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Building Medical Ontologies Using Description Logics:
What does it buy us?

Franz Baader
Theoretical Computer Science
TU Dresden
Germany
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Semantic networks

Dresden

[Quillian, 1967]

Animal

o]

Frog

5]

Kermit

has-color
> Green
has-color I
: > Leaf
sits-on

has-part

«—

Tree
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Problems

with Semantic Networks

e no formal semantics
e meaning is defined by the processes operating on the network

e identical networks may lead to different results, depending on which
system 1s employed

e attempts to formalize the meaning of semantic networks use first-order
predicate logic (e.g., [Schubert et al., 1979])

e development of DLs follows the same idea, but tries to find useful de-
cidable fragments

Dresden © Franz Baader



Ambiguities

Dresden

Animal

o]

Frog

in Semantic Networks

color

e value restriction: green is the only possible color;

v

Green
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Ambiguities
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v

Green

© Franz Baader



Ambiguities

Dresden

Animal

o]

Frog

in Semantic Networks

color

e default reading: assume that green 1s its color,

unless you know to the contrary

v

Green
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Ambiguities resolved in DLs and SNOMED CT

Animal

o]

color
Green

v

Frog

—

e value restriction: green is the only possible color

e cxistential restriction: green is one of its colors; m

e default reading: assume that green 1s its color,

unless you know to the contrary
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Value restrictions vs existential restrictions in DLsS

e the seminal system KL-ONE and other early DL systems used value
restrictions as reading for property edges.

e Schmidt-Schauf3 and Smolka [1988] introduce negation and thus implic-
itly existential restrictions.

e Value-restrictions and conjunction until recently considered to be indis-
pensable for DLs: F £, minimal such DL.

e DLs with existential restrictions, but without value restrictions:
— have been investigated in the DL community only since about 2000;

— have better algorithmic properties than the corresponding languages with
value restrictions;

— are useful for representing bio-medical ontologies.
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‘ Value restrictions vs existential restrictions in SNOMED I

e SNOMED RT and CT use existential restrictions as reading for property
edges.

Dresden © Franz Baader



Dresden

e SNOMED RT and CT use existential restrictions as reading for property
edges, though this decision was not that clear in the beginning ...

Egil]nlylog Editor M= E3
File  Edit View Go Tools Bookmark Help
Connect Disconnect KB Administrator Huid Save Classifiers

~View Selection-

{Kind Selection

[Procedure_kind ¥|
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Name: [NTRAVASCULAR_SODIUM_ION_TEST

Kind: |Procedure_kind

~Concept Selection
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PHYSICAL_PROPERTY_TEST

[+ SPECIMEN_COLLECTION_FROCEDURE
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all |[SUBSTANCE_MEASURED SODIUM_ION
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Screenshot of Ontyx editor taken from DL2008 invited talk of Kent Spackman
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e SNOMED RT and CT use existential restrictions as reading for property
edges, though this decision was not that clear in the beginning ...

Eg Metaphrase Source Browser & Editor
File Database Personal

Skin of dorsal surface of foot and toe n
Search Engine: IMetaphrase vI NN P e
1w
- ¥ . LLl

(=]
|—'_|: Skin of foot, NOS |
Skin of toe N05| Search String: | Search |

[ Skin of dorsum of foot | i‘
{[[somd 1S-PART-OF | Skin of dorsum of foot |

Skin of dorsal surface oftoe, NOS |

([[somd 1S-PART-OF | Skin of dorsal surface oftoe, NOS |

Skin of plantar surface of foot and toe |
("somﬁ IS-PART-OF ] Skin of plantar surface of foot and toe ]

Skin of dorsal surface offinger, NOS |

Ril p| men |
_ — ([[somé 15-PART-OF | Skin of dorsal surface of finger, NO |
!I Skip End State: | Primitive j Skin of posterior surface of forearm |

