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Abstract. Logic-based approaches to AI have the advantage that their
behavior can in principle be explained with the help of proofs of the com-
puted consequences. For ontologies based on Description Logic (DL), we
have put this advantage into practice by showing how proofs for con-
sequences derived by DL reasoners can be computed and displayed in a
user-friendly way. However, these methods are insufficient in applications
where also numerical reasoning is relevant. The present paper considers
proofs for DLs extended with concrete domains (CDs) based on the ra-
tional numbers, which leave reasoning tractable if integrated into the
lightweight DL EL⊥. Since no implemented DL reasoner supports these
CDs, we first develop reasoning procedures for them, and show how they
can be combined with reasoning approaches for pure DLs, both for EL⊥
and the more expressive DL ALC. These procedures are designed such
that it is easy to extract proofs from them. We show how the extracted
CD proofs can be combined with proofs on the DL side into integrated
proofs that explain both the DL and the CD reasoning.

1 Introduction

Description Logics (DLs) [8] are a well-investigated family of logic-based knowl-
edge representation languages, which are frequently used to formalize ontologies
for various application domains. As the sizes of DL-based ontologies grow, tools
that support improving the quality of such ontologies become more important.
DL reasoners3 can be used to detect inconsistencies and to infer other implicit
consequences, such as subsumption relationships. However, for developers or
users of DL-based ontologies, it is often hard to understand why a consequence
computed by the reasoner actually follows from the given, possibly very large
ontology. In principle, such a consequence can be explained by producing a proof
for it, which shows how the consequence can be derived from the axioms in the
ontology by applying certain easy-to-understand inference rules. In recent work,
we have investigated how proofs for consequences derived by DL reasoners can

3 see http://owl.cs.manchester.ac.uk/tools/list-of-reasoners/
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be computed [1,2] and displayed [26] in a user-friendly way [3]. However, like
previous work [15,16], this was restricted to DLs without concrete domains.

Concrete domains [7,22] (CDs) have been introduced to enable reference
to concrete objects (such as numbers) and predefined predicates on these ob-
jects (such as numerical comparisons) when defining concepts. For example,
assume that we measure the systolic and the diastolic blood pressure of pa-
tients. Then we can describe patients with a pulse pressure of 25mmHg as
Patient ⊓ [sys − dia = 25], where sys and dia are features that are interpreted
as partial functions that return the systolic and the diastolic blood pressure of a
patient, respectively, as rational numbers (if available). We can then state that
such patients need attention using the general concept inclusion (GCI)

Patient ⊓ [sys− dia = 25] ⊑ NeedAttention.

In the presence of GCIs, integrating a CD into a DL may cause undecidabil-
ity [23,10] even if solvability of the constraint systems that can be formulated in
the CD (in our example, sets of constraints of the form x− y = q for q ∈ Q) is
decidable. One way to overcome this problem is to disallow role paths [14,27,6]
in concrete domain restrictions, which means that these restrictions can only
constrain feature values of single individuals, as in our example. Comparing fea-
ture values of different individuals, such as the age of a woman with that of her
children, is then no longer possible.

For tractable (i.e., polynomially decidable) DLs like EL⊥, preserving decid-
ability is not sufficient: one wants to preserve tractability. As shown in [6], this
is the case if one integrates a so-called p-admissible concrete domain into EL⊥.
The only numerical p-admissible concrete domain exhibited in [6] is the CD
DQ,diff, which supports constraints of the form x = q, x > q, and x + q = y
(for constants q ∈ Q). Recently, additional p-admissible concrete domains have
been introduced in [10], such as DQ,lin, whose constraints are given by linear
equations

∑n
i=1 aixi = b. In the present paper, we will concentrate on these

two p-admissible CDs, though the developed ideas and techniques can also be
used for other CDs. The constraint used in our example can be expressed in
both DQ,diff and DQ,lin. Unfortunately, no implemented DL reasoner supports
these two CDs. In particular, the highly efficient EL⊥ reasoner Elk [17] does
not support any concrete domain. Instead of modifying Elk or implementing
our own reasoner for EL⊥ with concrete domains, we develop here an iterative
algorithm that interleaves Elk reasoning with concrete domain reasoning. For
the CD reasoning, we could in principle employ existing algorithms and imple-
mentations, like Gaussian elimination or the simplex method [29,13] for DQ,lin,
and SMT systems that can deal with difference logic [20,5], such as Z3,4 for
DQ,diff. However, since our main purpose is to generate proofs, we develop our
own reasoning procedures for DQ,diff and DQ,lin, which may not be as efficient
as existing ones, but can easily be adapted such that they produce proofs.

Proofs for reasoning results in EL⊥ with a p-admissible CD can in principle be
represented using the calculus introduced in [6] or an appropriate extension of the

4 https://theory.stanford.edu/˜nikolaj/programmingz3.html
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calculus employed by Elk. However, in these calculi, the result of CD reasoning
(i.e., that a set of constraints is unsatisfiable or entails another constraint) is used
as an applicability condition for certain rules, but the CD reasoning leading to the
satisfaction of the conditions is not explained. Instead of augmenting such a proof
with separate proofs on the CD side that show why the applicability conditions
are satisfied, our goal is to produce a single proof that explains both the EL⊥ and
the CD reasoning in a uniform proof format. We also consider the integration of
the CDs DQ,diff and DQ,lin into the more expressive DL ALC. To this purpose, we
develop a new calculus for subsumption w.r.t. ALC ontologies, which is inspired
by the one in [19], but has a better worst-case complexity, and then show how it
can be extended to deal with concrete domain restrictions. We have implemented
our reasoning and proof extraction approaches for DLs with concrete domains
and have evaluated them on several self-created benchmarks designed specifically
to challenge the CD reasoning and proof generation capabilities.

Proofs for all results and more details about the experiments can be found at
https://lat.inf.tu-dresden.de/~alrabbaa/rulemlrr23/cdProofs.html.

2 Description Logics with Concrete Domains

We recall the DLs EL⊥ and ALC [8], and then discuss their extensions EL⊥[D]
and ALC[D] with a concrete domain D [7,6]. Following [10], we use square brack-
ets to indicate that no role paths are allowed. We also introduce the two p-
admissible concrete domains DQ,diff and DQ,lin [6,10].

2.1 Description Logics

Starting with disjoint, countably infinite sets of concept and role names NC and
NR, EL⊥ concepts are defined by the grammar C,D ::= ⊤ | ⊥ | A | C ⊓D | ∃r.C,
where A ∈ NC and r ∈ NR. In ALC, we additionally have negation ¬C as concept
constructor. As usual, we then define C⊔D := ¬(¬C⊓¬D) and ∀r.C := ¬∃r.¬C.
An ALC (EL⊥) TBox (a.k.a. ontology) O is a finite set of general concept in-
clusions (GCIs, a.k.a. axioms) C ⊑ D for ALC (EL⊥) concepts C and D. We
denote by sub(O) the set of subconcepts of all concepts appearing in O.

An interpretation is a pair I = (∆I , ·I), where the domain ∆I is a non-empty
set, and the interpretation function ·I assigns to every concept name A ∈ NC a
set AI ⊆ ∆I and to every role name r ∈ NR a binary relation rI ⊆ ∆I ×∆I .
This function is extended to complex concepts by defining ⊤I := ∆I , ⊥I := ∅,
(∃r.C)I := {d ∈ ∆I | ∃e ∈ ∆I . (d, e) ∈ rI ∧ e ∈ CI}, (¬C)I = ∆I \ CI , and
(C⊓D)I := CI∩DI . The interpretation I is amodel of C ⊑ D if CI ⊆ DI (writ-
ten I |= C ⊑ D), and it is a model of an ontology O (I |= O) if it is a model of all
axioms in O. An ontology O is consistent if it has a model, and an axiom C ⊑ D
is entailed by O (written O |= C ⊑ D) if every model of O is a model of C ⊑ D;
in this case, we also say that C is subsumed by D w.r.t. O. The classification
of O is the set CL(O) := {⟨C,D⟩ | C,D ∈ sub(O), O |= C ⊑ D}.5 The three

5 Often, the classification is done only for concept names in O, but we use a variant
that considers all subconcepts, as it is done by the EL⊥ reasoner Elk.
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reasoning problems of deciding consistency, checking subsumption, and comput-
ing the classification are mutually reducible in polynomial time. Reasoning is
P-complete in EL⊥ and ExpTime-complete in ALC [8].

2.2 Concrete Domains.

Concrete domains have been introduced as a means to integrate reasoning about
quantitative features of objects into DLs [7,22,10]. Given a set NP of concrete
predicates and an arity ar(P ) ∈ N for each P ∈ NP, a concrete domain (CD)
D = (∆D, ·D) over NP consists of a set ∆D and relations PD ⊆ (∆D)ar(P ) for
all P ∈ NP. For technical reasons, we assume that NP always contains a nullary
predicate ⊥, interpreted as ⊥D := ∅, and a unary predicate ⊤ interpreted as
⊤D := ∆D. Given a set NV of variables, a constraint P (x1, . . . , xar(P )), with
P ∈ NP and x1, . . . , xar(P ) ∈ NV, is a predicate whose argument positions are
filled with variables.

Example 1. The concrete domain DQ,diff has the set Q of rational numbers as
domain and, in addition to ⊤ and ⊥, the concrete predicates x = q, x > q, and
x + q = y, for constants q ∈ Q, with their natural semantics [6]. For example,
(x + q = y)DQ,diff = {(p, r) ∈ Q × Q | p + q = r}. The index diff in its name
is motivated by the fact that such a predicate fixes the difference between the
values of two variables.

