D′) > 0. By Lemma 2.23, A ∪A′ |= D′(u) holds
because

• for all A∈ con(D′), there is C(u) ∈ A such that A∈ con(C) and

• for all ∃r.D′′ ∈ con(D′), there is C(u) ∈ A and ∃r.C ′ ∈ con(C) such that C ′ v D′′ or
there is r(u, u′) ∈ A such that A∪A′ |= D′′(u).

Intuitively, one reason why A∪A′ |= D′(u) is because there are known individuals reachable
from u in A and additionally, there are also some axioms speaking about these known
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individuals in A′ such that if A and A′ is combined, then D′(u) is revealed w.r.t. A∪A′. For
this reason, we construct a sort of ground ABox Aχ that consists of only known individuals
and is obtained from A∪A′ based on a function χ formally defined as follows.

Let A, A′ be EL ABoxes, D′ be an EL concept such that rd(D′)> 0, and u ∈ NAI occur in A
such that A∪A′ |= D′(u). The function χ : con∃(D′)→ NI is called an entailment function
induced by A∪A′ |= D′(u) if

χ(∃r.D′′) = u iff r(u, u′) ∈ A and A∪A′ |= D′′(u′). (6.1)

Then, given A, A′, an EL concept D′, an individual u ∈ NAI occurring in A, and an entail-
ment function χ induced by A ∪A′ |= D′(u), we construct a ground ABox Aχ induced by
A∪A′ |= D′(u) by performing the following steps:

• First, we initialize Aχ := ;.

• Second, for each ∃r.D′′ ∈ con∃(D′) such that χ(∃r.D′′) = b ∈ NKI, we add a concept
assertion D′′(b) to Aχ .

• Last, for each ∃r.D′′ ∈ con∃(D′) such that χ(∃r.D′′) = x ∈ NAI, we take an entailment
function χ ′ induced by A∪A′ |= D′′(x)mapping existential restrictions from con∃(D′′)
to NI, and then add Aχ ′ to Aχ .

Using this sort of ABox, we make the following claim.

Claim 6.18. A ground ABox Aχ induced by A ∪ A′ |= D′(u) does not entail D′(u), but
A∪Aχ |= D′(u).

The first conjecture stating that Aχ 6|= D′(u) is obvious since there is no information about
anonymous individuals in Aχ . The second statement saying that A∪Aχ |= D′(u) is justified
as follows:

• Since A∪A′ |= D′(u) and u only occur in A, it is obvious to see that for all A∈ con(D′),
there is C(u) ∈ A such that A∈ con(C).

• Then, due to A∪A′ |= D′(u), it also implies that there are ∃r.D′′′ ∈ con(D′) that have
C(u) ∈ A and ∃r.C ′ ∈ con(C) such that C ′ v D′′′. But, there are also ∃r.D′′ ∈ con(D′)
that do not have such C(u) ∈ A and ∃r.C ′ ∈ con(C). However, since Aχ is con-
structed based on the function χ satisfying Equation 6.1, we have r(u, u′) ∈ A such
that A ∪ A′ |= D′′(u′). If u′ ∈ NKI, then there is D′′(u′) ∈ Aχ and thus we have
A ∪ Aχ |= D′′(u′). If u′ ∈ NAI, then by induction on the role depth of D′, there is
Aχ ′ ⊆ Aχ such that A∪Aχ ′ |= D′′(u′).

Now, we are back to our aim to show that A is not safe for D if the condition ***.) holds
and rd(D′) > 0. Again, we skip the case where A

bG is empty or the case where A
bG is not

empty and the individual root of A
bG is a since these can be proved by following arguments

in Case 1 and Case 2 for the condition *.). We jump directly to the case where A
bG is not

empty and the individual root of A
bG is c. Note that using Claim 6.18, we can say that if

there is A′ such that A′ 6|= D′(u), then there is a ground ABox Aχ w.r.t. A∪A′ |= D such that
Aχ 6|= D′(u), but A∪Aχ |= D′(u). Thus, it remains to show that A

bG ∪Aχ is compliant with
D, but A∪A

bG ∪Aχ is not compliant with D.
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It is obvious to see that A
bG ∪Aχ |= D(b) iff Aχ |= D(b) for all b ∈ NKI \ {c, a}. However,

by the construction of Aχ , the ABox Aχ only consists of concept assertions whose concept is
a subconcept of D not occurring in con(D), and thus all concept assertions, of which b is an
instance in A, do not belong to con(D), which shows that A

bG ∪Aχ 6|= D(b). It is also clear
to see that A

bG ∪Aχ |= D(a) iff Aa
bG
∪Aχ |= D(a). However, all concept assertions speaking

about a in Aa
bG
∪Aχ contains concepts that are subconcepts of D and not occurring in con(D),

and thus again we have A
bG ∪Aχ 6|= D(a). Last, A

bG ∪Aχ |= D(c) iff Aa
bG
∪Aχ |= ∃r.D′(a)

and yet there is no r(a, x) ∈ Aa
bG

such that Aa
bG
|= D′(x) as analogously stated in Case 1

for the condition *.) above and, additionally, for all concept assertions C(a) ∈ Aχ , by the
construction of Aχ , we can see that C ∈ sub(D′) does not occur in the top-level conjunction
of D′. Nevertheless, we can show that A ∪A

bG ∪Aχ |= D(c) because there is r(a, u) ∈ A
such that A∪Aχ |= D′(u) and A∪Aχ |= ∃r.D′(a), which implies that A∪A

bG ∪Aχ |= D(c).
Therefore, we show that A

bG ∪Aχ is compliant with D, but A ∪A
bG ∪Aχ is not compliant

with D.
Finally, by assuming that one of the conditions *.), **.), and ***.) holds and looking all the

arguments above, we finally show that A is not safe for D, which brings us to a conclusion
that these three conditions are sound and we are finally done to prove this lemma. �

To be more illustrative on the conditions stated in Lemma 6.16, let us consider the medical
example we showed in the beginning of this chapter.

