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Knowledge Representation

General goal

“develop formalisms for providing high-level descriptions of the world

that can be effectively used to build intelligent applications” .
[Brachman & Nardi, 2003]

e formalism: well-defined syntax and formal, unambiguous semantics
e high-level description: only relevant aspects represented, others left out

e intelligent applications: must be able to reason about the knowledge,
and infer implicit knowledge from the explicitly represented knowledge

e cffectively used: need for practical reasoning tools and efficient imple-
mentations
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Description Logics

Dresden

Family of logic-based knowledge representation languages
tailored towards representing terminological knowledge

Many DLs are decidable fragments of first-order logic
Close relationship to propositional modal logics

Design goal: good compromise between expressiveness and complexity

Decidability and complexity results for a great variety of DLs and vari-
ous inference problems, but also implementation of practical systems

FaCT, Racer
Pellet, HermiT, . ..
Konclude, MORe

- inexpressive DLs with tractable inference problems, CEL, Snorocket, ELK
which are expressive enough for certain applications QuOnto, Mastro, ontop

- very expressive DLs of high worst-case complexity, but
with highly optimized “practical” reasoning procedures

Applications: natural language processing, configuration,
databases, modelling in engineering domains,
ontologies (Web ontology language OWL, biomedical ontologies)
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Description Logics from a general point of view

Concepts

e Constructors for building complex concept descriptions out of atomic
concepts (unary predicates) and roles (binary predicates).

e Interpretation Z assigns sets O to concept descriptions C' according to
the semantics of the constructors.

[ TBoxes

e Finite set of general concept inclusions (GCIs) of the form C' = D
where C, D are concept descriptions.

R e The interpretation Z is a model of a TBox 7 if C* C D? holds for all
o GCIsCC DinT.

—

8

= | ABoxes

o

e Finite set of assertions of the form C'(a) and r(a, b) where C'is a concept
description, 7 a role, and a, b individual names.

e The interpretation Z is a model of an ABox A if a’ € C* and (a?, V%) €
— 7 holds for all assertions C'(a) and 7(a, b) in A.
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top concept T, negation —C'
Constructors of the DL ALC conjunction ¢ [ D, disjunction C' L D,

existential restriction Jr.C,

value restriction V7.

An advanced course that Course M Advanced 1
has a smart or studious student, Jhas_student.(Smart L Studious) '
no easy topic, Vhas_topic.— FEasy I

and a teacher dhas_teacher. T

‘ TBox I ‘ABOX I

General concept inclusion (GCI) Properties of individuals
Good_Course(Coursel123)

has_teacher(Course123, Franz)

dhas_teacher. T T Course
Jhas_student.Smart T Yhas_teacher. Happy has topic(Coursel123, DL)
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top concept T, negation —C'

Constructors of the DL ALC conjunction ¢ [ D, disjunction C' L D,

existential restriction Jr.C,

value restriction V7.

An advanced course that Course M Advanced 1
has a smart or studious student, Jhas_student.(Smart L Studious) '
no easy topic, Vhas_topic.— FEasy I

and a teacher dhas_teacher. T

The semantics of the constructors is defined through identities:
o (CNID)Y=CTn D%,
o (Ir.C)Yr ={d|3e.(d,e) ert Ne e C?},
o (Vr.O)f ={d|Ve.(d,e) ert —ceC?},

Dresden © Franz Baader



Dresden

Reasoning makes implicitly represented knowledge explicit,

provided as service by the DL system, e.g.:

Subsumption: Is C' a subconcept of D?

T E CE D iff C? C D* for all models Z of the TBox 7.

polynomial
reductions

A

Satisfiability: Is the concept C' non-contradictory?

C is satisfiable w.r.t. 7 iff C* # () for some model Z of T

A

Consistency: Is the ABox A non-contradictory?

A is consistent w.r.t. 7 iff it has a model that is also a model of 7.

A

A

Instantiation: Is e an instance of C'?

(A, T) | Cle) iff e € CF for all models Z of 7 and A.

—

In presence

of negation
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‘ Complexity I of subsumption reasoning 7 = C C D

depends on the expressivity of the DL and the TBox formalism

no TBox |acyclic TBox | cyclic TBox | general TBox
F Ly P coNP PSpace ExpTime
ALC PSpace PSpace ExpTime ExpTime
EL P P P P
FLy: ¢cnD, vr.C, T

EL

Dresden

cCnpD, Ir.C, T
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Reasoning example in Protége



Error management and explanation

e Large ontologies often contain errors, which are usually

detected when unintended consequences are deduced.

e Even some of the intended consequences may appear to be

unintuitive to users.

Understanding the reasons for unintuitive or unintended consequences
can be difficult:

e W.r.t. a previous version of the medical ontology SNOMED CT,
the concept Amputation-of-finger was classified as a subconcept of
Amputation-of-hand.

e Finding and understanding the reason for this in a large ontology

with ~350 000 GClIs is not easy.
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Error management and explanation comes in different flavours

e Pinpointing: identify the source of the consequence

Minimal subsets of the ontology from which a given consequence follows.

e Explanation: provide a convincing argument for the consequence

Show a proof of the consequence in an appropriate calculus.

e Repair: provide suggestions for error resolution

Maximal subsets of the ontology from which the consequence does not follow.