The concrete domain DQ,lin has the same domain as DQ,diff, but its pred-
icates other than ⊤ and ⊥ are given by linear equations

∑n
i=1 aixi = b, for

rational numbers ai, b, with the natural semantics [10]. For example, the lin-
ear equation x + y − z = 0 is interpreted as the ternary addition predicate
(x+ y − z = 0)DQ,lin = {(p, q, s) ∈ Q3 | p+ q = s}.

The expressivity of these two CDs is orthogonal. For example, the DQ,diff

predicate x > q cannot be expressed as a conjunction of constraints in DQ,lin,
whereas the DQ,lin predicate x+ y = 0 cannot be expressed in DQ,diff.

A constraint α = P (x1, . . . , xar(P )) is satisfied by an assignment v : NV → ∆D

(written v |= α) if
(
v(x1), . . . , v(xar(P ))

)
∈ PD. An implication is of the form

γ → δ, where γ is a conjunction and δ a disjunction of constraints; it is valid if
all assignments satisfying all constraints in γ also satisfy some constraint in δ
(written D |= γ → δ). A conjunction γ of constraints is satisfiable if γ → ⊥ is
not valid. The CD D is convex if, for every valid implication γ → δ, there is a
disjunct α in δ s.t. γ → α is valid. It is p-admissible if it is convex and validity of
implications is decidable in polynomial time. This condition has been introduced
with the goal of obtaining tractable extensions of EL⊥ with concrete domains [6].

Example 2. The CDs DQ,diff and DQ,lin are both p-admissible, as shown in [6]
and [10], respectively. However, if we combined their predicates into a single
CD, then we would lose convexity. In fact, DQ,diff has the constraints x > 0 and
x = 0. In addition, y > 0 (of DQ,diff) and x + y = 0 (of DQ,lin) express x < 0.
Thus, the implication x + y = 0 → x > 0 ∨ x = 0 ∨ y > 0 is valid, but none of
the implications x+ y = 0 → α for α ∈ {x > 0, x = 0, y > 0} is valid.
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To integrate a concrete domain D into description logics, the most general
approach uses role paths r1 . . . rk followed by a concrete feature f to instantiate
the variables in constraints, where the ri are roles and f is interpreted as a
partial function fI : ∆I → ∆D. Using the concrete domain DQ,lin, the concept
Human ⊓ ∃age, parent age.[2x− y = 0] describes humans that have a parent that
has twice their age. However, in the presence of role paths, p-admissibility of the
CD does not guarantee decidability of the extended DL. Even if we just take
the ternary addition predicate of DQ,lin, the extension of ALC with it becomes
undecidable [9], and the paper [10] exhibits a p-admissible CD whose integration
into EL⊥ destroys decidability. Therefore, in this paper we disallow role paths,
which effectively restricts concrete domain constraints to the feature values of
single abstract objects. Under this restriction, the integration of a p-admissible
CD leaves reasoning in P for EL⊥ [6] and in ExpTime for ALC [21].6 Disallowing
role paths also enables us to simplify the syntax by treating variables directly
as concrete features.

Formally, the description logics EL⊥[D] and ALC[D] are obtained from EL⊥
and ALC by allowing constraints α from the CD D to be used as concepts, where
we employ the notation [α] to distinguish constraints visually from classical
concepts. Interpretations I are extended by associating to each variable x ∈ NV

a partial function xI : ∆I → ∆D, and defining [α]I as the set of all d ∈ ∆I for
which (a) the assignment vId (x) := xI(d) is defined for all variables x occurring
in α, and (b) vId |= α.

Example 3. Extending the medical example from the introduction, we can state
that, for a patient in the intensive care unit, the heart rate and blood pres-
sure are monitored, using the GCI ICUpatient ⊑ [⊤(hr)] ⊓ [⊤(sys)] ⊓ [⊤(dia)],
which says that, for all elements of the concept ICUpatient, the values of the
variables hr, sys, dia are defined. The pulse pressure pp can then be defined via
ICUpatient ⊑ [sys − dia − pp = 0]. Similarly, the maximal heart rate can be
defined by ICUpatient ⊑ [maxHR + age = 220]. All the constraints employed in
these GCIs are available in DQ,lin. One might now be tempted to use the GCI
ICUpatient⊓([pp > 50]⊔[hr > maxHR]) ⊑ NeedAttention to say that ICU patients
whose pulse pressure is larger than 50 mmHG or whose heart rate is larger than
their maximal heart rate need attention. However, while the first constraint is
a DQ,diff constraint, it is not available in DQ,lin, and the second one is available
in neither. But we can raise an alert when the heart rate gets near the maximal
one using [maxHR− hr = 5] ⊑ NeedAttention.

3 Combined Concrete and Abstract Reasoning

We start by showing how classification in EL⊥[D] can be realized by interleaving a
classifier for EL⊥ with a constraint solver for D. Then we describe our constraint
solvers for DQ,lin and DQ,diff.

6 The result in [21] applies to p-admissible CDs D since it is easy to show that the
extension of D with the negation of its predicates satisfies the required conditions.
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Algorithm 1: Classification algorithm for EL⊥[D]

1 O′ := O−D, N := ∅
2 while N ̸= CL(O′) do
3 N := CL(O′)

4 foreach C ∈ sub(O−D) do
5 DC := {α ∈ C(O) | ⟨C,Aα⟩ ∈ CL(O′)}
6 if D |=

∧
DC → ⊥ then

7 O′ := O′ ∪
{d

α∈DC
Aα ⊑ ⊥

}
8 else
9 O′ := O′ ∪

{d
α∈DC

Aα ⊑ Aβ | β ∈ C(O),D |=
∧

DC → β
}

10 return N[Aα 7→ α | α ∈ C(O)]

3.1 Reasoning in EL⊥[D]

The idea is that we can reduce reasoning in EL⊥[D] to reasoning in EL⊥ by
abstracting away CD constraints by new concept names, and then adding GCIs
that capture the interactions between constraints. To be more precise, let D be
a p-admissible concrete domain, O be an EL⊥[D] ontology, and C(O) be the
finite set of constraints occurring in O. We consider the ontology O−D that
results from replacing each α ∈ C(O) by a fresh concept name Aα. Since D is
p-admissible, the valid implications over the constraints in C(O) can then be
fully encoded by the EL⊥[D] ontology

OD := {Aα1 ⊓ · · · ⊓Aαn ⊑ ⊥ | α1, . . . , αn ∈ C(O), D |= α1 ∧ · · · ∧ αn → ⊥} ∪
{Aα1 ⊓ · · · ⊓Aαn ⊑ Aβ | α1, . . . , αn, β ∈ C(O), D |= α1 ∧ · · · ∧ αn → β}.

The definition of OD is an adaptation of the construction introduced in [21,
Theorem 2.14] for the more general case of admissible concrete domains. The
problem is, however, that OD is usually of exponential size since it considers all
subsets {α1, . . . , αn} of C(O). Thus, the reasoning procedure for EL⊥[D] obtained
by using O−D ∪ OD as an abstraction of O would be also be exponential. To
avoid this blow-up, we test implications of the form α1 ∧ · · · ∧ αn → ⊥ and
α1∧· · ·∧αn → β for validity in D only if this information is needed, i.e., if there
is a concept C that is subsumed by the concept names Aα1

, . . . , Aαn
.

The resulting approach for classifying the EL⊥[D] ontology O, i.e., for com-
puting CL(O) = {⟨C,D⟩ | C,D ∈ sub(O), O |= C ⊑ D} is described in Algo-
rithm 1, where we assume that CL(O′) is computed by a polynomial-time EL⊥
classifier, such as Elk, and that the validity of implications in D is tested using
an appropriate constraint solver for D. Since D is assumed to be p-admissible,
there is a constraint solver that can perform the required tests in polynomial
time. Thus, we can show that this algorithm is sound and complete, and also
runs in polynomial time.

Theorem 4. Algorithm 1 computes CL(O) in polynomial time.

Next, we show how constraint solvers for DQ,lin and DQ,diff can be obtained.
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3.2 Reasoning in DQ,lin

To decide whether a finite conjunction of linear equations is satisfiable or whether
it implies another equation, we can use Gaussian elimination [29], which itera-
tively eliminates variables from a set of linear constraints in order to solve them.
Each elimination step consists of a choice of constraint α that is used to elimi-
nate a variable xi from another constraint γ by adding a suitable multiple q ∈ Q
of α, such that, in the sum γ + qα, the coefficient ai of xi becomes 0. This
can be used to eliminate xi from all constraints except α, which can then be
discarded to obtain a system of constraints with one less variable. For example,
using α : 2x+3y = 5 to eliminate x from γ : 4x− 6y = 1 using q = −2 yields the
new equation −12y = −9.

To decide whether α1 ∧ · · · ∧αn → ⊥ is valid in DQ,lin, we must test whether
the system of linear equations α1, . . . , αn is unsolvable. For this, we apply Gaus-
sian elimination to this system. If we obtain a constraint of the form 0 = b for
non-zero b, then the system is unsolvable; otherwise, we obtain 0 = 0 after all
variables have been eliminated, which shows solvability. In case α1∧· · ·∧αn → ⊥
is not valid, Algorithm 1 requires us to test whether α1 ∧ · · · ∧ αn → β is valid
for constraints β different from ⊥. This is the case iff the equation β is a linear
combination of the equations α1, . . . , αn. For this, we can also apply Gaussian
elimination steps to eliminate all variables from β using the equations α1, . . . , αn.
If this results in the constraint 0 = 0, it demonstrates that β is a linear combi-
nation; otherwise, it is not.

