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Description Logics research of the last 20 years =

Phase 1:

e implementation of systems (Back, K-Rep, Loom, Meson, ...)

e based on incomplete structural subsumption algorithms

Phase 2:
e development of tableau-based algorithms and complexity results
e first implementation of tableau-based systems (Kris, Crack)

e first formal investigation of optimization methods

Phase 3:
e (tableau-based algorithms for very expressive DLs
e highly optimized tableau-based systems (FaCT, Racer)

¢ relationship to modal logic and decidable fragments of FOL

Phase 4.
e Web Ontology Language (OWL-DL) based on very expressive DL

e industrial-strength reasoners and ontology editors for OWL-DL
e investigation of light-weight DLs with tractable reasoning problems
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conjunction C' 11 D,

The Description Logic £L

existential restriction Jdr.C,

top concept T

Animal T dcolor. Green M
dsits_on.Leaf

DL with restricted expressive power
e no value restrictions Vr.C'

e &L has better algorithmic properties than F L), the corresponding DL with
value restrictions

e can represent large biomedical ontologies: SNOMED and the Gene Ontology
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Formal semantics and reasoning

An interpretation Z has a domain A? and associates

e concepts C' with sets C7, and

e roles r with binary relations <.

The semantics of the constructors is defined through identities:
o TZ=AI

(Cn D) =cCtn DA,

(Ir.C)t ={d | Je.(d,e) €t Ne € C*}.

(Vr.0)r = {d | Ve.(d,e) € r* — e € C*}.

The subsumption and the equivalence problem:

e (' issubsumed by D (C C D) iff C* C D? for all interpretations Z
e (and D are equivalent (C'= D) iff CC Dand D C C

both problems are polynomial for £L
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Equational theory point of view

The equivalence problem in £L is the same as

the word problem for the theory of semilattices with monotone operators

e [11s associative, commutative, and idempotent

ACIU

e [ is aunit for [

e I (CTID)NTr.D=3r(CND)

Value restrictions satisfy the stronger identity

Vr.(CTD)=Vr.CVr.D
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Unification in DLs motivation

Avoid the insertion of redundant concepts into large ontologies like SNOMED:

equivalence test C' = D not sufficient:

e different modellers may use different concept names:

Male versus Masculine

e different modellers may model on different levels of granularity:
Human 1M Male 71 dloves.Sports_car
e versus

Man M Floves.(Car M Fast)

can be made equivalent by applying the substitution:

Man +~—  Human 'l Male

Sports_car Car M Fast
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Unification in DLs definition

Partition the set of concept names into
e concept variables and
e concept constants

Substitutions can replace concept variables by concept terms.

Unification problem Matching problem
r={c,="D,....C,="D,} no variables in Dy, ..., D,
ground
Unifier of I'

substitution o with o(Cy) = o(Dy),...,0(C,) = o(D,)

Decision problem

given a unification problem I, decide whether it has a unifier
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cardinality and existence of

Unification type

minimal complete sets of unifiers

Instantiation preorder: variables occurring in the unification problem

|

o<~y iff I ANo(X)) =~(X)

Minimal complete set of unifiers of [': set M of unifiers of T that is

Complete: for all unifiers § of I" there is 0 € M with o < 6

Minimal: forall 0,60 € M we have: 0 <0 — o0 =10

Unification type: minimal complete sets of unifiers

e unitary, finitary, infinitary:

always exist and have
cardinality < 1, finite cardinality, possibly infinite cardinality

e (ype zero: need not exist
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Unification in DLs previous results

Results for 7L, and £L:
e Unification in F L is of type zero.
e Unification in F Ly is ExpTime-complete. [Baader, Narendran; 2001}
e Matching in F L is polynomial.

e Matching in £L is NP-complete. [Kiister; 2001]

Results for ALC (closure of F L/ EL under negation):
e Decision problem and unification type: open.

e Same for matching: unification can be reduced to matching.

e Undecidability results for small extensions. [Wolter, Zakharyaschev; 2008]
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Unification in £EL our new results [Baader, Morawska; RTA’09]

Unification type

Unification in £L is of unification type zero.