3 kil ' D

Screenshot of Metaphrase editor taken from DL2008 invited talk of Kent Spackman
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Value restrictions vs existential restrictions in SNOMED

e SNOMED RT and CT use existential restrictions as reading for property
edges.

e £/L: DL that has only existential restrictions, conjunction, and the top-
concept as concept constructors.

e Until recently, the DL community was largely oblivious of the fact that
SNOMED uses £L:

— no publication about algorithm used for classification
— no publication of experimental results

— no access to the system used for classifying SNOMED

Dresden © Franz Baader



Complexity of reasoning ’actabili R

A commonly held belief in the 1980ies:

reasoning in KR systems should be tractable,
1.e., of polynomial time complexity

e KL-ONE and its early successor systems
(BACK, MESON, K-Rep, ...) employed polynomial-time algorithms

e reasoning in KL-ONE i1s undecidable [Schmidt-Schauf3, 1989]

e cven in very inexpressive DLs, reasoning may be intractable
[Brachman&Levesque, 1987]

e reasoning w.r.t. a TBox is intractable even in the minimal DL F L
(value-restriction, conjunction) [Nebel, 1990]

e the early DL systems employed sound, but incomplete algorithms

Dresden © Franz Baader



Ways out of this dilemma

expressive DL
sound, but incomplete
tractable algorithms

inexpressive DL
sound and complete
tractable algorithms

recent research on leight-weight DLs:
EL, DL-Lite, Horn-SHZ O

Dresden

expressive DL
sound and complete
intractable algorithms

approach followed

by main-stream DL
research in the last

15 years
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Ways out of this dilemma

expressive DL
sound, but incomplete
tractable algorithms

inexpressive DL
sound and complete
tractable algorithms

Dresden

expressive DL
sound and complete
intractable algorithms

L

e Ry
The complexity monster
© Franz Baader



Description Logics research of the last 20 years

Phase 1:

e implementation of systems (Back, K-Rep, Loom, Meson, . ..)

e based on incomplete structural subsumption algorithms

Phase 2:
e development of tableau-based algorithms and complexity results
e first implementation of tableau-based systems (Kris, Crack)

e first formal investigation of optimization methods

Phase 3:
e tableau-based algorithms for very expressive DLs
e highly optimized tableau-based systems (FaCT, Racer)

e relationship to modal logic and decidable fragments of FOL

Phase 4:
e Web Ontology Language (OWL-DL) based on very expressive DL

e industrial-strength reasoners and ontology editors for OWL-DL
e investigation of leight-weight DLs with tractable reasoning problems

Dresden © Franz Baader



Description logic system

description

language

e constructors for
building complex
concepts out of
atomic concepts
and roles

e formal, logic-based
semantics

Dresden

structure

TBox

defines the terminology of
the application domain

ABox

states facts about a
specific “world”

knowledge base

reasoning

component

e derive implicitly
respresented knowledge
(e.g., subsumption)

e “practical” algorithms
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Description logic system structure

description

language

e constructors for
building complex
concepts out of
atomic concepts
and roles

e formal, logic-based
semantics

Dresden

TBox

defines the terminology of
the application domain

only TBox

knowledge base

reasoning
component

/

e derive implicitly
respresented knowledge
(e.g., subsumption)

e “practical” algorithms
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Dresden

Description language

Constructors of the DL £L:
T.CnpD,dr.C

A man

that has a rich and beautiful wife,

a son and a daughter,

and a job

Human M Male T

Amarried_to.(Rich M Beautiful) M
dhas_child. Male T dhas_child. Female M
dhas_job. T

‘ TBox I

full definitions

Happy_man = Human . ..

primitive definitions

Happy_man & Human M. ..

‘ GClIs I general concept inclusions

additional constraints
dhas_child. Human T Human

m currently no GCIs
in DL version

© Franz Baader



Formal semantics

An interpretation Z has a domain AZ and associates

e concepts C' with sets CZ, and

e roles r with binary relations rZ.

The semantics of the constructors is defined through identities:
o T2 =A%
e (CND)=0CTnNn DL,
o (Ir.C) ={d|3e.(d,e)ert Neec C*}.

