A Description Logic Journey

Franz Baader Theoretical Computer Science TU Dresden, Germany

TECHNISCHE UNIVERSITÄT DEUTSCHE Forschungsgemeinschaft

Knowledge Representation

general goal

"develop formalisms for providing high-level descriptions of the world that can be effectively used to build intelligent applications"

[Brachman & Nardi, 2003]

- formalism: well-defined syntax and formal, unambiguous semantics
- high-level description: only relevant aspects represented, others left out
- intelligent applications: must be able to reason about the knowledge, and infer implicit knowledge from the explicitly represented knowledge
- effectively used: need for practical reasoning tools and efficient implementations

Description Logics

- Family of logic-based knowledge representation languages tailored towards representing terminological knowledge
- Many DLs are decidable fragments of first-order logic
- Close relationship to propositional modal logics
- Design goal: good compromise between expressiveness and complexity
- Decidability and complexity results for a great variety of DLs and various inference problems, but also implementation of practical systems
 - very expressive DLs of high worst-case complexity, but with highly optimized "practical" reasoning procedures
 - inexpressive DLs with tractable inference problems, which are expressive enough for certain applications

FaCT, Racer Pellet, HermiT, ... Konclude, MORe CEL, Snorocket, ELK QuOnto, Mastro, ontop

 Applications: natural language processing, configuration, databases, modelling in engineering domains, ontologies (Web ontology language OWL, biomedical ontologies)

Description Logics

from a general point of view

Concepts

- Constructors for building complex concept descriptions out of atomic concepts (unary predicates) and roles (binary predicates).
- Interpretation \mathcal{I} assigns sets $C^{\mathcal{I}}$ to concept descriptions C according to the semantics of the constructors.

TBoxes

- Finite set of general concept inclusions (GCIs) of the form $C \sqsubseteq D$ where C, D are concept descriptions.
- The interpretation \mathcal{I} is a model of a TBox \mathcal{T} if $C^{\mathcal{I}} \subseteq D^{\mathcal{I}}$ holds for all GCIs $C \sqsubseteq D$ in \mathcal{T} .

ABoxes

- Finite set of assertions of the form C(a) and r(a, b) where C is a concept description, r a role, and a, b individual names.
- The interpretation \mathcal{I} is a model of an ABox \mathcal{A} if $a^{\mathcal{I}} \in C^{\mathcal{I}}$ and $(a^{\mathcal{I}}, b^{\mathcal{I}}) \in r^{\mathcal{I}}$ holds for all assertions C(a) and r(a,b) in \mathcal{A} .

Ontology

Description Logics

from a general point of view

Concepts

- Constructors for building complex concept descriptions out of atomic concepts (unary predicates) and roles (binary predicates).
- Interpretation \mathcal{I} assigns sets $C^{\mathcal{I}}$ to concept descriptions C according to the semantics of the constructors.

Restricted TBoxes

- Finite set of general concept inclusions (GCIs) of the form $A \equiv D$ where A is a concept name occurring only once as left-hand side.
- The interpretation \mathcal{I} is a model of a retricted TBox \mathcal{T} if $A^{\mathcal{I}} = D^{\mathcal{I}}$ holds for all definitions $A \equiv D$ in \mathcal{T} .

ABoxes

- Finite set of assertions of the form C(a) and r(a, b) where C is a concept description, r a role, and a, b individual names.
- The interpretation \mathcal{I} is a model of an ABox \mathcal{A} if $a^{\mathcal{I}} \in C^{\mathcal{I}}$ and $(a^{\mathcal{I}}, b^{\mathcal{I}}) \in r^{\mathcal{I}}$ holds for all assertions C(a) and r(a,b) in \mathcal{A} .