In principle, one could use standard libraries from linear algebra (e.g. for
Gaussian elimination or the simplex method [29,13,25]) to implement a con-
straint solver for DQ,lin. We decided to create our own implementation based
on Gaussian elimination, mainly for two reasons. First, most existing numerical
libraries are optimized for performance and use floating-point arithmetic. Hence,
the results may be erroneous due to repeated rounding [11]. Second, even if ra-
tional arithmetic with arbitrary precision is used [13], it is not trivial to extract
from these tools a step-by-step account of how the verdict (valid or not) was
obtained, which is a crucial requirement for extracting proofs.

3.3 Reasoning in DQ,diff

The constraints of DQ,diff can in principle be simulated in difference logic, which
consists of Boolean combinations of expressions of the form x − y ≤ q, and for
which reasoning can be done using the Bellman-Ford algorithm for detecting
negative cycles [20,5]. However, it is again not clear how proofs for the validity
of implications can be extracted from the run of such a solver. For this reason,
we implemented a simple saturation procedure that uses the rules in Fig. 1
to derive implied constraints, where side conditions are shown in gray; these
rules are similar to the rewrite rules for DL-Lite queries with CDs in [4]. We
eagerly apply the rules R ̸=, R<, and R+

̸=, which means that we only need to
keep one constraint of the form x+ q = y in memory, for each pair (x, y). Since
x > q implies x > p for all p < q, it similarly suffices to remember one unary
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x = q x = p (q ̸= p)
R̸=⊥

x = q x > p (q < p)
R<⊥

R0x+ 0 = x

x+ q = y x+ p = y (q ̸= p)
R+
̸=⊥

x = q y = p
R−

x+ (p− q) = y

x+ q = y
R↔

y + (−q) = x

x+ q = y y + p = z
R+

x+ (q + p) = z

x = q x+ p = y
R=y = q + p

x > q x+ p = y
R>y > q + p

Fig. 1. Saturation rules for DQ,diff constraints

Algorithm 2: Reasoning algorithm for DQ,diff

Input: An implication
∧

D → β in DQ,diff

Output: true iff DQ,diff |=
∧

D → β
1 D′ := saturate(D)
2 if ⊥ ∈ D′ or β ∈ D′ then return true
3 if β is x > q then
4 if x = p ∈ D′ with p > q then return true
5 if x > p ∈ D′ with p ≥ q then return true

6 return false

constraint of the form x = q or x > q for each variable x. Apart from the three
rules deriving ⊥, we can prioritize rules in the order R−, R↔, R0, R+, R=, R>,
since none of the later rules can enable the applications of earlier rules to derive
new constraints. The full decision procedure is described in Algorithm 2.

Theorem 5. Algorithm 2 terminates in time polynomial in the size of
∧

D → β
and returns true iff DQ,diff |=

∧
D → β.

4 Proofs for EL⊥[D] Entailments

Our goal is now to use the procedures described in the previous section to obtain
separate proofs for the DL part and the CD part of an entailment, which we then
want to combine into a single proof, as illustrated in Fig. 2.

Fig. 2(a) shows an example of a proof generated by the Elk reasoner [16] for
the final ontology O′ ⊇ O−D from Algorithm 1. The labels R⊑ and R+

⊓ indicate
the rules from the internal calculus of Elk [17], and (∗) marks an axiom added
by Algorithm 1, where α is 2x+ 3y = 5, β is 4y = 3, and γ is 4x− 6y = 1. We
now describe how to obtain the proof (b) for the CD implication α∧β → γ, and
how to integrate both proofs into the EL⊥[DQ,lin] proof (c).

4.1 Proofs for the Concrete Domains

For DQ,diff, we can use the algorithms from [1,2] to extract proofs from the rule
instances used in the saturation in Fig. 2 (see Fig. 1). Inferences due to Lines 2, 4
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(a)C ⊑ Aα C ⊑ Aβ
R+
⊓C ⊑ Aα ⊓Aβ Aα ⊓Aβ ⊑ Aγ (∗)

R⊑
C ⊑ Aγ

(b)

2x+ 3y = 5

4y = 3
[−3]

−12y = −9
[2, 1]

4x− 6y = 1

=⇒

(c)

C ⊑ [2x+ 3y = 5]

C ⊑ [4y = 3]
[−3]

C ⊑ [−12y = −9]
[2, 1]

C ⊑ [4x− 6y = 1]

Fig. 2. (a) EL⊥ proof over O′, (b) DQ,lin proof and (c) integrated EL⊥[DQ,lin] proof.

and 5 in this algorithm are captured by the following additional rules:

⊥ R⊥β
x = p (p > q)

R+
>x > q

x > p (p ≥ q)
R−
>x > q

For DQ,lin, inferences are Gaussian elimination steps that derive β+cα from β
and α, and we label them with [1, c] to indicate that β is multiplied by 1 and α
by c. This directly gives us a proof if the conclusion is ⊥ (or, equivalently, 0 = b
for non-zero b). However, proofs for implications

∧
D → β need to be treated

differently. Since we use D to eliminate the variables from β to show that β is a
linear combination of D, our approach would yield a proof with final conclusion
0 = 0. In our example, we could get the following “proof” for D |= α ∧ β → γ:

4x− 6y = 1 2x+ 3y = 5
[1,−2]

−12y = −9 4y = 3
[1, 3]

0 = 0

To obtain a proof with γ as conclusion, we reverse the proof direction by recursive-
ly applying the following transformation to make a premise α1 into a conclusion.

α1 α2
[c, d]α3

⇝
α2 α3

[− d
c ,

1
c ]α1

We then transform the next inference to obtain an inference that has α3 as the
conclusion, and continue this process until 0 = 0 becomes a leaf, which we then
remove from the proof. The result for our example is shown in Fig. 2(b).

4.2 Combining the Proofs

It remains to integrate the concrete domain proofs into the DL proof over O−D.
As a consequence of Algorithm 1, in Fig. 2(a), the introduced concept names
Aα, Aβ , Aγ occur in axioms with the same left-hand side C. The idea is to
add this DL context C to every step of the CD proof (b) to obtain the EL⊥[D]-
proof (c). This proof replaces the applications of R+

⊓ and R⊑ in the original DL
proof (a), and both (a) and (c) have essentially the same leafs and conclusion,
except that the auxiliary concept names Aα, Aβ , Aγ were replaced by the original
constraints and the auxiliary axiom (∗) was eliminated. In general, such proofs
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can be obtained by simple post-processing of proofs obtained separately from
the DL and CD reasoning components, and we conjecture that the integrated
proof (c) is easier to understand in practice than the separate proofs (a) and (b),
since the connection between the DL and CD contexts is shown in all steps.

Lemma 6. Let O′ be the final ontology computed in Algorithm 1. Given an Elk-
proof P ′ for O′ |= C−D ⊑ D−D and proofs for all D-implications α1∧· · ·∧αn → β
used in P ′, we can construct in polynomial time an EL⊥[D]-proof for O |= C ⊑ D.

5 Generating Proofs for ALC[D]

For ALC[D], a black-box algorithm as for EL⊥[D] is not feasible, even though
we consider only p-admissible concrete domains and no role paths. The intuitive
reason is that ALC itself is not convex, and we cannot simply use the classifica-
tion result to determine which implications α1 ∧ . . .∧αn → β in D are relevant.
On the other hand, adding all valid implications is not practical, as there can
be exponentially many. We thus need a glass-box approach, i.e. a modified ALC
reasoning procedure that determines the relevant CD implications on-demand.

Moreover, to obtain proofs for ALC[D], we need a reasoning procedure that
derives new axioms from old ones, and thus classical tableau methods [12,24]
are not suited. However, existing consequence-based classification methods for
ALC [28] use complicated calculi that are not needed for our purposes. Instead,
we use a modified version of a calculus from [19], which uses only three inference
rules, but performs double exponentially many inferences in the worst case. Our
modification ensures that we perform at most exponentially many inferences,
and are thus worst-case optimal for the ExpTime-complete ALC[D].

5.1 A Simple Resolution Calculus for ALC

The calculus represents GCIs ⊤ ⊑ L1 ⊔ · · · ⊔ Ln as clauses of the form

L1 ⊔ . . . ⊔ Ln Li ::= A | ¬A | ∃r.D | ∀r.D

where n ≥ 0, A,D ∈ NC and r ∈ NR. To decide O |= A ⊑ B, we normalize O
into a set of clauses, introducing fresh concept names for concepts under role
restrictions, and add two special clauses ALHS⊔A, ARHS⊔¬B, with fresh concept
names ALHS and ARHS. The latter are used to track relevant inferences for
constructing the final proof, for which we transform all clauses back into GCIs.

