Building Medical Ontologies Using Description Logics: What does it buy us?

Franz Baader Theoretical Computer Science TU Dresden Germany

Problems

with Semantic Networks

the no-semantics swamp

- no formal semantics
- meaning is defined by the processes operating on the network
- identical networks may lead to different results, depending on which system is employed
- attempts to formalize the meaning of semantic networks use first-order predicate logic (e.g., [Schubert et al., 1979])

• development of DLs follows the same idea, but tries to find useful decidable fragments

• value restriction: green is the only possible color;

• existential restriction: green is one of its colors;

© Franz Baader

Value restrictions vs existential restrictions in DLs

- the seminal system KL-ONE and other early DL systems used value restrictions as reading for property edges.
- Schmidt-Schauß and Smolka [1988] introduce negation and thus implicitly existential restrictions.
- Value-restrictions and conjunction until recently considered to be indispensable for DLs: \mathcal{FL}_0 minimal such DL.
- DLs with existential restrictions, but without value restrictions:
 - have been investigated in the DL community only since about 2000;
 - have better algorithmic properties than the corresponding languages with value restrictions;
 - are useful for representing bio-medical ontologies.

• SNOMED RT and CT use existential restrictions as reading for property edges, though this decision was not that clear in the beginning ...

<mark>∰Ontylog Editor</mark> _ <u>F</u> ile <u>E</u> dit <u>V</u> iew <u>G</u> o <u>T</u> ools	<u>B</u> ookmark <u>H</u> elp	
Connect Disconnect	KB Administrator 🛛 🤙 Back	Forward Build Classify Save Classifiers
Kind Selection Procedure_kind Procedure_kind Concept Selection PROCEDURE ANALYTIC_TECHNIQUE DIAGNOSTIC_PROCEDURE LABORATORY_DIAGNOSTIC_PROCEDURE LABORATORY_DIAGNOSTIC_PROCEDURE LABORATORY_DIAGNOSTIC_PROCEDURE LABORATORY_DIAGNOSTIC_PROCEDURE LABORATORY_DIAGNOSTIC_PROCEDURE CELL_AND_ARTIFACT_TEST CELL_AND_ARTIFACT_TEST CHEMISTRY_TEST FINTRAVASCULAR_CHEMISTRY_TEST SODIUM_TEST VHOLE_BLOOD_SODIUM_ION_TEST URINE_CHEMISTRY_TEST URINE_CHEMISTRY_TEST MICROBIOLOGY_TEST PHYSICAL_PROPERTY_TEST SPECIMEN_COLLECTION_PROCEDURE		Concept Details Stated Definition Stated Properties Name: INTRAVASCULAR_SODIUM_ION_TEST Kind: Procedure_kind Primitive: # Defined # CHEMISTRY_TEST all All HAS_SPECIMEN INTRAVASCULAR_SPECIMEN all SUBSTANCE_MEASURED SODIUM_ION
		Inferred INTRAVASCULAR_CHEMISTRY_TEST SODIUM_TEST all HAS_SPECIMEN INTRAVASCULAR_SPECIMEN all SUBSTANCE_MEASURED SODIUM_ION
no status	ontyx	B in inferred mod/ILD REQD: NON ASSIFY REQD: NON CLASSIFY: DONE
	ntyx editor taken from	DL2008 invited talk of Kent Spackman
n		© Franz Baad

Screenshot of Metaphrase editor taken from DL2008 invited talk of Kent Spackman

© Franz Baader

Complexity

of reasoning

A commonly held belief in the 1980ies:

reasoning in KR systems should be tractable, i.e., of polynomial time complexity

- KL-ONE and its early successor systems (BACK, MESON, K-Rep, ...) employed polynomial-time algorithms
- reasoning in KL-ONE is undecidable [Schmidt-Schauß, 1989]
- even in very inexpressive DLs, reasoning may be intractable [Brachman&Levesque, 1987]
- reasoning w.r.t. a TBox is intractable even in the minimal DL \mathcal{FL}_0 (value-restriction, conjunction) [Nebel, 1990]