Example 6.19. As stated before that the EL ABox A3 is safe for D. This is justified by the
following conditions:

• The concepts Maleu ∃suffer.(Diseaseu ∃symptom.Fatigue) and Female u ∃works_in.>,
of which the individuals BOB and DIANA are instances of, respectively, are safe∃ for any
subconcept of D.

• Then, the role assertion seen_by(BOB, x) asserts that BOB does not have seen_by-
successors that are known individuals.

• Last, for each anonymous individuals, which are only x in this case, it is easy to see that
A3 is safe for Doctoru ∃works_in.Oncology. ♦

Now, we turn our attention to the problem of deciding whether an EL ABox is safe for a
conjunctive query. Recall the definition of SAFETYCQ, given an EL ABox A and a CQ q, we
need to consider all EL ABoxes A′ that are compliant with q, but A∪A′ 6|= q. However, there
may be infinitely many such A′ with arbitrary size. Therefore, the following lemma defines a
characterization that can allow us to only check finitely many q-compliant EL ABoxes whose
size is bounded by the size of a query in q.

Lemma 6.20. Given an EL ABox A and a CQ q, deciding whether A is safe for q is in Πp
2.

Proof. Let us assume that A is not safe for q. This implies that there is a tuple ~a of known
individuals, and an EL ABox A′ such that A′ complies with q, but A∪A′ |= q(~a). It implies
that there is a homomorphism h from q to Ad ∪A′d . Now, let A′′ ⊆ A′d be the homomorphic
image of h over q(~a). It is obvious to see that A′′ 6|= q(~a) and A′′ has the size bounded by q.
It is also clear that sig(A′′) is a subset of the set of all known individuals, concept names,
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and role names occurring in q. Thus, to check whether A is safe for q, first we check finitely
many A′′ whose size is at most | q | and the signature is a subset of the symbols occurring
in q. Then, we check either A′′ does not comply with q or A∪A′′ complies with q, both of
which can be done by calling an NP oracle as stated by Corollary 6.14. �

Unfortunately, the precise complexity of SAFETYCQ still remains open. This is justified
by the following two lemmas describing hardness results for this problem. We start with a
lemma stating that SAFETYCQ is at least as hard as the GRAPHHOMOMORPHISM problem.

Lemma 6.21. There is a polynomial reduction from GRAPHHOMOMORPHISM to SAFETYCQ.

Proof. The input of GRAPHHOMOMORPHISM consists of two graphs G1 and G2. Then, without
loss of generality, we assume that G1 is weakly connected, which means that there is an
undirected path from any node to any node, and both G1 and G2 do not have the same nodes.
We construct an EL ABox A := {r(a, b)}, where a, b ∈ NKI and a CQ q, where q is a Boolean
conjunctive query consisting of the following conjuncts:

• s(wµ1
, wµ2

) for all edges (µ1,µ2) of G1 and G2,

• r(wµ̂, w) for an arbitrary chosen node µ̂ of G1, and

• r(wν, wν) for each node ν of G2.

It is obvious to see that the construction above can be done in polynomial time. Now, we
show that A is safe for q iff there is a homomorphism from G1 to G2.

Now, we start with the forward direction. Since A is safe for q, it is known that if the union
of A with an EL ABox A′ does not comply with q, then A′ does not comply with q either. Let
h be a function that sends wµ̂ and w to a and b, respectively and all other variables to other
fresh known individuals. We apply this function to all atoms in q and thus we have an EL
ABox A′′ = h(q), where A ⊆ A′′. It means that h is a homomorphism from q to A′′. Since A
is safe for q, this implies that there is a homomorphism h′ from q to A′′ \ {r(a, b)}. By the
construction of A′′, there is no node µ of G1 and a known individual c such that r(h(wµ), c)
in A′′ \ {r(a, b)}. This implies that for the node µ̂ of G1, we have h′(wµ̂) = h(wν), where ν is
a node of G2. Since G1 is weakly connected and G1 and G2 do not have any common node,
for any node µ of G1, there is a node ν of G2 such that h′(wµ) = h(wν). Thus, h′ also defines
a homomorphism from G1 to G2.

For the converse direction, we assume that there is a homomorphism h′′ from G1 to G2.
Let us take an EL ABox A′ such that there is a homomorphism h from q to A∪A′. We need
to show that there is also a homomorphism from q to A′. Since any atom r(wν, wν) in q,
where ν is a node of G2, cannot be mapped to r(a, b), we define a function h′ that maps

• wµ to h(wh′′(µ)) for all nodes µ of G1 and

• w to h(wh′′(µ̂)), and

• wν to h(wν) for all nodes ν of G2.

This can be seen that h′ is a homomorphism from G1 to G2. �

Since it is known that GRAPHHOMOMORPHISM is NP-complete, it implies that SAFETYCQ is
NP-hard. However, the lemma above uses a reduction that relies on an EL ABox with a single
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assertion. In the following lemma, we show that SAFETYCQ has a better lower bound, which
is in DP-hard, obtained from the reduction of HOMOMORPHISM-NOHOMOMORPHISM that is
known in DP-complete. In this reduction, we use an EL ABox that has multiple assertions.

Lemma 6.22. There is a polynomial reduction from HOMOMORPHISM-NOHOMOMORPHISM to
SAFETYCQ.

Proof. The input of HOMOMORPHISM-NOHOMOMORPHISM consists of four connected directed
graphs G1, G2, G′1, G′2 and then check whether there is a homomorphism from G1 to G2 and
there is no homomorphism from G′1 to G′2. We use these four graphs in order to construct an
EL ABox A as well as a CQ q before checking where A is safe for q.

First we define A := {r(x , x)} ∪ {s(xµ, xν) | (µ,ν) is an edge in G′2}, where x , xu, xv ∈ NAI
for all nodes µ,ν of G′2. Then, we define a Boolean CQ q consisting of the following parts:

1. A direct representation of graph G1 over binary predicate name r and fresh existentially
quantified variables for all nodes of G1. Let E1 be the set of all edges in G1. This first
part is formally represented as

∃~w.φ(~w) = ∃~w.
∧

(µ,ν)∈E1

r(wµ, wν).