Our inference rules are shown in Fig. 3. A1 is the standard resolution rule
from first-order logic, which is responsible for direct inferences on concept names.
The rules r1 and r2 perform inferences on role restrictions. They consider an
existential role restriction ∃r.D and a (possibly empty) set of value restrictions
over r, whose conjunction is unsatisfiable due to a clause over the nested con-
cepts. The concept D may not be relevant for this, which is why there are two
rules. Those rules are the main difference to the original calculus in [19], where
a more expensive, incremental mechanism was used instead. To transform this
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A1:
C1 ⊔A, C2 ⊔ ¬A

C1 ⊔ C2
r1:

C ⊔ ∃r.D, C1 ⊔ ∀r.D1, . . . , Cn ⊔ ∀r.Dn, ¬D1 ⊔ . . . ⊔ ¬Dn

C ⊔ C1 ⊔ . . . ⊔ Cn

r2:
C ⊔ ∃r.D, C1 ⊔ ∀r.D1, . . . , Cn ⊔ ∀r.Dn, ¬D ⊔ ¬D1 ⊔ . . . ⊔ ¬Dn

C ⊔ C1 ⊔ . . . ⊔ Cn

Fig. 3. Inference rules for ALC clauses.

calculus into a practical method, we use optimizations common for resolution-
based reasoning in first-order logic: ordered resolution, a set-of-support strategy,
as well as backward and forward subsumption deletion. In particular, our set-of-
support strategy starts with a set of support clauses containing only the clauses
with ALHS and ARHS. Inferences are always performed with at least one clause
from this set, and the conclusion becomes a new support clause. If a support
clause contains a literal ∃r.D/∀r.D, we also add all clauses containing ¬D as
support clauses [18].

5.2 Incorporating the Concrete Domain and Creating the Proof

To incorporate concrete domains, we again work on the translation O−D replac-
ing each constraint α with Aα. In ALC[D], constraints can also occur in negated
form, which means that we can have literals ¬Aα expressing the negation of
a constraint. We keep track of the set D of concrete domain constraints α for
which Aα occurs positively in a support clause. We then use the proof procedure
for D (see Section 4.1) to generate all implications of the form α1∧ . . .∧αn → β,
where {α1, . . ., αn} ⊆ D is subset-minimal, for which we add the corresponding
clauses ¬Aα1 ⊔ . . . ⊔ ¬Aαn ⊔Aβ . If β = ⊥, we instead add ¬Aα1 ⊔ . . . ⊔ ¬Aαn .

Theorem 7. Let O be an ALC[D] ontology and N be the normalization of O−D.
Then, our method takes at most exponential time, and it derives ALHS ⊔ ARHS

or a subclause from N iff O |= C ⊑ D.

Proofs generated using the calculus operate on the level of clauses. We trans-
form them into proofs of O−D |= A ⊑ B by 1) adding inference steps that reflect
the normalization, 2) if necessary, adding an inference to produce ALHS ⊔ARHS

from a subclause 3) replacing ALHS by ¬A and ARHS by B, 4) replacing all
other introduced concept names by the complex concepts they were introduced
for, and 5) transforming clauses into more human-readable GCIs using some
simple rewriting rules (see the appendix for details). In the resulting proof, the
initial clauses A ⊔ ALHS and ¬B ⊔ ARHS then correspond to the tautologies
A ⊑ A and B ⊑ B. To get a proof for O |= A ⊑ B, we use a procedure similar
to the one from Section 4.2 to integrate concrete domain proofs. Because the
integration requires only simple structural transformations, the complexity of
computing the combined proofs is determined by the corresponding complexi-
ties for the DL and the concrete domain. We can thus extend the approaches
from [1,2] to obtain complexity bounds for finding proofs of small size and depth.
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Theorem 8. For D ∈ {DQ,lin,DQ,diff}, deciding the existence of a proof of at
most a given size can be done in NP for EL⊥[D], and in NExpTime for ALC[D].
For proof depth, the corresponding problem is in P for EL⊥[DQ,diff], in NP for
EL⊥[DQ,lin], and in ExpTime for ALC[D] (for both concrete domains).

6 Implementation and Experiments

We implemented the algorithms described above and evaluated their perfor-
mance and the produced proofs on the self-created benchmarks Diet, Artifi-
cial, D-Sbj and D-Obj, each of which consists of multiple instances scaling from
small to medium-sized ontologies. The latter two benchmarks are formulated
in EL⊥[DQ,diff], the rest in EL⊥[DQ,lin]. Our tool is written using Java 8 and
Scala. We used Elk 0.5, Lethe 0.85 and OWL API 4. The experiments were
performed on Debian Linux 10 (24 Intel Xeon E5-2640 CPUs, 2.50GHz) with
25 GB maximum heap size and a timeout of 3 minutes for each task. Fig. 4 shows
the runtimes of the approaches for EL⊥[D] from Sections 3 and 4 for reasoning
and explanation depending on the problem size, which counts all occurrences
of concept names, role names, and features in the ontology. A more detailed
description of the benchmarks and results can be found in the appendix.

We observe that pure reasoning time (crosses in Fig. 4) scales well w.r.t.
problem size. Producing proofs was generally more costly than reasoning, but the
times were mostly reasonable. However, there are several Artificial instances for
which the proof construction times out (blue dots). This is due to the nondeter-
ministic choices of which linear constraints to use to eliminate the next variable,
which we resolve using the Dijkstra-like algorithm described in [2], which results
in an exponential runtime in the worst case. Another downside is that some
proofs were very large (> 2000 inference steps in D-Obj ). However, we designed
our benchmarks specifically to challenge the CD reasoning and proof generation
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capabilities (in particular, nearly all constraints in each ontology are necessary to
entail the target axiom), and these results may improve for realistic ontologies.

Further analysis revealed that the reasoning times were often largely due to
the calls to Elk (ranging from 23% in Diet to 75% in Artificial), which shows
that the CD reasoning does not add a huge overhead, unless the number of
variables per constraint grows very large (e.g. up to 88 in Diet). In comparison
to the incremental use of Elk as a black-box reasoner, the hypothetical “ideal”
case of calling Elk only once on the final saturated ontology O′ would not save
a lot of time (average gain ranging from 42% in Diet to 14% in D-Obj ), which
shows that the incremental nature of our approach is also not a bottleneck.

Fig. 5 shows the runtime of the ALC[D] calculus from Section 5. As ex-
pected, it performs worse than the dedicated EL⊥[D] algorithms. In particular,
currently there is a bottleneck for the DQ,diff benchmarks (D-Sbj and D-Obj )
that is due an inefficiency in the computation of the relevant CD implications
α1∧· · ·∧αn → β. In order to evaluate the increased expressivity supported by the
ALC[D] reasoner, we have also incorporated axioms with negation and universal
restrictions into the Artificial benchmark. Currently, however, the reasoner can
solve only the smallest such instance before reaching the timeout.

We also compared our CD reasoning algorithms with Z3 [25], which supports
linear arithmetic (for DQ,lin) and difference logic (for DQ,diff). Ignoring the over-
head stemming from the interface between Java and C++, the runtime of both
approaches was generally in the same range, but our algorithms were faster on
many CD reasoning problems. This may be due to the fact that, although our
algorithms for DQ,lin and DQ,diff are not optimized very much, they are never-
theless tailored towards very specific convex fragments: linear arithmetic with
only =, and difference logic with only x+ q = y and x > q, respectively.

7 Conclusion

We have shown that it is feasible to support p-admissible concrete domains in DL
reasoning algorithms, and even to produce integrated proofs for explaining con-
sequences in the DLs EL⊥[D] and ALC[D], for the p-admissible concrete domains
DQ,lin and DQ,diff. In this work, we have restricted our attention to ontologies
containing only GCIs (i.e., TBoxes) and to classification as the main reasoning
problem. However, the extension of our methods to data and reasoning about
individuals, e.g. fred : ICUpatient ⊓ [hr = 90], encoded in so-called ABoxes [8],
is straightforward. Likewise, the approach for computing EL⊥[D] proofs can be
generalized to use other reasoning calculi for EL⊥ instead of the one employed by
Elk, which makes very small proof steps and thus generates rather large proofs.

One major problem with using proofs to explain consequences is that they
may become quite large. This problem already occurs for pure DLs without CDs,
and has also shown up in some of our benchmarks in this paper. One possibility
to alleviate this problem is to use an interactive proof visualization tool like
Evonne [26], which allows zooming into parts of the proof and hiding uninter-
esting or already inspected parts. Since the integrated proofs that we generate
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have the same shape as pure DL proofs, they can be displayed using Evonne. It
would, however, be interesting to add features tailored to CD reasoning, such as
visualizing the solution space of a system of linear equations.

In Example 3, we have seen that it would be useful to have the constraints
of DQ,lin and DQ,diff available in a single CD. Such a CD D would still preserve
decidability if integrated into ALC. However, since D is no longer convex, our
reasoning approach for ALC[D] does not apply. Thus, it would also be interesting
to see whether this approach can be extended to admissible CDsD [7,21], i.e. CDs
that are closed under negation and for which satisfiability of sets of constraints
is decidable.
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A Omitted Proofs in Sections 3 and 4

Theorem 4. Algorithm 1 computes CL(O) in polynomial time.

Proof. We first observe that, in each iteration, the while loop adds at most
polynomially many axioms to O′ (at most one for each concept C ∈ sub(O−D)
and constraint β ∈ C(O)), which are of polynomial size. Therefore, CL(O′) can
always be computed in polynomial time [6] in Lines 3 and 5. Moreover, there
are at most polynomially many iterations since we only add axioms to O′, and
thus due to the monotonicity of entailment, each set DC in Line 5 monotoni-
cally increases from one iteration to the next, and is bounded by C(O). Since
the loop terminates once all sets DC remain the same, there can be at most
|sub(O−D)| · |C(O)| iterations of the while loop.