Ontology

Constructors of the DL \mathcal{ALC}

top concept \top , negation $\neg C$ conjunction $C \sqcap D$, disjunction $C \sqcup D$, existential restriction $\exists r.C$, value restriction $\forall r.C$

An advanced course that

...4

 $Course \sqcap Advanced \sqcap$

has a smart or studious student,

 $\exists has_student.(Smart \sqcup Studious) \sqcap$

no easy topic,

 $\forall has_topic. \neg Easy \ \sqcap$

and a teacher

 $\exists has_teacher. \top$

TBox

Concept definition

 $Good_course \equiv Course \sqcap \dots$

General concept inclusion (GCI)

 $\exists has_student. \top \sqsubseteq Course$

ABox

properties of individuals

 $Good_Course(\texttt{Course123})$

 $has_teacher({\tt Course123}, {\tt Franz})$

 $has_topic({\tt Course123}, {\tt DL})$

Constructors of the DL \mathcal{ALC}

top concept \top , negation $\neg C$ conjunction $C \sqcap D$, disjunction $C \sqcup D$, existential restriction $\exists r.C$, value restriction $\forall r.C$

An advanced course that $Course \sqcap Advanced \sqcap$

has a smart or studious student, $\exists has_student.(Smart \sqcup Studious) \sqcap$

no easy topic, $\forall has_topic. \neg Easy \sqcap$

and a teacher $\exists has_teacher. \top$

The semantics of the constructors is defined through identities:

- $(C \sqcap D)^{\mathcal{I}} = C^{\mathcal{I}} \cap D^{\mathcal{I}},$
- $\bullet \ (\exists r.C)^{\mathcal{I}} = \{d \mid \exists e.(d,e) \in r^{\mathcal{I}} \land e \in C^{\mathcal{I}}\},\$
- $(\forall r.C)^{\mathcal{I}} = \{d \mid \forall e.(d, e) \in r^{\mathcal{I}} \to e \in C^{\mathcal{I}}\},$

• ...

Reasoning

makes implicitly represented knowledge explicit, provided as service by the DL system, e.g.:

polynomial Subsumption: Is C a subconcept of D? reductions $C \sqsubseteq_{\mathcal{T}} D \text{ iff } C^{\mathcal{I}} \subseteq D^{\mathcal{I}} \text{ for all models } \mathcal{I} \text{ of the TBox } \mathcal{T}.$ Satisfiability: Is the concept C non-contradictory? C is satisfiable w.r.t. \mathcal{T} iff $C^{\mathcal{I}} \neq \emptyset$ for some model \mathcal{I} of \mathcal{T} . Consistency: Is the ABox A non-contradictory? \mathcal{A} is consistent w.r.t. \mathcal{T} iff it has a model that is also a model of \mathcal{T} . Instantiation: Is e an instance of C? $\mathcal{A} \models_{\mathcal{T}} C(e)$ iff $e^{\mathcal{I}} \in C^{\mathcal{I}}$ for all models \mathcal{I} of \mathcal{T} and \mathcal{A} . in presence of negation

Focus of DL research

develop and investigate reasoning procedures

A Description Logic Journey

Starting small

The Description Logic \mathcal{FL}_0

 $C \sqcap D, \ \forall r.C, \ \top$

In the early days of DL research, \mathcal{FL}_0 was considered to be the smallest possible DL.

• value restriction: green is the only possible color; $Frog \sqsubseteq Animal \sqcap \forall color. Green$

Source: Wikimedia Author: LiquidGhoul

• existential restriction: green is one of its colors.

 $Frog \sqsubseteq Animal \sqcap \exists color. Green$

Source: Wikimedia Author: Carey James Balboa

The Description Logic \mathcal{FL}_0

 $C \sqcap D, \ \forall r.C, \ \top$

In the early days of DL research, \mathcal{FL}_0 was considered to be the smallest possible DL.

• value restriction: green is the only possible color;

$$\mathcal{FL}_0$$
 Frog $\sqsubseteq Animal \cap \forall color. Green$

Chosen by KL-ONE and other early DL systems

• existential restriction: green is one of its colors.

$$Frog \sqsubseteq Animal \sqcap \exists color. Green$$

Some bad news

in the late 1980ies

Source: Wikimedia Author: Paul Fürst

A commonly held belief in the 1980ies:

reasoning in KR systems should be tractable, i.e., of polynomial time complexity

• KL-ONE and its early successor systems
(BACK, MESON, K-Rep, ...) employed polynomial-time algorithms