2. A direct representation of graph G2 over role name r and fresh existentially quantified
variables for all nodes of G2 and, in addition, every variable occur in atom A(x). If V2
and E2 be the set of all nodes and edges in G2, respectively, then this second part is
formally represented below.

∃ ~w′.φ′( ~w′) = ∃ ~w′.
∧

(µ,ν)∈E2

r(w′µ, w′ν)∧
∧

µ∈V2

A(w′µ).

3. A direct representation of graph G′1 over role name s and fresh existentially quantified
variables for all nodes of G′1. Let E′1 be the set of all edges in G′1. The third part is
formally represented as

∃ ~w′′.φ′′( ~w′′) = ∃ ~w′′.
∧

(µ,ν)∈E′1

s(w′′µ, w′′ν).

Now, we claim that there is a homomorphism from G1 to G2, but there is no homomorphism
from G′1 to G′2 iff A is safe for q.

We first prove the completeness of this characterization. We show that if A is safe for q,
then for all A′, either there is a homomorphism from q to A′ or there is no homomorphism
from q to A∪A′. Let A′ coincide with the second and the third part of q, except now we
have only known individuals in place of variables. In formal way, we define

A′ = {A(aµ) | µ ∈ V2} ∪ {r(aµ, aν) | (µ,ν) ∈ E2}
∪ {s(aµ′ , awν′ ) | (µ

′,ν′) ∈ E′1}.

If all variables in part 1 of q are mapped to x in A and all other variables are mapped to their
counterparts in A′, then there is a homomorphism from q to A∪A′. Since A is safe for PCQ,
it implies that there is a homomorphism from q to A′ and thus there is a homomorphism
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from G1 to G2. Now, we consider the representation of A′ coincides with part 1 and part 2
of q and again we only have known individuals in A′ in place of variables. This is formally
defined as

A′ ={r(aµ, aν) | (µ,ν) ∈ E1} ∪
{r(aµ′ , aν′) | (µ′,ν′) ∈ E2} ∪ {A(aµ′) | µ′ ∈ V2}

Since A′ does not have role name s, there is no homomorphism from q to A′. However, since
A is safe for q, we know that there is no homomorphism from q to A∪A′. This is due to the
fact we can send all parts 1 and 2 of q will be A′, but then there is no homomorphism from
part 3 to the part of A∪A′ over s and thus there is no homomorphism from G′1 to G′2.

To check the soundness of this characterization, we assume that there is a homomorph-
ism from G1 to G2, but there is no homomorphism from G′1 to G′2. Then, we assume by
contradiction that A is not safe for q, which implies that there is A′ such that there is no
homomorphism from q to A′, but there is a homomorphism from q to A ∪ A′. Since A
does not contain any concept assertion and there is a homomorphism from q to A∪A′, this
implies that there is a homomorphism from the second part of q to A′. Since there is a
homomorphism from G1 to G2 and both are the representations of the first and the second
parts of q, respectively, it means that we have a homomorphism from the first part of q to A′.
Since there is no homomorphism from G′1 to G′2 and all graphs are connected, this implies
that there is no homomorphism from the third part of q to A over the role name s, which
consequently says that there is a homomorphism from the third part of q to A′. Due to all
previous arguments, it can be inferred that there is a homomorphism from q to A′, which
violates our assumption that A′ is not safe for q. Hence, A is safe for q. �

It is easy to see that the conditions written in both Lemma 6.15 and Lemma 6.16 can be
checked in polynomial time. Then, Lemma 6.20 and 6.21 also provide the upper-bound and
the lower-bound for the SAFETYCQ. This finally lead us to the following theorem stating the
complexity results for SAFETYIQ and SAFETYCQ.

Theorem 6.23. SAFETYIQ is in PTIME, whereas SAFETYCQ is in Πp
2 and DP-hard.

6.5 Optimal Anonymizers

In this section, we plan to investigate OPTIMAL-COMPLIANCEX and OPTIMAL-SAFETYX , where
X ∈ {IQ, CQ}, and then presents the upper bounds and lower bounds for both problems in
EL ABoxes. Recall that these problems ask whether a given A-anonymizer f is an optimal P-
compliant (safe) anonymizer of an ABox A, where P is either an EL concept or a conjunctive
query. One idea to solve these problems is first to check whether f (A) itself is already
compliant or safe with respect to P. If it is the case, then we look at all functions f ′ that are
adjacent to f w.r.t. A and then check whether f ′(A) is also compliant or safe with respect
to P. Intuitively, this adjacency says that f ′ is strictly more informative than f and there is
no other f ′′ that lies in between f ′ and f w.r.t. the informativeness order. Formally, given
A-anonymizers f and f ′, we say that f ′ adjacent to f w.r.t. A, written f ′ >1 f , iff f ′ > f
and there is no f ′′ such that f ′ > f ′′ > f . As a simple illustration, the following example is
provided.
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Example 6.24. We consider EL ABoxes A0 and A4 presented in the beginning of this chapter
and an A0-anonymizer f such that f (A0) = A4. The following two A0-anonymizers f ′, f ′′ are
adjacent to f such that f ′ is obtained from f by only replacing x to DIANA and f ′′ is obtained
from f by only adding Patient to the top-level conjunction of the concept of which the individual
BOB is the instance in A0. ♦

Next, we present the definition for a set of functions that eventually will be proved as
the set of all of adjacent functions of a given A-anonymizer f . Given EL concepts C and C ′,
the following definition requires the set LAΣ(C ′) of all lowering atoms for C ′ w.r.t. Σ, where
Σ= sig(C).

Definition 6.25. Let A be an EL ABox and f be an A-anonymizer. We define adj( f , A) as the
set of all functions f ′ that can be obtained from f by performing exactly one of the following
operations.

1. Take x ∈ NAI occurring in f (A) and all positions ρ1, . . . ,ρn, where

f (ρi) = x and val(ρi , A) = a ∈ NKI for each i = 1, . . . , n.