It remains to prove correctness. In each step, O′[Aα 7→ α | α ∈ C(O)] contains
only axioms that are entailed by O, since the concept names Aα replace exactly
the occurrences of the concrete constraints α occurring in O. Consequently, if the
output of the algorithm contains ⟨C,D⟩, then O |= C ⊑ D, which means that
the algorithm is sound. It remains to show completeness, i.e. that the output
contains all such tuples. Take two concepts C†, D† ∈ sub(O) such that ⟨C†, D†⟩
is not returned. We construct a model I of O, based on the contents of O′ and
N = CL(O′) in the last iteration, such that I ̸|= C† ⊑ D†. We start with a model
I ′ of the final ontology O′:

– ∆I′
:= {C ∈ sub(O−D) | ⟨C,⊥⟩ ̸∈ N},

– for all A ∈ NC, A
I′

:= {C ∈ ∆I′ | ⟨C,A⟩ ∈ N},
– for all r ∈ NR, r

I′
:= {⟨C,D⟩ ∈ ∆I′ ×∆I′ | ⟨C,∃r.D⟩ ∈ N}

Since CL(O′) computes all entailed inclusions between subconcepts inO′, one can
easily show that I ′ |= O′ [17]: from the construction it follows by induction on
the structure of C,D ∈ sub(O−D) that C ∈ DI′

iff ⟨C,D⟩ ∈ N and ⟨C,⊥⟩ ̸∈ N.
Let C ⊑ D ∈ O′ and E ∈ CI′

. Then, ⟨E,C⟩ ∈ N, and since O′ |= C ⊑ D, also
⟨E,D⟩ ∈ N, and thus E ∈ DI′

.
We argue that I ′ can be extended to an interpretation I such that, for each

α ∈ C(O), we have AI′

α = αI . It is possible to ensure AI′

α ⊆ αI , because, if
DC for some domain element C ∈ ∆I′

is unsatisfiable, we would have added
an axiom

d
α∈DC

Aα ⊑ ⊥ in Line 7, and by completeness of CL(O′), we would

have added ⟨C,⊥⟩ to N, and thus not included C in ∆I′
. Consequently, we can

assign values to the concrete features such that all constraints in DC are sat-
isfied, i.e. C ∈ AI′

α implies C ∈ αI , since Aα ∈ DC by construction. However,
we have to ensure that for all α ∈ C(O), also αI ⊆ AI′

α holds, because other-
wise there might be GCIs in O with concrete constraints on the left-hand side
that are not satisfied. Intuitively, we have to make sure that we do not acciden-
tally satisfy more concrete domain constraints than necessary. For a fixed C, let
DC := {β ∈ C(O) | ⟨C,Aβ⟩ ̸∈ N}. Due to Line 9, there is no β ∈ DC such that
D |=

∧
DC → β. By convexity of D, this implies D ̸|=

∧
DC →

∨
DC . In other

words, we can find an assignment to the concrete features xI(C) such that every
constraint in DC is satisfied, and no constraint in DC is satisfied. Doing this for
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all domain elements C ∈ ∆I′
, we ensure that AI′

α = αI for all α ∈ C(O), and
thus I |= O.

We now show that I ̸|= C† ⊑ D† by proving that C ′ ∈ (C ′)I = (C†)I and
C ′ /∈ (D′)I = (D†)I , where C ′ and D′ result from replacing in C† and D† each
α ∈ C(O) by Aα. From our assumption that ⟨C†, D†⟩ is not returned by Algo-
rithm 1, we know that ⟨C ′, D′⟩ /∈ N. Therefore, by completeness of CL(O′) = N,
we cannot have ⟨C ′,⊥⟩ ∈ N, and thus C ′ ∈ ∆I′

and C ′ /∈ (D′)I
′
= (D′)I . Com-

pleteness of CL(O′) also yields that ⟨C ′, C ′⟩ ∈ N, and thus C ′ ∈ (C ′)I
′
= (C ′)I .

This shows that I ̸|= C† ⊑ D† and concludes the proof. ⊓⊔

Theorem 5. Algorithm 2 terminates in time polynomial in the size of
∧
D → β

and returns true iff DQ,diff |=
∧
D → β.

Proof. We show that each rule can produce only quadratically many new con-
straints in the number of variables, and hence the algorithm terminates after
polynomial time. For R−, R↔, and R0, this follows from the fact that these rules
can be applied at most once for each variable x or each pair of variables (x, y).
Using R+, we can produce at most 2 constraints of the form x+ q = y for each
pair (x, y), since the saturation stops as soon as R+

̸= can be applied. At the end,
R= and R> can also be applied only once for each pair (x, y).

It is clear that each of the rules is sound. Hence, it remains to show that
DQ,diff ̸|=

∧
D → β whenever the Algorithm returns false. In this case, D′

cannot contain β nor ⊥, i.e. the rules R+
̸=, R<, and R+

̸= are not applicable to D′.
We construct an assignment f to show that

∧
D → β is not valid, i.e. which

satisfies all constraints in D, but not Dβ. For any x = q ∈ D′, we set f(x) := q.
Consider now the remaining unsatisfied constraints of the form x + q = y and
x > q in D′, for which there cannot exist constraints x = p nor y = p in D′.
Due to R↔ and R+, the directed graph G with edges {(x, y) | x + q = y ∈ D′}
consists of unconnected cliques. If we fix one variable x in each clique C and some
value f(x), then the values f(y) of the other variables y ∈ C are determined by
the unique constraints x + q = y that must exist in D′. Such an assignment
also satisfies all constraints y + p = z with y, z ∈ C since they are implied by
corresponding constraints x + q = y and x + r = z, for which we must have
r − q = p due to R↔, R+, and R+

̸=. We now set f(x) to an arbitrary value that
only has to satisfy the constraint x > q in case one exists in D′, and fix the
values of all other y ∈ C accordingly. All constraints y > p ∈ D′ for y ∈ C will
be satisfied due to R>.

If β is either of the form x + q = y or x = q, it could happen that we have
chosen values f(x), f(y) that satisfy β by accident. However, since we assumed
that β /∈ D′, this is only possible if there is no constraint x + p = y or x = p,
respectively, in D′. In particular, x and y cannot be in the same clique. Thus,
we can increase the value f(x) by an arbitrary amount (and the values of all
variables connected to x in G accordingly) in order to ensure that β is not
satisfied, while D ⊆ D′ remains satisfied.

If β is of the form x > q, then we know that D′ contains neither x = p
with p > q nor x > p with p ≥ q. If D′ contains x = p with p ≤ q, then
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f(x) = p does not satisfy β. If D′ contains x > p with p < q, then it is possible
to choose f(x) := q (and adjust the values of x’s clique accordingly), which also
does not satisfy β, but still satisfies D. Finally, if D′ contains no constraint of
the form x = p or x > p, the value of f(x) can be chosen arbitrarily while still
satisfying D, and so we can again choose f(x) := q (and adjust the connected
variables accordingly). ⊓⊔

Lemma 6. Let O′ be the final ontology computed in Algorithm 1. Given an Elk-
proof P ′ for O′ |= C−D ⊑ D−D and proofs for all D-implications α1∧· · ·∧αn → β
used in P ′, we can construct in polynomial time an EL⊥[D]-proof for O |= C ⊑ D.

Proof. Given a D-proof P and a concept C (the context), we construct the
EL⊥[D]-proof PC by replacing each inference in P as follows:

γ1 . . . γm
R

δ
⇝

C ⊑ Aγ1 . . . C ⊑ Aγm
R

C ⊑ Aδ

In this transformation, all steps remain sound, and a D-proof of β becomes an
EL⊥-proof of C ⊑ Aβ .

To integrate this into the original EL⊥-proof P ′ from Elk, we need to analyze
in which contexts the newly introduced axioms Aα1

⊓· · ·⊓Aαn
⊑ Aβ can appear

in P ′ (the case with ⊥ instead of Aβ is similar). The relevant inference rules of
Elk are

C ⊑ D D ⊑ E
R⊑

C ⊑ E

C ⊑ D C ⊑ E
R+
⊓C ⊑ D ⊓ E

C ⊑ ∃r.D D ⊑ E
R∃C ⊑ ∃r.E

with the side condition that the axiom D ⊑ E in R⊑ is always an element of the
input ontology (here, O′). We distinguish three cases in the following.

– In the best case, Aα1
⊓ · · · ⊓Aαn

⊑ Aβ is used in P ′ in an inference step

C ⊑ Aα1 ⊓ · · · ⊓Aαn Aα1 ⊓ · · · ⊓Aαn ⊑ Aβ
R⊑

C ⊑ Aβ

(1)

as in our example proof in Fig. 2(a). Then, we replace (1) by PC , where P
is the D-proof of α1 ∧ · · · ∧ αn → β. The proof PC already has the same
conclusion C ⊑ Aβ as (1). However, since the leafs of PC are of the form
C ⊑ Aαi

, in general we also need to add the inferences

C ⊑ Aα1 ⊓ . . . ⊓Aαn
R−
⊓C ⊑ Aαi

to P ′ to connect PC to the original premise C ⊑ Aα1 ⊓ · · · ⊓ Aαn of (1).
In Fig. 2(c), this was not necessary since the nodes labeled by C ⊑ Aα and
C ⊑ Aβ already existed in (a), and hence we could use them directly and
omit the step R+

⊓ in (a).
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– An axiom Aα1
⊓ · · · ⊓Aαn

⊑ Aβ could also be used in R∃:

C ⊑ ∃r.
(
Aα1

⊓ · · · ⊓Aαn

)
Aα1

⊓ · · · ⊓Aαn
⊑ Aβ

R∃C ⊑ ∃r.Aβ

(2)

In this case, we cannot use C as the context. Though it would be tempt-

ing to translate D-inferences γ1 ... γm

δ into
C⊑∃r.Aγ1

... C⊑∃r.Aγm

C⊑∃r.Aδ
to arrive

at the conclusion C ⊑ ∃r.Aβ , such inferences would not be sound since
∅ ̸|= ∃r.Aγ1

⊓ · · · ⊓ ∃r.Aγm
⊑ ∃r.(Aγ1

⊓ · · · ⊓Aγm
) in EL⊥. Hence, we simply

use D = Aα1 ⊓· · ·⊓Aαn itself as the context, i.e. we translate the D-proof P
of α1 ∧ · · · ∧ αn → β into PD, which provides a proof of the second premise
D ⊑ Aβ of (2). The leafs of PD have labels of the form Aα1

⊓· · ·⊓Aαn
⊑ Aαi

,
for which we introduce new inferences Aα1⊓···⊓Aαn⊑Aαi

since they are tau-

tologies that require no further explanation. Using D = Aα1 ⊓ · · · ⊓ Aαn as
context here is not ideal, though, since in general n could be quite large,
which can make the proof cluttered.