The interpretation Z is a model of
e the full definition A = C iff AT = C7,
e the primitive definition A T C' iff AT C CZ,

e the general concept inclusion (GCI) C C D iff C* C D*.

Dresden © Franz Baader



ccD iff ¢ctcp?t

ccyD iff ¢ctcp?

7 can be

Su bsumption is concept C' a subconcept of concept D?

for all interpretations Z

for all models Z of T~

e an acyclic TBox: finite set of unambiguous and acyclic m
concept definitions

e acyclic TBox: finite set of unambiguous concept definitions

e a general TBox: finite set of GCIs

Dresden

© Franz Baader



What does it buy us? formal logic-based semantics

The meaning of concepts is unambiguously determined by the
semantics of the constructors:

o (Fr.C)E={d|3e.(d,e) erT Nee CT}
o (Vr.C)Y ={d|Ve.(d,e)ert —eecC?}

dhas_child. Male M Jhas_child. Female

are usually interpreted by different sets of individuals
Vhas_child.Male T Yhas_child. Female

and behave differently w.r.t. subsumption:

dhas_child.Male 11 3has_child. Female IZ 3has_child.(Male I Female)

Vhas_child.Male MY has_child. Female T Yhas_child.(Male 1 Female)

Dresden © Franz Baader



What does it buy us? subsumption reasoning

e A new concept can be introduced by defining the necessary conditions
(primitive definition) or the necessary and sufficient conditions (full def-
inition) for an individual to belong to this concept.

e Its place in the hierarchy of existing concepts is found automatically by
the subsumption reasoner.

e Subsumption reasoning can also be used to test whether the definition
of a new concept captures the underlying intuitition:

— unintuitive subsumption relationships indicate that there is a

modeling error

Dresden © Franz Baader



What does it buy us? other reasoning

Understanding the reasons for unintuitive or unintended consequences
can be difficult:

e W.r.t. the DL version of SNOMED, the concept Amputation-of-finger
is classified as a subconcept of Amputation-of-hand.

e Finding the definitions that are responsible for this among the ~350 000
definitions in SNOMED is not easy.

pinpointing my talk romorrow>

e identifies the source of a consequence by computing a minimal subset
of the TBox from which this consequence already follows

e in the amputation example, this set consists of 6 definitions

Dresden © Franz Baader



What does it buy us? other reasoning

e Assume that a user is interested in using only a subset of the concepts
and roles from SNOMED to define new (post-coordinated) concepts.

e What part of the DL version of SNOMED does this user need to obtain
the same subsumption consequences as with all of SNOMED?

Modularization in Description Logics

e formal definition of module based on the notion of

conservative extensions from logic

e extraction of minimal modules in polynomial time

recent work by
> Cuenca Grau, Lutz, Sattler, Suntisrivaraporn, Wolter
and others

Dresden

© Franz Baader



CEL classifier for £L

Experimental system developed at TU Dresden, which supports

e classification, 1.e., computation of the subsumption hierarchy
[Baader, Lutz, Suntisrivaraporn; 2005, 2006];

e incremental classification, i.e., recomputation of the subsumption
hierarchy after the TBox has been extended [Suntisrivaraporn; 2008];

e pinpointing [Baader, Suntisrivaraporn; 2008] and modularization
[Suntisrivaraporn; 2008].

http://lat.inf.tu-dresden.de/systems/cel/
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What does it buy us? formal investigation of

algorithmic properties

e Complexity of a problem: how hard is it in principle to solve the
reasoning problems (like subsumption) in a given Description Logic?

e Complexity of an algorithm: is the employed algorithm optimal w.r.t.
the complexity of the problem?

e Complexity versus expressivity: which concept constructors are
“expensive” in the sense that adding/using them increases the
complexity?