Then, for all those positions ρ1, . . . ,ρn, we have f ′(ρi) = a, for each i = 1, . . . , n, and
for all positions σ that are not equal to each ρi , we have f ′(σ) = f (σ).

2. Take two distinct individuals x , y ∈ NAI occurring in f (A) and all positions ρ1, . . . ,ρi
and ρi+1, . . . ,ρn, where

f (ρ j) = x , f (ρk) = y, and val(ρ j , A) = val(ρk, A),

for each j = 1, . . . , i and k = i+1, . . . , n. Then, for eachρ j ,ρk, we have f ′(ρ j) = f ′(ρk) = x,
and additionally, for all positionsσ′ that are not equal to eachρ j ,ρk, we have f ′(σ) = f (σ).

3. Take one position ρ in A such that val(ρ, A) and f (ρ) are EL concepts C and C ′,
respectively, where C À C ′. Then, set Σ = sig(C), guess At ∈ LAΣ(C ′) such that C v At,
C ′′ := C ′ uAt is a lower neighbor of C ′, and f ′(ρ) = C ′′. Meanwhile, for all positions σ
that are not ρ, we have f ′(σ) = f (σ). ♦

The next lemma explains why each function f ′ ∈ adj( f , A) is strictly more informative
than f , i.e., f ′ > f .

Lemma 6.26. Let A be an EL ABox and f be an A-anonymizer. It holds that all f ′ ∈ adj( f , A)
are A-anonymizers and f ′ > f .

Proof. It is easy to see that each operation basically either replaces one anonymous individual
with a known individuals, identifies two anonymous individual, or replaces a concept with
its lower neighbor. The latter is justified by Lemma 5.22 saying that if there is an atom
At ∈ LAΣ(C ′) such that C ′′ ≡ C ′uAt, then C ′′ is a lower neighbor of C ′ w.r.t. Σ. This obviously
implies that the constructed function f ′ is more informative than f , i.e., f ′ ≥ f .

To see that this informativeness order is strict, it remains to show that f 6≥ f ′. If the first
operation is taken to yield f ′, then f does not satisfy the condition 1a.) since there are
positions ρi, where f ′(ρi) ∈ NKI, but f (ρ) ∈ NAI. If the second operation is now used to
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construct f ′, then f does not satisfy the condition 1b.) since there are positions ρ j and ρk,
where f ′(ρ j) = f ′(ρk), but f (ρ j) 6= f (ρk). Last, if the third operation is used to yield f ′,
then f does not satisfy the condition 2 because there is a position ρ such that f (ρ) 6v f ′(ρ).�

Next, we prove that every A-anonymizer f ′′, where f ′′ > f , is more informative than a
function from adj( f , A).

Lemma 6.27. Let A be an EL ABox and f be an A-anonymizer. For all A-anonymizers f ′′

such that f ′′ > f , there is f ′ ∈ adj( f , A), where f ′′ ≥ f ′.

Proof. To show this lemma, given A-anonymizers f and f ′′, we consider all positions ρi ,ρ j
in A satisfying one of the following conditions:

1.) val(ρi , A) ∈ NKI, f ′′(ρi) = val(ρi , A), and f (ρi) ∈ NAI,

2.) val(ρi , A), val(ρ j , A) ∈ NKI ∪NAI, f ′′(ρi) = f ′′(ρ j), but f (ρi) 6= f (ρ j),

3.) val(ρi , A) is an EL concept C , f (ρi) = C ′, and f ′′(ρi) = C ′′′ such that C v C ′′′ À C ′.

Now, we build a function f ′ by using one of the following operations:

• Take two individuals x ∈ NAI, a ∈ NKI, and all positions ρi satisfying the condition 1.)
above, such that for each ρi, we have f (ρi) = x and f ′′(ρi) = val(ρi , A) = a. Then,
for all ρi , we have f ′(ρi) = a and for all σ that are not ρi , we have f ′(σ) = f (σ).

• Take two individuals x , y ∈ NAI and all positionsρ1, . . . ,ρn such that for each i = 1, . . . , k
and j = k+ 1, . . . , n, we have that ρi and ρ j satisfy the condition 2.) above, and addi-
tionally

f (ρi) = x , f (ρ j) = y, and val(ρi , A) = val(ρ j , A).

Then, for each ρi ,ρ j , we have f ′(ρi) = f ′(ρ j) = x , and additionally, for all positions
σ′ that are not equal to each ρi ,ρ j , we have f ′(σ) = f (σ).

• Take one position ρ in A satisfying the condition 3.). Then, set Σ := sig(C ′′′), guess
At ∈ LAΣ(C ′) such that C ′′′ v At, and define C ′′ := C ′ u At as well as f ′(ρ) = C ′′.
Meanwhile, for all positions σ that are not ρ, we have f ′(σ) = f (σ).

Obviously, f ′ ∈ adj( f , A). It remains to show that f ′′ ≥ f ′. Let f ′ be generated by the
first operation. Since for each position ρi, we have f ′′(ρi) = f ′(ρi) = a, obviously the
condition 1a.) in Definition 6.11 is satisfied. Then, for all positons σ that are not ρi , since
f ′(σ) = f (σ) and f ′′ > f , it implies that each position σi ,σi′ satisfies all conditions in
Definition 6.11. This implies that f ′′ ≥ f ′.

Now, let f ′ be constructed by the second operation. Since for each ρ j ,ρk, we have
f ′′(ρ j) = f ′′(ρk) and f ′(ρ j) = f ′(ρk), this implies that all these positions satisfy the
condition 1b.) in Definition 6.11. For all positions σi ,σi′ that are not both ρ j and ρk, the
same arguments as in the previous case also hold, which implies that f ′′ ≥ f ′.

Finally, let f ′ be constructed by the third operation. Since f ′′(ρ) = C ′′′ and f ′(ρ) = C ′′

such that C ′′ is a lower neighbor of C ′ that subsumes C ′′′, by the definition of lower neighbor,
it implies that the position ρ satisfies the condition 2.) in Definition 6.11. The same with
previous arguments, for all positions σ that are not ρ, we have f ′(σ) = f (σ) and since
f ′′ > f , we know that all these positions clearly satisfy all conditions in Definition 6.11 and
thus f ′′ ≥ f ′. �
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Next, we show that all distinct functions in adj( f , A) are not comparable w.r.t. the inform-
ativeness order.