• reasoning in KL-ONE is undecidable

[Schmidt-Schauß; 1989]

• reasoning w.r.t. a TBox is intractable even in the minimal DL \mathcal{FL}_0

[Nebel; 1989]

Complexity

of subsumption reasoning $C \sqsubseteq D$

restricted TBox

	no TBox	acyclic TBox	cyclic TBox	general TBox
\mathcal{FL}_0	P [Brachman& Levesque; 1987]	coNP [Nebel; 1989]	PSpace [Baader; 1990]	ExpTime [Baader et al.; 2005] [Hofmann; 2005]
ALC	PSpace [Schmidt-Schauß& Smolka; 1988]	PSpace [Lutz; 1999]	ExpTime [Schild; 1991]	ExpTime [Schild; 1991]

 \Longrightarrow no reason for restricting to \mathcal{FL}_0

A Description Logic Journey

Getting larger

ALC and beyond

motivated by applications

• Concrete domains: refer to concrete objects (e.g., numbers) and predicates on these objects (e.g., numerical comparisons) when defining concepts:

```
mechanical
engineering
```

```
Teenager \equiv Human \sqcap (age \ge 10) \sqcap (age \le 19)
Human \sqsubseteq (mother \circ age > age) \sqcap (father \circ age > age)
```

[Baader & Hanschke; 1991, 1992] [Lutz; 2002] [Lutz & Milicic; 2007]

motivated by applications

Concrete domains: refer to concrete objects (e.g., numbers) and predicates on these objects (e.g., numerical comparisons) when defining concepts.

engineering mechanical

• Local and global cardinality constraints: restrict the number of role successors of an object (number restrictions) or the cardinality of a concept:

configuration

At most two sons and at least one daughter:

```
(\leq 2 \ child.Male) \sqcap (\geq 1 \ child.Female)
```

[Hollunder & Baader; 1991]

[Tobies; 2000]

[Baader et al.; 1996]

At most 45 million cars are registered all over Germany: $(\leq 45000000 (Car \sqcap \exists registered_in.German_district))$

motivated by applications

- Concrete domains: refer to concrete objects (e.g., numbers) and predicates on these objects (e.g., numerical comparisons) when defining concepts.
- Local and global cardinality constraints: restrict the number of role successors of an object (number restrictions) or the cardinality of a concept.
- Transitive roles, subroles, and inverse roles: describe complex objects that are composed of different parts:

 $Engine \sqcap \exists part_of. Car \sqcap \exists has_part. Distributor \sqcap \dots$

The role has_part is transitive, the inverse of $part_of$, and has has_strict_part as a subrole.

[Sattler; 1996] [Horrocks & Sattler; 1999]

mechanical engineering

configuration

chemical process engineering

motivated by applications

• Concrete domains: refer to concrete objects (e.g., numbers) and predicates on these objects (e.g., numerical comparisons) when defining concepts.

mechanical engineering

• Local and global cardinality constraints: restrict the number of role successors of an object (number restrictions) or the cardinality of a concept.

configuration

• Transitive roles, subroles, and inverse roles: describe complex objects that are composed of different parts.

chemical process engineering

 These and some additional features are available in the Web Ontology Language OWL 2 DL.

Highly optimized reasoning systems:

FaCT, Racer

Pollet Harmi:

Pellet, HermiT,

Sequoia, ...

Concrete domains

our original motivation

[Baader & Hanschke; 1991]

describe geometric structure of rotational-symmetric lathe workpieces

Concrete domains

our original motivation

[Baader & Hanschke; 1991]

describe geometric structure of rotational-symmetric lathe workpieces

• decompose workpiece into simple geometric components

Concrete domains

our original motivation

[Baader & Hanschke; 1991]

describe geometric structure of rotational-symmetric lathe workpieces

- decompose workpiece into simple geometric components
- described geometric shape of single components and how neighbouring components fit together using concrete domain predicates
 real arithmetics

 described whole workpiece as sequence of its components using transitive closure

Good news

satisfiability of constraints in the concrete domain decidable

• extending \mathcal{ALC} with "admissible" concrete domains leaves reasoning (without TBox or w.r.t. an acyclic TBox) decidable [Baader & Hanschke; 1991]

extending ALC with transitive closure of roles leaves reasoning decidable
 [Baader; 1991]