Optimal repairs preserve a maximal set of consequences while removing the

unwanted ones.
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determine the source of
the consequence

Axiom Pinpointing

Justification: minimal subset of the ontology that has the consequence

Given: ontology O and GCI or concept assertion « such that O = «

Justification: minimal subset J C O such that J = «

a;: ACdrA
as . AEY
T=ALCB
T as: drY C B }: o
a, - YEB

Justifications: {a9, a4}, {ai,as, a3}
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Axiom Pinpointing scientific challenges

e How can we compute justifications?

e How many justifications does a consequence have

(in the worst case or in practice)?

e How hard is it to compute one or to enumerate all justifications?

[B., Penaloza, Suntisrivaraporn; 2007]

Pinbointine i :
inpointing in £L [B., Suntisrivaraporn; 2008] [Pefialoza, Sertkaya; 2017]

e Both black box and glass box approaches for computing justifications.

e A given consequence may have exponentially many justifications
in the cardinality of O.

e In our experiments with SNOMED CT, most of the subsumption
consequences (78 %) had justifications of size at most 10.

e A single justification can be computed in polynomial time.

e Unless P=NP, there is no output polynomial algorithm for enumerating
all justifications.
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Justification example in Protége



Proofs to explain DL entailment

e Given a justification .J for a consequence, the user still needs to understand
how the consequence can be derived using the axioms in .J.

e A proof provides us with a step by step derivation using easy to
understand proof rules.

Proof rules for £L

CR2 CR3

CR1AEA ACT ACB

fACBeT

A C Ay Ay C Az CRSAEA1AEA2A1|_|A2EB

CR4
A E Az ACB

6 AEEITAl AlgBl HTBlgB
ACB

[B., Horrocks, Lutz, Sattler; 2017]
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Proofs

Dresden

example of proof in the £L calculus

CR4

CR1

CR2
AC A

A C Ay Ay C Az

A T A

CR

ALC

6 AEH’T’Al Al EBl EIT.Bl EB

R
T CR3 ACB

fAC BeT

5 AC A AC A AINACBEB

CR AC B

ACB

ap .
as .

as -

ALC dr.A
ACY
dr.Y C B

CR3 CR3 CR3

AC dr.A ACY dr.Y C B

T~

CR6

ACDB
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Proofs to explain DL entailment

Scientific challenges

e What are “good proofs” for explanation purpose, depending on

on the experience of the user? .
User studies

[Alrabbaa et al.; 2022]
4 I

e Once a measure of the quality of proofs is fixed, how hard is it

to compute optimal proofs?
Complexity results and algorithms

[Alrabbaa et al.; 2020] [Alrabbaa et al.; 2021]
\ %

e How can one display proofs in an easily legible and adaptable way?

Interactive visualisation tool Evonne

[Méndez et al.; 2023]
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Proofs

Formal framework

Theory+Entailment

(7, m)

h <

Deriver
£Y)

(Reasoner, Calculus)

Derivation
Structure

D(T,n)

complexity of computing good ones
[Alrabbaa et al.; 2020] [Alrabbaa et al.; 2021]

Proof

e Problem: find a proof in the derivation structure with a value of the measure

below a given threshold ¢

e Complexity results for different types of derivers, measures, and

Dresden

encoding of the number ¢
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Dresden

complexity of computing good ones

Proofs
[Alrabbaa et al.; 2020] [Alrabbaa et al.; 2021]
polynomial | polynomial | exponential exponential
unary binary unary binary
Size NP NP NP NExpTime
Monotone recursive <p <P < ExpTime | < ExpTime
®-measures
Tree size B P NP PSpace
Depth P P PSpace ExpTime
Logarithmic depth | P P ExpTime ExpTime

e Problem: find a proof in the derivation structure with a value of the measure

below a given threshold ¢

e Complexity results for different types of derivers, measures, and
encoding of the number ¢
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Proofs 1n Protége

using our proof plugin Evee

protége

and in our interactive visualisation tool

Asserted Conclusion

E ~ O nn e SebumSecretion C SecretionByLysis

Asserted Conclusion Existential Filler Expansion
SebaceousGland C Jagent_in.SebumSecretion Jagent_in.SebumSecretion C 3agent_in.SecretionByLysis
Known Class Hierarchy Asserted Conclusion
S
‘ SebaceousGland E Gland SebaceousGland C Jagent_in.SecretionByLysis HolocrineGland = (Gland nm Jagent_in.SecretionByLysis)
Intersection Composition Equivalent Classes Decomposition
SebaceousGland £ (Gland n Jagent_in.SecretionByLysis) (Gland n Jagent_in.SecretionByLysis) C HolocrineGland

Class Hierarchy

SebaceousGland C HolocrineGland
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Classical Rep ar remove the source of

Dresden

the consequence

subset of the ontology that does not have the unintended consequence

Given: ontology O and GCI or concept assertion « such that O = «

Classical repair: subset & C O such that R |~ «

Optimal classical repair: maximal subset R C O such that R [~ «

Algorithm for computing an optimal classical repair: [Reiter; 1987]
1. Compute all justifications Jy, ..., J; of .
2. Compute a minimal hitting set /7 of Jy, ..., Jj. HNJ; #0
fort =1,...,k.