– The last case is when Aα1
⊓· · ·⊓Aαn

⊑ Aβ appears as the first premise of R⊑
or any premise of R+

⊓ . In this case, the left-hand side C = Aα1
⊓ · · · ⊓Aαn

is
propagated to the conclusions of the form C ⊑ E or C ⊑ D⊓E, which then
potentially lead to more axioms of the form C ⊑ F . However, since these
axioms are not elements of O′, they can never appear as the second premise
of R⊑, which means that we cannot find a different DL context for the D-
proof P of Aα1

⊓· · ·⊓Aαn
⊑ Aβ , and we again have to use C = Aα1

⊓· · ·⊓Aαn

itself as the context, i.e. we use PC to derive Aα1
⊓ · · · ⊓Aαn

⊑ Aβ directly.

Finally, as seen in Figure 2(c), we replace all Aα in the resulting proof by α in
order to obtain an EL⊥[D]-proof. ⊓⊔

B Omitted Details from Section 5

B.1 Refutational Completeness

We first show refutational completeness of the calculus for ALC. The idea is
to present a procedure that constructs a model from a saturated set of clauses
that does not contain the empty clause. The construction makes use of linear
orderings on clauses and literals that determine how the model is constructed.
These orderings are also used in the optimized version of the calculus. While
this is a common construction to show refutational completeness of resolution,
the peculiarities of our method requires a more refined ordering.

Note the special role of concept names occurring under a role restriction: if a
concept name A occurs in a literal Qr.A, then we assume that there are no other
positive occurrences of A, that is, literals with A are either of the form ¬A or
Qr.A, where Q and r are always the same. Correspondingly, for every concept
name A, positive occurrences of A in the set of clauses are either only in literals
of the form A, only in literals of the form ∃r.A, or only in literals of the form
∀r.A.

We now assume a linear order ≺l on literals such that, for all A ∈ NC:
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1. If A1 occurs under an existential role restriction, and A2 under a value
restriction, then ¬A1 ≺ ¬A2.

2. If A occurs under a role restriction, then ¬A ≺l L for any literal L that is
not of the form ¬A′, where A′ occurs under a role restriction.

3. If A does not occur under a role restriction, then A ≺l ¬A,
4. ∃r.A1 ≺l ∀s.A2 ≺l A3 for all r, s ∈ NR and A1, A2, A3 ∈ NC.

We extend ≺l to a linear order ≺ on clauses, such that C1 ≺ C2 whenever
C2 contains a literal L2 such that, for every literal L1 in C1, L1 ≺ C2.

Theorem 9. For any set of clauses N satisfying our constraints, our calculus
derives a number of clauses that is at most exponential in N, and derives the
empty clause iff N is inconsistent.

Proof. As usual, we will use the symbol ⊥ to denote the empty clause. The
number of distinct literals occurring inN is linearly bounded by its size, and each
derived clause is composed of literals occurring in N. Since we represent clauses
as sets, this establishes that the algorithm has to terminate after exponentially
many steps. Every rule in Figure 3 infers only clauses that are entailed by its
premises. Consequently, if ⊥ is derived, then N must be inconsistent. It remains
to show that if ⊥ is not derived, then N has a model.

LetN∗ be the set of clauses generated by Alg2, and assume ⊥ ̸∈ N∗. Using the
order ≺ on clauses, we construct an interpretation I as fixpoint of an unbounded
sequence of interpretations I0, I1, . . .. The first interpretation I0 is defined by
∆I0 = {d0} and XI0 = ∅ for all X ∈ NC∪NR. The next interpretations are built
based on the previous one, where in each step, we add at most one element to the
domain. We may thus speak of the oldest domain element (that satisfies some
condition), by which we mean the domain element added first in the sequence
of interpretations. Ii+1 is constructed from Ii as follows. If Ii |= N∗, then
Ii = Ii+1 = I. Otherwise, there is a clause C ∈ N∗ and a domain element
d ∈ ∆Ii s.t. d ̸∈ CIi . Choose such a pair ⟨d,C⟩ ∈ ∆Ii×N∗ where, among all such
pairs, d is the oldest domain element (that is, the domain element introduced
in Ij for the smallest index j), and, for the selected d, C is the smallest clause
according to the ordering ≺. We then distinguish the following cases based on
the maximal literal L in C according to ≺l:

– If L = A ∈ NC, then Ii+1 is obtained from Ii by adding d to AIi ,
– If L = ∃r.D, then Ii+1 is obtained from Ii by adding a new domain element

e and adding it to DIi , as well as adding ⟨d, e⟩ to rIi .
– If L = ∀r.D, then Ii+1 is obtained from Ii by adding each r-successor of d

to DIi .

We observe that those steps ensure that d ∈ CIi . We argue later that the case
where L = ¬A is not possible, so that those cases are exhaustive. But before that,
we would like to show the following monotonicity property of our construction:
if d is the domain element selected for creating Ii, and for any clause C ′ ∈ N∗

s.t. C ′ ≺ C, we have d ∈ (C ′)Ii , then we also have d ∈ (C ′)Ij for all j > i.
This is clearly the case if d satisfies a literal of the form B or ∃r.B in C ′, since
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our construction does not remove elements from the interpretations of concepts
and roles. If d satisfies a literal of the form ∀r.D in C ′, we observe that our
ordering ensures that in no clause larger than C ′, a literal of the form ∃r.D′

can be maximal, so that no further successors can be added to d. Finally, if d
satisfies in C ′ a literal of the form ¬A, we first observe that our ordering ensures
that A cannot be maximal in a clause larger than C ′, since A ≺ ¬A. Moreover,
since in each step, we select the oldest domain element that still has unsatisfied
clauses in N∗, it is not possible that a predecessor of d gets selected for some
j > i, since any predecessor would be older. Consequently, d cannot be added
to A due to a literal of the form ∀r.D for any subsequent interpretation.

We now show that the case where L = ¬A is not possible: since d ̸∈ CIi ,
L = ¬A would mean that d ∈ AIi . Assume such a case is possible, and let i be
the smallest index for which this happens. d must have been added to AIi in an
earlier iteration for one of the following reasons.

1. There is some j < i such that d ̸∈ C
Ij

1 , where C1 ∈ N∗, and A is the
maximal literal in C1. Rule A1 is applicable on C1 and C, yielding a clause
C2 that is also in N∗. This clause is smaller than both C and C1, since
A/¬A is maximal in these clauses and does not occur in C2. Consequently,
C2 would have been processed before Ij by this procedure, which would have

ensured that for some k < j, d ∈ CIk
2 . By the monotonicity property of our

construction, this means that d ∈ C
Ij

2 . Now C2 is composed exactly of the

literals in C/C1 except ¬A/A, but d ̸∈ C
Ij

1 , which means that d ∈ CIj . Due
to the monotonicity property of our construction, then also d ∈ CIi . But
this contradicts that d and C are selected to obtain Ii+1.

2. d is an r-successor of another domain element and was added due to some
j < i and selected clause C1 not satisfied in Ij in which the maximal literal
is ∃r.A. In this case, we have d ̸= d0. The maximal literal in C is then of the
form ¬A, with A under an existential role restriction in N. By our ordering,
this means that all other literals in C must be negated (Condition 2) and
their concept names occur in N under existential role restrictions (Condi-
tion 1). We can indeed conclude from this that ¬A is the only literal in C.
Otherwise, there would be another literal ¬B in C, where B does not occur
in a value restriction. (Recall that by our assumptions, if B occurs positively
under an existential role restriction, it cannot occur positively in a different
way). Since d ̸∈ CIi , also d ∈ BIi , but there is no step in the construction
that would add an existing domain element to a concept occurring under an
existential role restriction.
We obtain that ¬A ∈ N∗. But then, the r2-rule applies on this clause and
C1 for the case of n = 0, resulting in a clause C2 that is obtained from C1

by removing its maximal literal. Thus, C2 ≺ C1, which means that C2 must
have been processed before C1. This in turn means that Ij |= C2, and thus
Ij |= C1, so C1 could not have been selected in Step j.