Bad news

[Baader & Hanschke; 1992]

• combining the two extensions causes undecidability

More bad news

[Lutz; 2001]

- adding an acyclic TBox to \mathcal{ALC} with an admissible concrete domain may increase the complexity considerably
- adding a cyclic or general TBox may cause undecidability
- even for quite simple admissible concrete domains

Some good news

combination of several rather complex conditions

• extending \mathcal{ALC} with $\underline{\omega}$ -admissible concrete domains leaves reasoning decidable even in the presence of general TBoxes

[Lutz; 2002] [Lutz & Milicic; 2007]

• model-theoretic chracterizations of ω -admissible concrete domains that facilitate finding new ω -admissible concrete domains

[Baader & Rydval; 2020]

A Description Logic Journey

Getting smaller again

 \mathcal{EL}

The Description Logic \mathcal{EL}

 $C \sqcap D, \exists r.C, \top$

In the early days of DL research, \mathcal{FL}_0 was considered to be the smallest possible DL.

• value restriction: green is the only possible color;

$$\mathcal{FL}_0$$
 Frog $\sqsubseteq Animal \cap \forall color. Green$

• existential restriction: green is one of its colors.

$$\mathcal{EL}$$
 Frog $\sqsubseteq Animal \sqcap \exists color. Green$

Chosen by KL-ONE and other early DL systems

Source: Wikimedia Author: Carey James Balboa

© Franz Baader

Complexity

of subsumption reasoning $C \sqsubseteq D$

restricted TBox

	no TBox	acyclic TBox	cyclic TBox	general TBox		
\mathcal{FL}_0	P	coNP	PSpace	ExpTime		
ALC	PSpace	PSpace	ExpTime	ExpTime		
\mathcal{EL}	P [Baader, Küsters	P [Baader; 2003]	P [Baader; 2003]	P [Brandt; 2004]		
Molitor; 1999]						

Is \mathcal{EL} useful in practice?

a practically useful DL for which TBox and ABox reasoning is tractable

- subsumption in \mathcal{EL} is polynomial even in the presence of general TBoxes;
- \mathcal{EL} is used in several biomedical ontologies (e.g., SNOMED CT, The Gene Ontology);

• tractability even holds for ABox reasoning and for interesting extensions of \mathcal{EL} ; [Baa

[Brandt; 2004] [Suntisrivaraporn; 2009]

[Baader, Brandt, Lutz; 2005]

- a maximal such extension is the basis of the OWL 2 EL profile of the Web Ontology Language standard of the W3C;
- availability of several highly efficient *EL* reasoners
 CEL
 Snorocket, ELK, Konclude

A Description Logic Journey

Making in larger again
Horn DLs and beyond

Horn DLs

and beyond

ullet The algorithmic approach (consequence-based reasoning) employed for \mathcal{EL} can be extended to non-tractable DLs that share a certain model-theoretic property with \mathcal{EL}

Horn \approx existence of canonical models

Horn DLs

and beyond

ullet The algorithmic approach (consequence-based reasoning) employed for \mathcal{EL} can be extended to non-tractable DLs that share a certain model-theoretic property with \mathcal{EL}

 \mathcal{ELI}

extension of \mathcal{EL} with inverse roles

- The subsumption problem in \mathcal{ELI} is ExpTime-complete.

[Baader, Brandt, Lutz; 2008]

- The consequence-based reasoner CB is much faster on \mathcal{ELI} than highly-optimized reasoners for more expressive DLs

[Kazakov; 2009]

 This approach has recently been extended also to non-Horn DLs up to OWL 2 DL

Consequence-based reasoner Sequoia

[Cucala, Grau, Horrocks; 2021]

End of Journey

- Great variety of DLs with different expressive power
- Formal and algorithmic properties well investigated
- Highly optimized reasoning system
- Formal basis of OWL 2 standard
- Employed in diverse application domains