3. Output R := O \ H.

For every choice of the hitting set, this algorithm produces an optimal classical
repair, and all optimal classical repairs can be generated this way.

© Franz Baader



Classical Repair remove the source of
the consequence

a;: AC3Ir.A )
a: ACY
—FEa=ACB
as . dr.Y E B
ay . Y E B ]
Justifications: Minimal hitting sets: Optimal classical repairs:
{a27a4}7 {a17a’27a3} {az}a {CLl,CL4}, {CL3,CZ4} {@1,@3,@4}, {CLQ,CLS}, {&1,@2}
Diagnoses
Algorithm for computing an optimal classical repair: [Reiter; 1987]
1. Compute all justifications Jy, ..., J; of .
2. Compute a minimal hitting set /1 of Jy, ..., J. HNJ; #0

fort =1,...,k.

3. Output R := O \ H.

For every choice of the hitting set, this algorithm produces an optimal classical
repair, and all optimal classical repairs can be generated this way.
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Repairs

1n our interactive visualisation tool

Evonne

Asserted Conclusion

SebumSecretion C SecretionByLysis

Asserted Conclusion Existential Filler Expansion
SebaceousGland C Jagent_in.SebumSecretion / Jagent_in.SebumSecretion C Jagent_in.SecretionByLysis
Class Hierarchy Asserted Conclusion
‘ SebaceousGI;and C Gland | SebaceousGland C EagénLin.SecretionByLysis \ HolocrineGland = (Gland n 3agent_in.SecretionByLysis)
Intersection Composntwon Equivalent Classes Decomposition
SebaceousGland C (Gland n \3agenLin.SecretionByLysiS) (Gland EIagenLin.SecretiSﬁByLysis) C HolocrineGland J

Class Hierarchy

SebaceousGland £ HolocrineGland
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may remove too

Classical Repair

many consequences

T = {Jowns.(GermanCar M Diesel) = Jgets. Compensation}
A = {Jowns.(GermanCar M Diesel)(Robert)}
« = dgets.Compensation(Robert)

Classical repair: remove Jowns.(GermanCar N Diesel)(Robert)
More gentle: replace the assertion with Jowns.( GermanCar)(Robert)

Even more gentle: replace the assertion with

Jowns. GermanCar(Robert) and Jowns. Diesel(Robert)

Main idea to get better repairs:

consider inclusion for consequences instead of inclusion for axioms

Con(O) ={a| O E a}
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Optimal Repair

e The ontology R is a repair of O w.r.t. av if
Con(R) C Con(O) \ {«a}.

e This repair is optimal if there is no repair R’
of O w.r.t. a with

Con(R) C Con(R').

Example: replacing Jowns.(GermanCar I Diesel)(Robert) with
Jowns. GermanCar(Robert) and Jowns. Diesel(Robert)

yields an optimal repair.

Dresden © Franz Baader



Optimal Repair need not exist even for ABoxes without TBox

Dresden

Example

Consider O :={V(n),l(n,n)}
and o :=V(n).

For all £ > 0, the assertion 37.(V 11 (3¢.)*.T)(n) belongst to Con(O).

Adding finitely many of them to O \ {«} yields a repair,

but every finite repair entails only finitely many of them.

Using quantified ABoxes with anonymous individuals solves this problem:

Hx} R for R = {l(n,x),l(x,n),V(x),l(x,x)}

is an optimal repair.

© Franz Baader



Optimal Repair scientific challenges

e Determine cases for which optimal repairs always exist and

cover all repairs.
e How many optimal repairs are there and how large can they become?

e How hard is it to compute one or all optimal repairs?

Case of quantified ABoxes w.r.t. static £L TBoxes:

e If we consider only concept assertions as consequences, then existence
and coverage are satisfied. There may be exponentially many optimal
repairs of up to exponential size, which can be computed in exponential
time.

e If we consider conjunctive queries as consequences, then we must ad-
ditionally assume that the TBox is cycle-restricted and the computation
algorithm requires an NP-oracle.

[B., Kriegel, Nuradiansyah, Pefialoza; 2020]
[B., Koopmann, Kriegel, Nuradiansyah; 2021]
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Summary

e Pinpointing: identify the source of the consequence

Minimal subsets of the ontology from which a given consequence follows.

e Explanation: provide a convincing argument for the consequence

Show a proof of the consequence in an appropriate calculus.

e Repair: provide suggestions for error resolution

Maximal subsets of the ontology from which the consequence does not follow.

Optimal repairs preserve a maximal set of consequences while removing the

@ unwanted ones.

Dresden © Franz Baader
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Systems download links

Protége ontology editor

https://protege.stanford.edu/

Evee library and Protégé plugin for justifications and proofs

https://github.com/de-tu-dresden-inf-lat/evee

Evonne visualisation tool supporting explanation and repair

https://imld.de/en/research/research-projects/evonne/
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