Decision problem

Unification in £L is NP-complete.
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Unification in £EL our new results [Baader, Morawska; RTA’09]

Unification type

Unification in £L is of unification type zero:

(XN3IrYy = IrY}

does not have a minimal complete set of unifiers

Assume to the contrary that M is such a set.

e Thereiso € M witho(X) % T ando(X) £ Ir. T,

o If wedefinegaso(X) :=o(X)MIr.Zando(Y) := o(Y) T Z then

o < o.

e Thereis o’ € M with o' < & < o. Contradicts minimality of M .
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Unification in £L the decision problem

1. &L-concept terms have a reduced form that is unique modulo AC
[Kiisters, 2001].

2. Define an appropriate well-founded order on substitutions:

every solvable £ L-unification problem has a
minimal reduced ground unifier.

3. Minimal reduced ground unifiers are local:

built from “atoms” occurring in the (appropriately normalized)
unification problem.
4. Guess and test algorithm:
e guess a candidate for such a unifier

e check whether it solves the unification problem

using the P-time algorithm for equivalence
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Reduced form of € L-concept terms [Kiister; 2001]

A given £ L-concept term can be transformed into an equivalent reduced term
by applying the following rules modulo associativity and commutativity of

conjunction:
CnT—=C for all £L-concept terms C'
ANA— A for all concept names A
Fr.C 11 3dr.D — Jr.C' | for all £L-concept terms C', D with C' C D

Theorem

Let C : D be reduced forms of C' , D, respectively.

A~

C=D < 5 =AC D
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Well-founded order inverse subsumption order

There is no infinite sequence Cy, Cy, Cy, Cs, . .. of £L-concept terms such that

C[_]Ecll:OQEOgE"‘ C@',EDZ',C@'%'DZ'

Extend to substitutions:

0 e consider the terms in the range of the substitution
o
e compare the multisets of these terms with multiset-extension of [

well-founded

Theorem

Every solvable £ L-unification problem has a minimal reduced ground unifier.
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Normal form of unification problems

Atom

e concept name, 1.e., concept constant or concept variable, or

e existential restriction Jr. D

Flat atom
(] COHCGpt name, or

e existential restriction dr.D, where D is a concept name or [

Every £ L-unification problem is equivalent to a flat £ L-unification problem,
1.e, one that contains only equations of the form:

o.n...nc,="DyN...D,

where C,...,C,,, D1, ..., D, are flat atoms.
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Local |ty of minimal reduced ground unifiers

main

The following holds for every pair of technical
result
e flat £ L-unification problem I' and

e minimal reduced ground unifier v of I'.

If X is a concept variable occurring in I', then
e Y(X)=Tor

e there are non-variable atoms D+, ..., D, (n > 1) of " such that
’“{'(X) = "}/(Dl) [1...T1 ’“/(D“).
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Non-deterministic polynomial-time algorithm for deciding solvability
of a given flat £ L-unification problem [

1. For every variable X occurring in I', guess a finite, possibly empty, set
Sy of non-variable atoms of I'.

2. We say that the variable X directly depends on the variable Y if Y
occurs in an atom of Sy. Let depends on be the transitive closure of
directly depends on. If there is a variable that depends on itself, then the
algorithm returns “fail.”” Otherwise, there exists a strict linear order >
on the variables occurring in [" such that X > Y if X depends on Y.

3. We define the substitution o along the linear order >:

e If X is the least variable w.r.t. >, then Sy does not contain any
variables. We define o(.X') to be the conjunction of the elements of
S'x, where the empty conjunction is T.

e Assume that o(Y') is defined for all variables Y < X. Then Sx
only contains variables Y for which o(Y') is already defined. If

Sy is empty, then we define o(X) := T. Otherwise, let Sy =
{Dy,...,D,}. Wedefine o(X) :=c(Dy)T1...MMa(D,).