Lemma 6.28. Let A be an EL ABox and f be an A-anonymizer. If f1 and f2 are different
functions in adj( f , A), then f1 6≥ f2.

Proof. If both f1 and f2 are generated by taking different operations in Definition 6.25, then it
is easy to see that f1 6≥ f2. Even, if both f1 and f2 are generated by using the same operation,
in particular, either using operation 1.) or 2.), then it is also obvious that f1 6≥ f2. Now, it
remains to show that if both f1 and f2 are constructed using the same operation 3.), then
f1 6≥ f2. But then, if the position ρ that is taken to yield f1 is different with the positon ρ′

that is considered to output f2, then clearly we have f1 6≥ f2.
Thus, let us consider that the positions, taken in operation 3.) to yield both f1 and f2,

are the same. Assume that we take the position ρ and f (ρ) = C ′. Since in this operation
we replace f (ρ) with a lower neighbor of f (ρ), we have f1(ρ) = C1 and f2(ρ) = C2 such
that C1 À1 C ′ and C2 À1 C ′. Since f1 and f2 are different, C1 and C2 are distinct, too.
However, C1 and C2 are generated by conjoining two different lowering atoms At1, At2 to C ′,
respectively. By the definition of LAΣ(C ′), every two atoms is incomparable to each other
w.r.t. subsumption, and thus C1 6v C2 and C2 6v C1. This implies that f1 6≥ f2. �

Now, we are ready to prove that all elements in adj( f , A) are A-anonymizers that are
adjacent to f w.r.t. A.

Proposition 6.29. Let A be an EL ABox and f be an A-anonymizer. Then, the following holds:

1.) Every function f ′′ that is adjacent to f w.r.t. A is as informative as one of the anonymizers
in adj( f , A).

2.) Every anonymizer in adj( f , A) is adjacent to f w.r.t. A.

3.) The cardinality of adj( f , A) is not polynomial in the size A and A′ in general. ♦

Proof. For the claim 1.), let f ′′ be adjacent to f w.r.t. A. By Lemma 6.27, we have f ′ ∈ adj( f , A)
such that f ′′ ≥ f ′. But then, f ′′ ≥ f ′ > f and f ′′ > f imply f ′′ ' f ′, and thus f ′′ is as
informative as one of the elements from adj( f , A).

For the claim 2.), suppose that f ′ ∈ adj( f , A). Then, Lemma 6.26 yields f ′ > f . To show
that f ′ is adjacent to f w.r.t. A, then in contrast we assume that there is an A-anonymizer
f ′′ such that f ′ > f ′′ > f . Then, Lemma 6.27 shows that there is f ′′′ ∈ adj( f , A) such that
f ′ > f ′′ ≥ f ′′′ > f . But then, f ′ and f ′′′ are two different A-anonymizers, which means
that, by Lemma 6.28, we know that this informativeness order contradicts Lemma 6.28.

For the last claim, we show that the cardinality of adj( f , A) is not polynomial in the size A
by referring to Example 5.23. This implies there may be exponentially many lower neighbors
of an EL concept written in that example, which implies that, in general, the number of
A-anonymizers that are adjacent to f w.r.t. A is not polynomial. �

The fact that the cardinality of adj( f , A) is not polynomial only happen if the third
operation is used to find a lower neighbor of an EL concept C occurring in the concept
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assertion C(a) ∈ A. Meanwhile, the first and second operation only do polynomially many
replacements or identifications for anonymous individuals. However, By Lemma 5.25, we
are able to generate an element of the set LAΣ(C) of lowering atoms using an NP algorithm.
This implies that this is also not hard to see that the operations defined in Definition 6.25
can also perform in non-deterministic polynomial time.

Now, we move to the problem of deciding whether f is an optimal D-compliant (safe)
anonymizer of A, where D is a reduced EL concept. We present the following NP-algorithm
to solve the complements of OPTIMAL-COMPLIANCEIQ and OPTIMAL-SAFETYIQ, which relies
on guessing an anonymization function.

Proposition 6.30. Given an EL ABox A, an A-anonymizer f , and a reduced EL concept D, it
holds that there is an NP-algorithm to decide whether f is not an optimal D-compliant (safe)
anonymizer of A. ♦

Proof. We describe the following NP-algorithm that, given A, f , D, succeeds iff f is not an
optimal D-compliant (safe) anonymizer of A.

• Check whether f (A) is compliant with or safe for D. By Corollary 6.14 and Theorem
6.23, we know that this test can be done in polynomial time. If this is the case, then
continue with the next step. Otherwise, the algorithm succeeds.

• Guess an adjacent function f ′ ∈ adj( f , A) and then check if f ′(A) is compliant with
(safe for) D. If this is the case, then the algorithm succeeds, otherwise fail.

It is easy to see that the algorithm is correct and runs in non-deterministic polynomial time.�

The following theorem is an immediate consequence of the proposition above.

Theorem 6.31. OPTIMAL-COMPLIANCEIQ and OPTIMAL-SAFETYIQ are in CONP.

Next, we move to the complement of the decision problems OPTIMAL-COMPLIANCECQ
and OPTIMAL-SAFETYCQ, and then show that there is an algorithm, which basically check
whether A is compliant with (safe for) q, then generate an element f ′ of adj( f , A) in NP,
and subsequently call an oracle for check whether f ′(A) is compliant with (safe for) q.

Proposition 6.32. Given an EL ABox A, an A-anonymizer f , and a conjunctive query q, it
holds

• there is a Σp
2-algorithm to check that f is not an optimal q-compliant anonymizer of A

and

• there is a Σp
3-algorithm to check that f is not an optimal q-safe anonymizer of A. ♦

Proof. We present the following algorithm that, given A, f , q, succeeds iff f is not an optimal
q-compliant (safe) anonymizer of A.