• the early DL systems employed sound, but incomplete algorithms

of this dilemma

expressive DL sound, but incomplete tractable algorithms

expressive DL sound and complete intractable algorithms

approach followed by main-stream DL research in the last 15 years

recent research on leight-weight DLs: \mathcal{EL} , DL-Lite, Horn- \mathcal{SHIQ}

inexpressive DL

sound and complete

tractable algorithms

of this dilemma

expressive DL sound, but incomplete tractable algorithms

expressive DL sound and complete intractable algorithms

The complexity monster

inexpressive DL sound and complete tractable algorithms

© Franz Baader

Description Logics

Phase 1:

- implementation of systems (Back, K-Rep, Loom, Meson, ...)
- based on incomplete structural subsumption algorithms

Phase 2:

- development of tableau-based algorithms and complexity results
- first implementation of tableau-based systems (Kris, Crack)
- first formal investigation of optimization methods

Phase 3:

- tableau-based algorithms for very expressive DLs
- highly optimized tableau-based systems (FaCT, Racer)
- relationship to modal logic and decidable fragments of FOL

Phase 4:

- Web Ontology Language (OWL-DL) based on very expressive DL
- industrial-strength reasoners and ontology editors for OWL-DL
- investigation of leight-weight DLs with tractable reasoning problems

Description language

Constructors of the DL \mathcal{EL} : $\top, C \sqcap D, \exists r.C$

A man	$Human \sqcap Male \sqcap$
that has a rich and beautiful wife,	$\exists married_to.(Rich \sqcap Beautiful) \sqcap$
a son and a daughter,	$\exists has_child.Male \sqcap \exists has_child.Female \sqcap$
and a job	$\exists has_job. \top$

TBox

full definitions $Happy_man \equiv Human \sqcap \dots$

primitive definitions $Happy_man \sqsubseteq Human \sqcap \dots$

general concept inclusions

additional constraints $\exists has_child.Human \sqsubseteq Human$

currently no GCIs in DL version

Formal semantics

An interpretation ${\mathcal I}$ has a domain $\Delta^{\mathcal I}$ and associates

- concepts C with sets $C^{\mathcal{I}}$, and
- roles r with binary relations $r^{\mathcal{I}}$.

The semantics of the constructors is defined through identities:

- $\mathsf{T}^{\mathcal{I}} = \Delta^{\mathcal{I}},$
- $\bullet \ (C\sqcap D)^{\mathcal{I}}=C^{\mathcal{I}}\cap D^{\mathcal{I}},$
- $(\exists r.C)^{\mathcal{I}} = \{d \mid \exists e.(d,e) \in r^{\mathcal{I}} \land e \in C^{\mathcal{I}}\}.$

The interpretation \mathcal{I} is a model of

- the full definition $A \equiv C$ iff $A^{\mathcal{I}} = C^{\mathcal{I}}$,
- the primitive definition $A \sqsubseteq C$ iff $A^{\mathcal{I}} \subseteq C^{\mathcal{I}}$,
- the general concept inclusion (GCI) $C \sqsubseteq D$ iff $C^{\mathcal{I}} \subseteq D^{\mathcal{I}}$.

Subsumption

is concept C a subconcept of concept D?

 $C \sqsubseteq D$ iff $C^{\mathcal{I}} \subseteq D^{\mathcal{I}}$

for all interpretations $\boldsymbol{\mathcal{I}}$

$$C \sqsubseteq_{\mathcal{T}} D$$
 iff $C^{\mathcal{I}} \subseteq D^{\mathcal{I}}$

for all models ${\mathcal I}$ of ${\mathcal T}$

\mathcal{T} can be

• an acyclic TBox: finite set of unambiguous and acyclic concept definitions

Dresden

- a cyclic TBox: finite set of unambiguous concept definitions
- a general TBox: finite set of GCIs

The meaning of concepts is unambiguously determined by the

- $(\exists r.C)^{\mathcal{I}} = \{d \mid \exists e.(d,e) \in r^{\mathcal{I}} \land e \in C^{\mathcal{I}}\}$
- $(\forall r.C)^{\mathcal{I}} = \{d \mid \forall e.(d,e) \in r^{\mathcal{I}} \to e \in C^{\mathcal{I}}\}$

are usually interpreted by different sets of individuals

 $\exists has_child.Male \sqcap \exists has_child.Female \not\sqsubseteq \exists has_child.(Male \sqcap Female)$

Dresden

© Franz Baader

What does it buy us?