4. Test whether the substitution o computed in the previous step is a unifier
of I'. If this is the case, then return o; otherwise, return “fail.”
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Practical algorithms for £ L-unification

The NP-algorithm presented until now is not usable in practice

e brutal “guess and then test” algorithm

e many non-deterministic choices even for very simple
unification problems

We have developed two more practical algorithms:

e fransformation-based algorithm that makes non-deterministic choices
“only if necessary”

e translation into SAT, where the non-determinism is then dealt with by a
highly optimzed SAT solver (MiniSat)

Correctness proofs require the locality result!
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Transformation-based algorithm for € L-unification

Works on a data structure consisting of

e a flat unification problem
e a current substitution,
which is induced by an acyclic collection of sets S’y current assignment
Applies three types of transformation rules:
e FEager-Assignment: deterministic rule that is applied eagerly

e Decomposition and Extension: non-variable atom occurring

non-deterministic rules that try to solve an unsolved atom ©0n one side of an equation,
but not the other side

A run of the non-deterministic transformation algorithm

e Fails: if a rule application makes the current assignment cyclic, or
there is an unsolved atom to which neither Decomposition nor Extension
applies.

e Succeeds: 1f there are no unsolved atoms and the current assignment is
acyclic.
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Transformation rules illustrated on an example

Z="3r.A
ZJNX="ANnary

Sx=8y=5;,=10

l Eager-Assignment

Z03IrA="3r.A
ZMNArAnX ="AN3Iry

SX = Sy = @,SZ — {ETA}
/ finished
l Extension

ZMN3IrA="3r.A
ZNIrANXNA="AN3IrY

S_X = {A},Sy = (D:SZ = {HTA}

l Decomposition

ZMN3ar.A="3r.A

ZMNIrANXnNA="AnIrYIrA
YMA="Y
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Transformation rules illustrated on an example

ZMN3IrA="3r.A
ZOIr ANXNA="ANIrYNarA
YMNA="Y
l Extension

SX = {A},Sy = @,SZ = {HTA}

ZN03Ir.A="3Ir.A
ZMNAIrANXNA="AnIr.YIrA
YMA="YNA

SX = {A},Sy = {A},SZ = {HTA}

l Decomposition

ZMarA="3r.A

JMNIrANIr YN XNA="AnIr.YN3Ir.A
YMNA="YNA no unsolved atoms

YITA="A unifier {X — AY +— A, Z + Jr.A}
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Transformation rules illustrated on an example

ZMN3IrA="3r.A
ZOIr ANXNA="ANIrYNarA
YMNA="Y
l Extension

SX = {A},Sy = @,SZ = {HTA}

ZN03Ir.A="3Ir.A
ZMNAIrANXNA="AnIr.YIrA
YMA="YNA

SX = {A},Sy = {A},SZ = {HTA}

l Extension alternative non-deterministic choice

ZMN3Ir.A="3Ir.A Sx ={A,IrY}, Sy ={A}, Sz = {3r. A}
ZN0IrANXNIrYNA="ANIr.Y 1 3Ir.A
YMA="YNA

unifier {X — AN 3IrAY — A 7 — Jr.A}
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Translation into SAT for £ £-unification

Uses two types of propositional variables:

e (A [Z B]foratoms A, B of the flat unification problem:
guess non-subsumptions that hold after applying the unifier

e [X > Y| for variables X, Y of the flat unification problem:
guess the “depends on” relation and prevent cycles in it

Creates propositional clauses:

e Horn clauses that encode the equations in the spirit of the Kapur&Narendran
translation of ACIU-unification into HornSAT.

e Horn clauses that encode properties of (non-)subsumption in £ L and the
fact that > is a strict order.

e Non-Horn clauses that encode transitivity of subsumption and properties
of the “depends on” relation.
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Translation into SAT correctness

The created The unification problem
set of clauses <:> has a minimal reduced
18 satisfiable ground unifier

A satisfying valuation of the clauses yields the acyclic assignment
—> Sy :={C | [ X £ C] = false A C non-variable atom }

and the induced substitution 1s a unifier.

A minimal reduced ground unifier o defines a satisfying valuation of
the clauses:

—

o [C'IL D] =trueiffo(C) £ o(D)

o (X >Y]|=trueiffc(X)LC Jr.---Ir,.o(Y)

forn > 1rolesry,...,r,
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Conclusion

We have shown that
e & L-unification is of unification type zero
e & L-unification is NP-complete

e more practical decision procedures than the brutal
“guess and then test” algorithm exist

Future work:
e test the more practical algorithms on medical ontologies like SNOMED CT

e extension to equivalence modulo general inclusion axioms

e extension by other concept constructors
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