3. d is an r-successor of another domain element e and was added to AIi due
to some j < i and clause C1 in which the maximal literal is ∀r.A. As before,
we can argue that all literals in C are of the form ¬D, with D occurring
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under a role restriction, and C contains at most one literal ¬D∃, where D∃
occurs under an existential role restriction. In particular, d was created as
an r-successor of e due to a clause in which ∃r.D∃ is the maximal literal, and
for every ¬D in C, d was added to the interpretation of D due to a clause
in which the maximal literal is ∀r.D. We observe that one of the rules r1 or
r2 is applicable on those clauses together with C, resulting in a clause that
is smaller and consequently must have been processed before all the other
clauses, making at least one of these clauses satisfied for e, and contradicting
that this clause was used to add d to the interpretation of some D such that
¬D occurs in C.

As a consequence, we obtain that, in each step, one clause is satisfied for one
domain element for which it was not satisfied before. In the limit, we obtain that
I satisfies all clauses in N∗, and thus is a model of N. ⊓⊔

B.2 Optimizations

From the construction in the proof of Theorem 9, we see that some clauses in N∗

are not relevant for the refutational completeness, and can thus be discarded:

1. Tautologies, that is, clauses containing both A and ¬A for some A ∈ NC

are always satisfied and will thus never trigger an adaptation of the current
interpretation. In our implementation, tautologies are never added to the
current set of clauses.

2. Subsumed clauses, i.e. clauses C1 such that, for some other clause C2 ∈ N∗,
C2 ̸= C1 and every literal in C2 also occurs in C1. By our ordering, C2 ≺ C1,
so that our model construction will consider C2 before it considers C1. By the
monotonicity property, satisfiying C2 furthermore ensures that C1 remains
satisfied, and is thus never considered by the model construction. In our
implementation, we use both forward subsumption, that is, newly derived
clauses that are subsumed by previously derived clauses are not added to
the current set of clauses, and backward subsumption, that is, after adding
a new clause, we remove from the current set of clauses all clauses that are
subsumed by it.

We furthermore observe that the arguments in the proof only consider the
maximal literals in a clause according to the literal ordering ≺l. For this reason,
our method remains refutationally complete if we only perform inferences on the
maximal literal.

B.3 Generating ALC Proofs

Fix an ALC ontology O and concepts C, D. To compute a proof for O |= C ⊑ D,
we would first introduce concept names AC , AD for those concepts, and add the
axioms AC ⊑ C, D ⊑ AD (that is, we reduce to subsumption between concept
names). As mentioned in the text, we use concept names ALHS, ARHS to track
inferences for the proof. After normalizing, we add the clauses AC ⊔ ALHS and
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¬AD ⊔ARHS, which we add to the set of clauses. We make sure that ALHS and
ARHS are minimal in the ordering used, so that the clause ALHS ⊔ ARHS or a
subclause is derived if O |= C ⊑ D (a subclause in the cases where the ontology
is inconsistent (empty clause), C is unsatisfiable, or O |= ⊤ ⊑ D). By tracking
all inferences, we obtain a proof for that entailment from N, in which nodes are
labeled with clauses. This proof still has to be transformed into a more readable
DL proof for O |= C ⊑ D. For this, we

– regard clauses C as GCIs ⊤ ⊑ C,

– replace ALHS everywhere by ¬C and ARHS by everywhere by D, where C
and D are the concepts in the subsumption C ⊑ D to be proved,

– replace AC by C and AD by D, where C and D are the concepts of the
subsumption to be proved,

– replace any concept names A under role restrictions Qr.A, which were used
during normalization to flatten expressions Qr.C, again by C,

– add additional inferences to link the non-tautologigal leafs of the proof to
axioms from the ontology (from which they were obtained during normal-
ization),

– apply the following transformations exhaustively on each clause to make
them more human-readable, where we treat ⊤ as empty conjunction and ⊥
as empty disjunction:

• C ⊑ ¬A ⊔D =⇒ C ⊓A ⊑ D

• C ⊑ ∀r.⊥ ⊔D =⇒ C ⊓ ∃r.⊤ ⊑ D

• C ⊑ ∃r.¬D ⊔ E =⇒ C ⊓ ∀r.D ⊑ E

• C ⊑ ∀r.¬D ⊔ E =⇒ C ⊓ ∃r.D ⊑ E

The last step is not strictly necessary, but the final goal of the proof is to explain
the inference to the user, for which we want to minimize the number of negations
used. As a result of the transformation, the clauses AC ⊔ALHS and ¬AD ⊔ARHS

that were added to the initial clause set get transformed into tautologies C ⊑ C
and D ⊑ D.

B.4 Integrating the Concrete Domain

The reasoning algorithm keeps a set D of currently relevant constraints. To
compute all relevant implications α1 ∧ . . . ∧ αn → β, where α1, . . . , αn ∈ D, we
use the proof procedure for the concrete domain to compute the set of possible
inferences starting from D. For each derived constraint β for which Aβ occurs
negatively in the set of clauses, we follow those inferences back to the constraints
in D that were used to derive it, creating all such possible sets. This way, we
ensure that all implications α1 ∧ . . . ∧ αn → β, where {α1, . . . , αn} ⊆ D is
subset-minimal, are discovered, so that we can add the corresponding clauses to
the current set of clauses. The procedure might also create some implications
where the set of constraints on the left-hand side is not subset-minimal. However,
those clauses are immediately removed due to forward-subsumption deletion.
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Theorem 7. Let O be an ALC[D] ontology and N be the normalization of O−D.
Then, our method takes at most exponential time, and it derives ALHS ⊔ ARHS

or a subclause from N iff O |= C ⊑ D.

Proof. The complexity of the method does not change, since we only add ex-
ponentially many new clauses. Soundness follows from the fact that the added
clauses all correspond to valid entailments for the original ontology O if we re-
place the fresh concept names again by the corresponding concrete constraints.
For completeness, we use the construction as in the proof of Theorem 9 to con-
struct a model I for N∗, the final set of clauses, in case ⊥ ̸∈ N∗. I is a model
for O−D, but we still have to modify it into a model of O. We argue that we can
do that by ensuring that for every d ∈ ∆I :

1. if d ∈ AI
D, then d ∈ DI ,

2. if d ̸∈ AI
D, and there is no clause t : C ∈ N∗ s.t. t can be interpreted by d

(i.e., either t = x, or t = a and d = aI), the maximal literal of C is ¬AD,
and d ̸∈ LI for any other literal in C, then d ̸∈ DI .

If we can modify I like that, then we obtain a model of O.
For a domain element d ∈ ∆I , we collect the sets D and D, where D =

{D ∈ C(O) | d ∈ AI
D} and D contains all the D ∈ C(O) for which AD satisfies

the second condition above.
We first observe that D ̸|=

∧
D → ⊥, since the concept names corresponding

to the constraints in D must occur as maximal literals in some clauses in N∗,
and we would thus have added a clause x :

⊔
D∈D′ ¬AD for some subset D′ ⊆ D

if D was inconsistent. This clause would not be satisfied by I, contradicting that
I |= N∗. We can thus extend I in such a way that, for each D ∈ D, d ∈ DI′

.
It remains to show that we can also ensure that for every D ∈ D, d ̸∈ DI′

. We
first observe that for no D ∈ D, D |=

∧
D → D. This is because D was carefully

chosen to ensure that if D |=
∧

D → D, there would be some subset D′ ⊆ D for
which we would have added the clause x :

⊔
D′∈D′ ¬AD′ ⊔AD. Since d does not

satisfy the concept, this would contradict that I is a model of N∗. Because D is
convex, it follows furthermore that D ̸|=

∧
D →

∨
D. Consequently, we can find

an assignment of the concrete features that ensures that d ∈ DI′
for all D ∈ D

and d ̸∈ DI′
for all D ∈ D. It follows that we can extend I to a model of O as

required. ⊓⊔

To produce a combined proof in ALC[D], we again follow the approach de-
scribed in Section 4.2, but for now we always use the left-hand side Aα1

⊓· · ·⊓Aαn

as the context for the CD proof of α1∧· · ·∧αn → β, since it is not trivial to find
other meaningful DL contexts for proofs generated from the calculus in Fig. 3.

B.5 The Complexity of Finding Good Proofs

To investigate the complexity of our approaches and prove Theorem 8, we use
the formal framework from [1,2], which we shortly introduce in the following. A
derivation structure for an entailment T |= η in a logic L is a directed, labeled
hypergraph (V,E, ℓ) where
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1. vertices are labeled with L-sentences,
2. every leaf is labeled by an axiom from T , and
3. every hyperedge (S, d) ∈ E is an inference satisfying {ℓ(v) | v ∈ S} |= ℓ(d).

Here, a leaf is a node v ∈ V without an incoming hyperedge (S, v) ∈ E, and
a sink v ∈ V has no outgoing hyperedges (S, d) ∈ E with v ∈ S. A proof for
T |= η is such a derivation structure that, additionally,

4. is tree-shaped, i.e. has no cycles in the relation {(s, d) | (S, d) ∈ E, s ∈ S},
5. has a unique sink labeled by the final conclusion η, and
6. has no two hyperedges (S, v), (S′, v′) ∈ E with ℓ(v) = ℓ(v′).

As in [1,2], we consider a so-called deriver D, which produces derivation
structures D(T , η) that contain all inference steps relevant for a proof of T |= η
(but they can encompass many possible ways of deriving η). We are interested in
finding a proof that can be homomorphically mapped into D(T , η), and whose
size (number of vertices) is below a given threshold (a “small proof”). Reason-
ers for EL⊥, such as Elk, produce derivation structures of polynomial size, and
the problem of finding small proofs in such structures is NP-complete [1]. For
derivation structures that are of exponential size in general, such as for ALC,
this problem is NExpTime-complete [1]. If we replace size by recursive mea-
sures such as depth (the length of the longest path from the sink to a leaf), the
complexity drops to P and ExpTime, respectively [2].