DL community has obtained such results for
a great variety of Description Logics
of different expressive power

Dresden © Franz Baader



Complexity of subsumption FL versus EL
F Ly ELC
no TBox polynomial polynomial

[Brachman, Levesque, 84|

[Baader, Kiisters, Molitor, 99]

acyclic TBox

coNP-complete
[Nebel, 90]

polynomial
[Baader, 03]

cyclic TBox

PSpace-complete

[Baader, 90]
[ Kazakov, Nivelle, 03]

polynomial
[Baader, 03]

general TBox

ExpTime-complete
[Baader, Brandt, Lutz, 05]

polynomial
[Brandt, 04]

Dresden
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Extension to the more expressive DL ££7" [Baader, Brandt, Lutz; 05, 08]

Subsumption in the presence of GCIs remains polynomial if we add

e the bottom concept L, which stands for the empty set;

Clinical_findig I Body_part © L
e nominals, 1.e., singleton concepts; {Dfm,maml{:}

e restricted role-value-maps (RVMs), which can express

transitivity and right-identities;
restrictions regarding
e domain and range restrictions for roles; W their combined use

Clinical _findig

domain(has_location) C
range(has_location) T Body_part

Dresden © Franz Baader



Extension to the more expressive DL ££7" [Baader, Brandt, Lutz; 05, 08]

Subsumption in the presence of GCIs remains polynomial if we add
e the bottom concept L, which stands for the empty set;
e nominals, 1.e., singleton concepts;

e restricted role-value-maps (RVMs), which can express
transitivity and right-identities;

e domain and range restrictions for roles;

e restricted concrete domains, which enable using datatypes
such as numbers, strings, .. .in the definition of concepts.

>150(has_diastolic_bp_mmHgqg) T Hypertension

Adding any of the other constructors available in OWL makes the

subsumption problem intractable in the presence of GClIs.

Dresden © Franz Baader



Restricted RVMs can express important properties of roles

e C part_of reflexivity
part_of o part_of T part_of transitivity
proper_part_of C part_of role hierarchy
has_exact_location T has_location role hierarchy
has_location o part_of T has_location right identity
Hand —>pm‘t‘of Arm Hand —>pm‘t‘of Arm

’

s -
~ has_location

@ Hand _injury g Hand_amputation

Dresden

has_location has_exact_location

© Franz Baader



Restricted RVMs can express important properties of roles

e C part_of

part_of o part_of T part_of
proper_part_of C part_of
has_exact_location T has_location

has_location o part_of T has_location

reflexivity
transitivity
role hierarchy

role hierarchy

right identity

Can be used to replace the SEP-triplet encoding of SNOMED CT.

Dresden
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SEP—triplets [Schulz, Romacker, Hahn; 1998]

UpperLimbg «——— Injury to UpperLimb

UpperLimb, UpperLimb <= Amputation of UpperLimb

Hands
Handp Hand X |
is_a
Finger ¢ «—— |njury to Finger
Finger,, Finger +— Amputation of Finger <+— has_location
+ uses transitivity of is_a instead of — increases the number of concepts considerably

making part_of transitive

+ can enable and block — 1indirect modelling makes it error-prone
right-identity reasoning

Dresden © Franz Baader



Re-enginered version without SEP-triplets

[Suntisrivaraporn, Baader, Schulz, Spackman; 2007]

Injury to Finger Injury to UpperLimb

l l

Finger Hand UpperLimb

I 1

Amputation of Finger % Amputation of UpperLimb

IS a <«—— has_location

<«—— has_exact_location

cleaner modelling fewer concepts

easier to use and less error prone faster reasoning

Dresden © Franz Baader



Conclusion

Using DLs to define medical ontologies:
e formally well-understood semantics
e sound and complete reasoning support ... not just for classification
e well-understood trade-off between expressivity and
complexity of reasoning
Using £ L to define medical ontologies:
e less expressive and thus easier to comprehend and use than OWL
e reasoning is tractable
e and stays so even if interesting means of expressivity (GCls,
restricted RVMs, domain and range restrictions, . ..) are added

Dresden © Franz Baader
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