• Check whether f (A) is compliant with (safe for) q. If this is not the case, then the
algorithm succeeds. Otherwise, we continue with the next step.

• Guess an adjacent function f ′ ∈ adj( f , A) and then check if f ′(A) is compliant with
(safe for) q. If this the case, then the algorithm succeeds, otherwise fail.
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It is easy to see that this algorithm is correct. For compliance, the test in the first step can
be done in non-deterministic polynomial time by Corollary 6.14, while the second step
guess an adjacent function f ′ ∈ adj( f , A) and call an NP oracle to check whether f ′(A)
complies with q. This implies that the algorithm above runs in Σp

2 to solve the complement
of OPTIMAL-COMPLIANCECQ. Meanwhile, for safety, the test in the first step can be done in
Σ

p
2 by Lemma 6.20 and additionally the second step an adjacent function f ′ ∈ adj( f , A) and

then call an Πp
2 oracle check whether f ′(A) complies with q. This finally shows that the

algorithm above runs in Σp
3 to solve the complement of OPTIMAL-SAFETYCQ. �

The proposition above directly provides the upper bounds for both OPTIMAL-COMPLIANCECQ
and OPTIMAL-SAFETYCQ, which are inΠp

2 andΠp
3, respectively. Unfortunately, the precise com-

plexity for these problems still remain open, but the following proposition shows that we can
reduce the HOMOMORPHISM-NOHOMOMORPHISM problem to both OPTIMAL-COMPLIANCECQ
and OPTIMAL-SAFETYCQ.

Proposition 6.33. There are polynomial reductions from HOMOMORPHISM-NOHOMOMORPHISM

to OPTIMAL-COMPLIANCECQ and to OPTIMAL-SAFETYCQ, respectively.

Proof. As written in Lemma 6.22, the input of HOMOMORPHISM-NOHOMOMORPHISM consists
of four connected directed graphs G1, G2, G′1, G′2 and then check whether there is a homo-
morphism from G1 to G2 and there is no homomorphism from G′1 to G′2. We employ these
four graphs to construct EL ABoxes A, A′, an A-anonymizer f such that f (A) = A′, and a
boolean query q.

We start with the first reduction from HOMOMORPHISM-NOHOMOMORPHISM to the problem
of OPTIMAL-COMPLIANCECQ. First, we define A as

A := {r(aµ, aν) | (µ,ν) is an edge of G2} ∪
{s(aµ′ , aν′) | (µ′,ν′) is an edge of G′2} ∪ {s(x , x)},

where aµ, aν, aµ′ , aν′ are known individuals and z is an anonymous individual. Then, we
define a boolean CQ q consisting of the atoms r(wµ1

, wµ2
) for each edge (µ1,µ2) of G2 and

s(wν1
, wν2

) for each edge (ν1,ν2) of G′2, where each wµ1
, wµ2

, wν1
, wν2

is an existentially
quantified variable. Next, we define an A-anonymizer f that simply replaces the value of
the positions ρ1,ρ2 over x in the first and the second argument of s(c, c) with x1 and x2,
respectively, and then for each position σ that are not ρ, we have f (σ) = val(σ, A). Thus,
we have A′ = f (A) as the anonymization of A w.r.t. f . Now, we prove the following claim:
A′ is an optimal q-compliant anonymization of A iff there is a homomorphism from G1 to G2
and there is no homomorphism from G′1 to G′2.

Note that the only A-anonymizer that is adjacent to f is the function f ′ such that f ′

maps all individuals to itself, i.e., f ′(A) = A. Suppose that A′ is an optimal q-compliant
anonymization of A, which implies that A′ is compliant with q, but A is not compliant with q.
Since A is not compliant with q, it implies that there is a homomorphism h from q to A. All
individuals in atoms with the role r in q will be mapped by f to all individuals in assertions
with the role r in A. This implies that there is a homomorphism from G1 to G2. Then, the
existence of a homomorphism from q to A also implies that for the individuals occurring in
the atoms over the role s, there are two possibilities which are either they are mapped to the
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representation of G2 in A or to the individual x in the atom s(x , x). If they are mapped to
the former, then there is also a homomorphism from q to A′, which is a contradiction, and
thus the only possibility is that they are mapped to the latter. This implies that there is no
homomorphism from G′1 to G′2.

Conversely, suppose that there is a homomorphism from G1 to G2 and there is no ho-
momorphism from G′1 to G′2. This implies that there is a homomorphism h from q to A,
which maps all individuals x in the atoms with role r to the representation of G2 in A and
additionally, maps all individuals y in the representation of G′1 to z. Now, suppose that there
is a homomorphism h′ from q to A′. Then, h′ will map y to x1 or x2 in A′. Since x1 and x2
are not connected to any individual in A′ and G′1 is also connected, then there is only one
atom s(wν1

, wν2
) in q with the role s. However, since G′2 is not empty, then there is also a

homomorphism from individuals wν1
, wν2

to some individual in the representation of G′2 in
A′. However, this is again a contradiction since we assume that there is no homomorphism
from G′1 to G′2.

Next, we move to the second reduction that reduces HOMOMORPHISM-NOHOMOMORPHISM

to OPTIMAL-SAFETYCQ. For this setting, we construct the query q in the same way as con-
structing q in Lemma 6.22. Then, we define

A := {r(c, c)} ∪ {s(xµ, xν) | (µ,ν) is an edge in G′2},

where c is a known individual and all individuals xµ, xν are anonymous. We construct an
A-anonymizer f , that maps all anonymous individuals to itself and the known individual c
in each position to the anonymous x , such that f (A) = A′. We prove the claim that A′ is an
optimal q-safe anonymization of A iff there is a homomorphism from G1 to G2 and there is
no homomorphism from G′1 to G′2.