To determine the complexity of finding small proofs in EL⊥[D] and ALC[D],
we additionally need to consider the size of the derivation structures for DQ,lin

and DQ,diff, which are then integrated into the pure DL proofs. For DQ,diff, The-
orem 5 shows that the derivation structures constructed by Algorithm 2 are al-
ways of polynomial size, which does not change the complexity of finding proofs
compared to the case of DLs without concrete domains. For DQ,lin, however,
derivation structures can be of exponential size: Although Gaussian elimination
produces at most quadratically many inference steps in the number of variables
that occur in the constraints, there are exponentially many possible orders in
which the variables could be eliminated and different choices of constraints to
use for eliminating a variable, each of which yields a different proof. To alleviate
this problem in our implementation, we normalize all equations after each elim-
ination step, by reducing the coefficient of the leading variable (according to a
fixed variable order) to 1, and adjusting the other coefficients accordingly. For
example, the elimination step

4x− 6y = 1 2x+ 3y = 5
[1,−2]

−12y = −9

from the previous example would become

4x− 6y = 1 2x+ 3y = 5
[− 1

12 ,
1
6 ]

y = 3
4

Nevertheless, the overall size of the derivation structure stays exponential in the
worst case.
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Theorem 8. For D ∈ {DQ,lin,DQ,diff}, deciding the existence of a proof of at
most a given size can be done in NP for EL⊥[D], and in NExpTime for ALC[D].
For proof depth, the corresponding problem is in P for EL⊥[DQ,diff], in NP for
EL⊥[DQ,lin], and in ExpTime for ALC[D] (for both concrete domains).

Proof. In the cases involving DQ,diff or ALC[D], we obtain polynomial (exponen-
tial) structures for EL⊥[D] (ALC[D]) entailment problems by transforming the
concrete domain derivation structures and integrating them into the classical DL
derivation structures as described in Lemma 6. In EL⊥[D], our method considers
only polynomially many D-implications, while for ALC[D] we obtain exponen-
tially many D-derivation structures (of polynomial or exponential size), which
does not affect the exponential size of the derivation structures for ALC. Hence,
we can apply the classical algorithms for finding proofs of a given maximal size
or depth in the combined structures [1,2].

For EL⊥[DQ,lin], the idea is to guess a substructure of the combined deriva-
tion structure in polynomial time, and then verify that it is indeed a proof of the
required size. Since the EL⊥-parts of the derivation structure are of polynomial
size, we can guess those parts in NP. For all guessed axioms

d
D∈DC

AD ⊑ AE ,
we then need to guess a corresponding proof of

∧
DC → E in DQ,lin. However,

we know that such a proof needs at most polynomially many variable elimi-
nation steps (at most one for each variable in each involved constraint), which
correspond to inference steps. Hence, we can guess in polynomial time a variable
elimination order and, for each constraint α and variable x, a constraint that is
used to eliminate x from α. ⊓⊔

C Implementation and Experiments

We implemented the algorithms described above and evaluated their perfor-
mance and the produced proofs on a series of benchmarks. The implementation
uses the Java-based OWL API 4 to interact with DL ontologies, but uses new
data structures for representing concrete domains. Although there is a proposal
for extending OWL with concrete domain predicates of arities larger than 1,7

this is not part of the OWL 2 standard.8 To extract proofs from the collections of
inference steps produced by our concrete domain reasoning algorithms, we used
a Dijkstra-like algorithm that minimizes the size of the produced proof [2]. For
efficiency reasons, for proofs in DQ,lin, we fix a variable order for the Gaussian
elimination steps, instead of considering all possible orders in which variables
could be eliminated.

Returning to Example 3, we can split it into two tasks to demonstrate
proofs in both concrete domains, where we have added information on the
status of our current patient using the GCIs CurrentPatient ⊑ [age = 42],
CurrentPatient ⊑ [hr = 173], and CurrentPatient ⊑ [pp = 65]. Resulting proofs of
ICUpatient ⊑ NeedAttention are shown in Fig. 6 and Fig. 7.

7 https://www.w3.org/2007/OWL/wiki/Data_Range_Extension:_Linear_Equations
8 https://www.w3.org/TR/owl2-overview/

https://www.w3.org/2007/OWL/wiki/Data_Range_Extension:_Linear_Equations
https://www.w3.org/TR/owl2-overview/
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Fig. 6. Showing CurrentPatient ⊑ NeedAttention using DQ,lin
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Fig. 7. Showing CurrentPatient ⊑ NeedAttention using DQ,diff

C.1 Benchmarks

In the following, we describe several ontologies that we developed to evaluate our
implementation. Unfortunately, existing reasoning tasks for DLs with concrete
domains, e.g. from Racer,9 are not expressive enough to test our algorithms;
the CD values are used only as constants and do not influence the reasoning.
Some of our benchmarks are scalable in the sense that they are based on similar
ontologies, but one can increase their size, e.g. by increasing the number or size
of axioms or constraints. All benchmarks are formulated in EL⊥[D].

Simple benchmarks. For DQ,lin, there are two basic demonstration examples,
Drones and Coffee. The main task in Drones is to derive the fraction of impaired
sensors and propellers of a drone.

In Coffee, for different types of coffee such as cappuccino, ristretto, macchiato,
etc., we define the proportions of components such as espresso, steamed milk,
foam, etc. Consequently, we can identify a coffee drink based on the amounts of
its components given in some unit like ml or oz.

Scalable benchmarks. For testing the system behavior on inputs of increasing
size, we provide four benchmarks, two for DQ,lin and two for DQ,diff.

In Diet(n), given a person’s daily consumption as a list of n products and
their calories from fat, protein, and carbs, we check constraints about the con-
sumption, such as “full fat”, “full protein”, “full carbs”, “well-balanced” (55%
carbs, 20% protein, 25% fat), “lower carb” (45% carbs, 25% protein, 30% fat),
and “lower carb and fat” (45% carbs, 30% protein and 25% fat), expressed in
DQ,lin. The parameter n describes the size of the linear constraints.

9 https://github.com/ha-mo-we/Racer

https://github.com/ha-mo-we/Racer
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Table 1. Results of the experiments with the EL⊥[D] algorithms.

Name Axioms Constraints Variables Problem Size Time Proof Time #Fin/Σ

Coffee 49 21 2.3 146 329 109 1/1
Drones 93 11 2 254 195 100 1/1

Diet 26–194 15–99 2–40 81–865 61–321 45–2659 8/8
Artificial 9–24 2–13 3–5 25–144 17–347 18– 4/6
D-Sbj 55–204 20–85 1.5 191–1101 220–686 166–482 8/8

D-Obj 122–427 24–76 1.5 427–2129 315–1437 417–2099 8/8

To scale both the DL and CD parts, we created the benchmark Artificial(n)
overDQ,lin. With increased n, the number of intermediate concepts in the concept
hierarchy and in proofs also increases, i.e. A ⊑ C0 ⊑ · · · ⊑ Cn−1 ⊑ B. Moreover,
to show each step, the concrete domain reasoner has to derive a linear constraint
from n given constraints. Thus, the size of a proof for A ⊑ B grows quadratically
in n.

For DQ,diff, there are D-Sbj (n) and D-Obj (n). In D-Sbj (n), there is one main
actor, which is a drone. The parameter n quantifies the number of other objects
in the world. The reasoner needs to show that all objects are at a “safe” distance
from the drone.

The benchmark D-Obj (n) is somehow orthogonal to D-Sbj (n). The world
contains n drones and exactly 3 other objects, e.g. humans or trees. Now the
distances between all drones and objects are taken into consideration. Similarly
to the subjective version, the reasoner needs to find out whether all objects are
at “safe” distances.

Experiments. Our findings for the EL⊥[D] algorithms are summarized in Ta-
bles 1 and 2. The first two benchmarks consist of a single reasoning problem
each, the remaining four represent series of small to medium-sized ontologies,
for which we report ranges in each column. For the scalable benchmarks, we
consider only the instances which terminated and, for each size, computed aver-
age times over three randomly generated instances of that size. The underlined
benchmarks are in DQ,diff, the rest in DQ,lin. Columns 2–4 show the number of
axioms, number of constraints, and average number of variables per constraint
in the ontology, respectively. Column 5 aggregates the number of occurrences of
any name (concept, role or feature) in the ontology. Columns 6–7 list the time
(in ms) required for classification and proof generation, respectively, “Σ” denotes
the total number of instances, and “#Fin” denotes the number of instances for
which proof generation finished before a timeout of 3min.
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Table 2. Supplemental experiment data for the EL⊥[D] algorithms (cf. Table 1).
“%DL” denotes the fraction of the reasoning time that was used by the calls to Elk.
“%Incr” denotes the fraction of Elk reasoning time that would have been required for
a single call to Elk on the final saturated ontology O′. The last two columns describe
the computed proofs in terms of their tree size and “%CD”, the average fraction of
the steps of the computed proof that are due to concrete domain inference steps. For
the scalable benchmarks, we report either ranges or averages with standard deviations
(sd) in each column.

Name %DL(sd) %Incr(sd) Proof Size %CD(sd)

Coffee 41 20 18 11
Drones 83 51 7 11

Diet 23(7) 58(6) 22–166 37(10)
Artificial 75(15) 78(16) 10–51 18(5)
D-Sbj 52(2) 76(8) 45–584 6(0)
D-Obj 63(2) 86(6) 184–1232 8(0)
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