- A new concept can be introduced by defining the necessary conditions (primitive definition) or the necessary and sufficient conditions (full definition) for an individual to belong to this concept.
- Its place in the hierarchy of existing concepts is found automatically by the subsumption reasoner.
- Subsumption reasoning can also be used to test whether the definition of a new concept captures the underlying intuitition:
 - unintuitive subsumption relationships indicate that there is a modeling error

Dresden

CEL

classifier for \mathcal{EL}

Experimental system developed at TU Dresden, which supports

- classification, i.e., computation of the subsumption hierarchy [Baader, Lutz, Suntisrivaraporn; 2005, 2006];
- incremental classification, i.e., recomputation of the subsumption hierarchy after the TBox has been extended [Suntisrivaraporn; 2008];
- pinpointing [Baader, Suntisrivaraporn; 2008] and modularization [Suntisrivaraporn; 2008].

http://lat.inf.tu-dresden.de/systems/cel/

What does it buy us?

formal investigation of algorithmic properties

- Complexity of a problem: how hard is it in principle to solve the reasoning problems (like subsumption) in a given Description Logic?
- Complexity of an algorithm: is the employed algorithm optimal w.r.t. the complexity of the problem?
- Complexity versus expressivity: which concept constructors are "expensive" in the sense that adding/using them increases the complexity?

DL community has obtained such results for a great variety of Description Logics of different expressive power

Complexity of subsumption

 \mathcal{FL}_0 versus \mathcal{EL}

	\mathcal{FL}_0	EL
no TBox	polynomial [Brachman, Levesque, 84]	polynomial [Baader, Küsters, Molitor, 99]
acyclic TBox	coNP-complete [Nebel, 90]	polynomial [Baader, 03]
cyclic TBox	PSpace-complete [Baader, 90] [Kazakov, Nivelle, 03]	polynomial [Baader, 03]
general TBox	ExpTime-complete [Baader, Brandt, Lutz, 05]	polynomial [Brandt, 04]

Subsumption in the presence of GCIs remains polynomial if we add

- the bottom concept \perp , which stands for the empty set;
- nominals, i.e., singleton concepts;
- restricted role-value-maps (RVMs), which can express transitivity and right-identities;
- domain and range restrictions for roles;
- restricted concrete domains, which enable using datatypes such as numbers, strings, ... in the definition of concepts.

 $>_{180}(has_diastolic_bp_mmHg) \sqsubseteq Hypertension$

Adding any of the other constructors available in OWL makes the subsumption problem intractable in the presence of GCIs.

Restricted RVMs

Dresden

can express important properties of roles

- $\epsilon \sqsubseteq part_of$ reflexivity
- $part_of \circ part_of \sqsubseteq part_of$
 - $proper_part_of \sqsubseteq part_of$
- $has_exact_location \sqsubseteq has_location$

 $has_location \circ part_of \sqsubseteq has_location$

transitivity

role hierarchy

role hierarchy

right identity

 $\begin{array}{ccc} Hand \xrightarrow{part_of} Arm & Hand \\ & & & & & \\ has_location & has_location & has_exact_location \\ \end{array}$ Hand $\xrightarrow{part_of} Arm$ Hand_injury $Hand_amputation$

Restricted RVMs

can express important properties of roles

- $\epsilon \sqsubseteq part_of$ reflexivity
- $part_of \circ part_of \sqsubseteq part_of$

 $proper_part_of \sqsubseteq part_of$

 $has_exact_location \sqsubseteq has_location$

 $has_location \mathrel{\circ} part_of \sqsubseteq has_location$

transitivity

role hierarchy

role hierarchy

right identity

Can be used to replace the SEP-triplet encoding of SNOMED CT.

+ can enable and block

Dresden

right-identity reasoning

indirect modelling makes it error-prone

Conclusion

Using DLs to define medical ontologies:

- formally well-understood semantics
- sound and complete reasoning support ... not just for classification
- well-understood trade-off between expressivity and complexity of reasoning

Using \mathcal{EL} to define medical ontologies:

- less expressive and thus easier to comprehend and use than OWL
- reasoning is tractable
- and stays so even if interesting means of expressivity (GCIs, restricted RVMs, domain and range restrictions, ...) are added