It is easy to see that the only A-anonymizer function that is adjacent to f is f ′, such that
f ′(A) = A, and f ′ is obtained from f by replacing the anonymous x with the known c. To
show that there is a homomorphism from G1 to G2 and there is no homomorphism from G′1 to
G′2, we assume that A′ is an optimal q-safe anonymization of A. Since f ′(A) = A, it is enough
to assume that A′ is safe for q and A is not safe for q. Note that the ABox A′ we have in this
setting is the same as the ABox A in Lemma 6.22. According to that lemma, if A′ is safe for
q, then it holds that there is a homomorphism from G1 to G2 and there is no homomorphism
from G′1 to G′2. Thus, we are done with the ‘if direction’ Now, we show the converse direction.
Assume that there is a homomorphism from G1 to G2 and there is no homomorphism from
G′1 to G′2. By Lemma 6.22, it implies that A′ is safe for q. It remains to show that A is not
safe for q. However, it is easy to see that we may construct an ABox A′′ consisting of the
part 3 of q, which is over known individuals, and in addition to that, a concept assertion
A(c), where A∈ NC. Obviously, A′′ complies with q, but there is a homomorphism h from
q to A∪A′′, where h maps all individuals in the parts 1 and 2 of q to c and then since A′′

consists of the part 3 of, all anonymous individuals in the part 3 of q are mapped to their
counterparts in A′′. This implies that A is not safe for q. �

Given Propositions 6.32 and 6.33, the following theorem describes the complexity results
for OPTIMAL-COMPLIANCECQ and OPTIMAL-SAFETYCQ.

Theorem 6.34. OPTIMAL-COMPLIANCECQ is inΠp
2 and hard for DP, whereas OPTIMAL-SAFETYCQ

is in Πp
3 and also hard for DP.
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Conclusions

7.1 Main Results

In Chapter 3, we have provided some initial definitions and results regarding the identity
problem in DL ontologies, i.e., the question whether the ontology implies that a given
anonymous individual is equal to a known individual. We have also considered a more
involved rôle-based access control scenario where users can access parts of the ontology
depending on their rôle. In a setting where users can change rôles dynamically, the question
is then whether, by changing rôles and asking queries in these rôles, the user can find out
the identity of an anonymous individual although this may not be possible for a single rôle.
We have shown how to use the identity problem to address this question. We also had a look
at the k-hiding problem motivated from a case where an attacker probably does not need to
know the real identity of this anonymous individual, but he only wants to deduce whether
its identity is one of k known individuals w.r.t. a given ontology. We show that this problem
is actually not harder than the identity problem in most of DLs with equality power.

If this is the case that one is able to deduce the confidentiality information about individuals
in DL-based ontologies, then in Chapter 4, we proposed a framework for repairing DL-based
ontologies that is used to get rid of unwanted or secret consequences from the original
ontologies. The repair approach itself is based on weakening axioms rather than deleting
them. Additionally, we introduced the notion of maximally strong weakenings of an axiom
that can be obtained using restricted weakening relations. We then showed how to instantiate
this framework for the DLs EL and ALC using appropriate weakening relations. For EL GCIs,
we introduced weakening relations that semantically generalizes the right-hand size of
GCIs. However, for the sake of finding maximally strong weakenings w.r.t. this relation, the
algorithm we described in the proof of Proposition 4.18 may have non-elementary complexity
in general. To get a weakening relation that has better algorithmic properties than before,
we introduced a weakening relation for EL GCIs that syntactically generalize the right-hand
side of GCIs and w.r.t. this, a single maximally strong weakening can always be computed
in polynomial time. For ALC GCIs, we considered two weakening relations that guarantee
the well-foundedness of subsumption and inverse subsumption. The first one specializes
and generalizes ALC concepts using a finite set of fixed signature and a fixed role-depth
bounded, whereas the second one syntactically replace positive or negative occurrences of
subconcepts in C with either > or ⊥. We also showed that the second one has indeed better
properties in terms of complexity.

In the privacy context, repairing ontologies for getting rid of unwanted consequences is
still not sufficient since it might be that a possible attacker owns relevant information from
other sources, which together with the repaired ontologies, the privacy policy is still violated.
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To handle this issue, in Chapter 5, we have introduced the notions of compliance with and
safety for a policy in a simple setting where both the knowledge about individuals and the
policy are given by EL concepts and knowledge of the attackers about the individuals are
stated as either EL, FL0, or FLE concepts. In a setting where knowledge of attackers is
encoded in EL, we have shown that compliance and safety can be decided in PTIME. Then,
we have shown that there are exponentially many optimal compliant generalizations, each
of them has exponential size and can be computed in EXPTIME Meanwhile, the optimal safe
generalization is unique and of exponential size and can also be computed in EXPTIME. When
the setting is changed with a condition where the knowledge of attackers are written as FL0
concepts, it has been shown that the complexity of safety are the same as in EL case, but there
are exponentially many optimal safe generalizations and each of them can also be computed
in EXPTIME. For both cases in EL and FL0, the optimality problem can be decided in CONP
and we observed that there is a polynomial reduction from the Hypergraph Duality problem
to the optimality problem in these two logics. However, when the background information
owned by attackers is given by an FLE concept, computing optimal safe generalization and
deciding both safety and optimality becomes tractable, which can be performed in PTIME.

In Chapter 6, we extended the problem setting in Chapter 5 by considering that the
information about individuals as well as the knowledge of attackers are given by EL ABoxes
and the privacy policy is provided as an EL concept or a conjunctive query. If one privacy
policy is violated w.r.t. a given ABox, we proposed an anonymization approach using a
function, called anonymizer, that renames individuals with new anonymous individuals
and generalizes concepts occurring in ABox assertions. This is then followed by presenting
characterizations for compliance and safety checking w.r.t. EL ABoxes and by designing an
algorithm for deciding whether a given anonymizer is optimal, i.e., it preserves information
from the original ABox as much as possible. If the policy is an EL concept, then the compliance
and safety properties can be decided in polynomial time, whereas the optimality problem can
be decided in CONP. However, if the policy is now a conjunctive query, then the compliance
and safety are in CONP and Πp

2, respectively. As a consequence, the complexity of the
optimality problem lies on the second and third level of polynomial hierarchy for compliance
and safety, respectively. Although the complexity results we have are still not tight yet in the
case where the policy is a conjunctive query, we showed that there is a reduction from some
known DP problems to our safety and optimality problems, which ultimately provides us
hardness results.

7.2 Future Work

For the identity problem in DL ontologies and its variants, we note that our complexity results
are until now measured in terms of the size of the whole input. In data-intensive applications,
one may only consider data complexity, where the complexity is measured in terms of the size
of the data (i.e., ABox) only. Then, in most practical scenarios, for instance in a probabilistic
setting as addressed by [BBG+17], the information about known and anonymous individuals
can also be assumed to only hold with a certain probability, e.g., using ontologies with
subjective probability as introduced in [GJL+17]. In this setting, equality can also only be
derived with a certain probability, and one might want to keep the probability of derived
identities low enough. Another interesting direction is that actually to extend the identity
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problem in the k-anonymity setting, a well-known confidentiality criteria in database area.
The original definition of k-anonymity requires you to check the information for each person
contained in a database table cannot be distinguished from at least k-1 individuals whose
information also appears in the table. To capture this definition, we need to obviously change
our goal from ‘finding at most k-1 known individuals . . . ’ to ‘finding at least k-1 known
individuals . . . ’, and further we need to define what it means by ‘the information for each
person’ whose occurrences we want to compare.

Apart from that, during the work on repairing Description Logic ontologies, we have seen
that computing maximally strong weakenings is analogous to the black-box approach for
computing justifications. It would be interesting to see whether a glass-box approach that
modifies an EL reasoning procedure can also be used for this purpose, similar to the way a
tableau-based algorithm for ALC was modified in [LSP+08]. Our weakening relations can
also be used in the setting where the ontology is first modified, and then repaired using the
classical approach as in [DQF14]. In fact, for effectively finitely branching and well-founded
weakening relations such as �sub and �syn, we can add for each axiom all (or some of)
its finitely many weakenings w.r.t. the given relation, and then apply the classical repair
approach. In contrast to the gentle repair approach proposed in this paper, a single axiom
could then be replaced by several axioms, which might blow up the size of the ontology.

So, our complexity results for deciding whether an axiom is a maximally strong weakening
w.r.t. �sub is CONP-hard. However, the upper bound still remains open. One idea to achieve
this is by probably looking at the notion of lower neighbors that already helped us to obtain
the upper-bound of the optimality∃ problem. Moreover, until now our definition of what it
means that an axiom is β is weaker than γ does not involve the given ontology. In other
words, we require Con({β}) ⊂ Con({γ}) rather than Con({β ∪O}) ⊂ Con({γO}). Since
the ontology implies unwanted consequences, it makes not sense to work with the whole
ontology. Instead, we can restrict our attention to Ost that is considered to be static and
correct. Thus, in this setting, it is reasonable to work with Ost.

For our work on privacy-preserving ontology publishing for EL instance stores, we consider
to add an EL TBox as additional information about concepts to which the individuals belong
that will be publicly published. However, the optimal repairs w.r.t. this setting need no
longer exist, in general. To this end, one may also start looking at another restricted type of
general TBoxes that satisfies certain cycle-restrictions (see, e.g., [BBM12]). In the setting of
EL instance stores, another interesting investigation is now to look at safety and optimality
problems that take ALC into account as knowledge of attackers. Since this logic contains
negations, disjunctions, and bottom concept, we need to be careful with the situation, where
the knowledge of attacker is actually the negation of the concept C that will be published.
If this is the case, then the combination of this knowledge and the concept C is a bottom
concept, which is vacuously subsumed by all concepts in P. Considering such situation, this
may also make sense if a condition, which emphasizes that C is safe for P if for all concepts
C ′′ that are compliant with P, C u C ′′ 6≡ ⊥, can be added to Definition 5.1.

Similar to the work for EL instance stores, on privacy-preserving ontology publishing for EL
ABoxes, we also envision that including EL TBoxes will be a good direction for future work.
Likewise, considering compliant and safe generalizations that are obtained by looking at
EL TBoxes satisfying certain cycle-restrictions are things we need to take into account in
the beginning before going further. Another subtle investigation coming out of this work is
extending the definition of privacy policies, which currently is still of the form of an EL concept.
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If we broaden the form to a set of EL concepts, then we conjecture that the characterization
for safety presented in Lemma 6.16 will no longer be applicable. Furthermore, our complexity
result for SAFETYCQ is not tight yet. As analyzed by [GK19], this unmatched complexity
results happens since a similar, well-known safety problem in the database theory, called
critical tuple problem [MS07], which has the same spirit with the safety problem in this
thesis and in [GK16; GK19], still does not have a tight complexity either. This might be
interesting to also first determine the precise complexity for the critical tuple problem. The
same issue for unmatched complexity result is also still found in OPTIMAL-COMPLIANCEX ,
where X ∈ {IQ, CQ}, that provides us a future work to find the lower bound for them. Last,
so far we just considered optimality as a decision problem in this work. Similar to the case
of EL instance stores, it is also interesting to look for algorithms which compute an optimal
compliance (safety) anonymizer of an ABox, w.r.t. an EL concept or a conjunctive query.

Nevertheless, the assumed background knowledge of the attackers we defined in Chapter
5 and 6 still arguably lacks of expressiveness. According to the work from [BS13], our
defined background knowledge of attackers only captures the object-level of the attackers’
knowledge. In other words, the attackers know parts of the domain knowledge that is not
axiomatized in our published information, even though what the attackers know complies
with the given privacy policy. Besides that, one also needs to consider the meta-level of the
attackers’ knowledge. In [BS13], using his meta-level knowledge, the attackers may assume
that the published information has complete knowledge about a certain set of axioms or the
attackers know very well the signature occurring in the published information. For the former
case, attacks to complete knowledge have a connection with a closed-world setting. We can
start learning this setting by referring to the work of [NOS16; SFB09]where the notion of DLs
with closed predicates are used. Attacks to complete knowledge may also have a connection
with a setting where knowledge of the attackers is equipped with integrity constraints or
functional dependencies, where examples of such knowledge have been investigated before
in [TW13; LM04].
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