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Description Logics L

Dresden

Family of logic-based knowledge representation languages.
Many DLs are decidable fragments of first-order logic.
Close relationship to propositional modal logics.

Design goal: good compromise between expressiveness and complexity

Decidability and complexity results for a great variety of DLs and vari-
ous inference problems, but also implementation of practical systems.

- very expressive DLs of high worst-case complexity, but FacT, Racer
with highly optimized “practical” reasoning procedures Pellet, . ..

- inexpressive DLs with tractable inference problems, CEL, Snorocket
which are expressive enough for certain applications QuOnto, . ..

Applications: natural language processing, configuration,
databases, modelling in engineering domains,
ontologies (Web ontology language OWL, biomedical ontologies).
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Description lo gics Constructors of the expressive DL ALCN:

Dresden

CnD,CUD,-CNr.C,Ir.C,(>nr),(<nr)

A man Human M = Female M
that has a rich or beautiful wife Imarried_to.(Rich U Beautiful) I
and at least 3 children, (>3 child) M
all of whom are happy Ychild. Happy
Axioms Inferences
concept definitions Subsumption
H(Lppy_man = Human 1. .. Happy_man E Taxr_break
General concept inclusions (GCIs)
Human T Ychild. Human Satisfiability of concepts
Achild. Human = Tax_Break Consistency of knowledge bases
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The inexpressive Description Logic £L

DL with restricted expressive power

e no value restrictions Vr.(

conjunction C' 11 D,
existential restriction Jr.C),

top concept |

Frog € Animal T1 dcolor. Green

e can represent large biomedical ontologies: SNOMED CT, Gene Ontologys, ...

Dresden

e &L has better algorithmic properties than DLs with value restrictions
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Formal semantics

An interpretation 7 has a domain AZ and associates

e concepts C with sets CZ, and

e roles r with binary relations rZ.

The semantics of the constructors is defined through identities:
o TZ =A%
e (CND)Y=C*nD?,
o (Ir.C)Yf ={d|3e.(d,e) crtnec CT}.

The interpretation Z is a model of

e the general concept inclusion (GCI) C C D iff C* C D*.

e the general TBox T iff it satisfies all GCIs in 7.

Dresden
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Sub SllIIlptiOIl is concept C' a subconcept of concept D?

TE=ECLCD iff cZ C Dt for all models Z of T

Subsumption in £ L w.r.t. general TBoxes is polynomial.

e This is in strong contrast to the case of DLs with value restrictions,
where subsumption w.r.t. general TBoxes is ExpTime-complete.

e Subsumption in £L w.r.t. general TBoxes remains polynomial if we add
the bottom concept, nominals, restricted role-value-maps, and restricted
concrete domains.
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Error management and explanation

e Large ontologies often contain errors, and thus have
unintended consequences.

@ ) L ]
e Even some of the intended consequences may appear to be
unintuitive to users.

L-H
Understanding the reasons for unintuitive or unintended consequences
can be difficult:

e In the DL version of the medical ontology SNOMED CT, the concept
AmputationOfFinger is subsumed by AmputationOfHand.

e Finding the axioms that are responsible for this among the > 350 000
concept definitions in SNOMED by hand is not easy.

e Pinpointing: compute minimal subsets of the ontology that already have
the consequence.
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Error management and explana‘[ion comes in three different flavours

e Pinpointing: identify the source of the consequence

minimal subsets of the TBox from which a consequence follows

MinAs

e Explanation: provide a convincing argument for the consequence

e Correction: provide suggestions for error resolution

maximal subsets of the TBox from which a consequence does not follow

ManAs
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Pinpointing in DLs example

Dresden

a;: ALC drA
a: ALY
— T=ALCLB
T as . HTYEB }: o
ay - YEB

minimal axiom sets with consequence A C B (MinAs):

{a27 CL4}, {ala as, Clg}

S h
pinpointing formula for consequence A C B: monotone Boolean formula whose

satisfying valuations correspond to

az A (as V(a1 A as)) subsets that have the consequence

maximal non-axiom sets, i.e., without consequence A C B (ManAs):
{CL1,CL3,CL4}, {CLQ;CLS}» {abCLQ}
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Pinpointin g in DLs equivalence of outputs

All three possible outputs (MinAs, ManAs, pinpointing formula) contain
e cnough information to obtain all subsets that have the consequence

e without requiring additional DL reasoning.

—> can be transformed into each other without additional DL reasoning

transformation may be exponential / require the solution of an
NP-complete problem

Pinpointing formula to MinAs:

az A (ag V (a1 A ag)) > {az, a4}, {a1,a9,as}

e minimal satisfying valuations

e disjunctive normal form (as A ay) V (a3 A as A ag)

Dresden © Franz Baader



Pinpointin g in DLs equivalence of outputs

All three possible outputs (MinAs, ManAs, pinpointing formula) contain
e cnough information to obtain all subsets that have the consequence

e without requiring additional DL reasoning.

—> can be transformed into each other without additional DL reasoning

transformation may be exponential / require the solution of an
NP-complete problem

MinAs to ManAs:
{a27a4}7 {a17a27a3} > {a17a37a4}7 {a27a3}7 {a17a2}
minimal complement

Hitting sets

{as}, {ai,a4}, {as, a4}
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Approaches to pinpointing in Description Logics

Black Box

e cmploy existing inference procedure without modification:
+ highly-optimized implementations can be reused

— 1in the worst-case, the procedure needs to be invoked exponentially often
e naive approach: check for all subsets whether they have the consequence

e more sophisticated approaches work well in practice
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Approaches to pinpointing in Description Logics

Glass Box

e modify existing inference procedure into one that directly computes
minimal subsets or pinpointing formula:

+ modified procedure is invoked only once
— requires new implementation and optimization

e specialized approach: do this for a specific DL and a specific inference
procedure

e generic approach: show how a certain class of inference procedures can
be generalized to pinpointing procedures
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Glass Box Approaches

first developed by modifying

tableau-based algorithms

Dresden

First introduced in [B. & Hollunder, KR’92] in the context of default
reasoning in Description Logic.

Labeled version of tableau-based algorithm for the DL ALC (without
GCls) to compute MinAs and ManAs:

produces pinpointing formula from which both can be derived

Re-invented in [Schlobach & Cornet, IJCAI’03] to compute minimal
unsatisfiable subsets of ALC TBoxes.

Labeled tableau-based algorithm similar to the one of B. & Hollunder:
directly produces all MinAs

Schlobach’s approach extended in [Parsia et al., WWW’05] to more ex-
pressive DLs.

[Lee et al., DL”06] extend approach in [B. & Hollunder, KR’92] to ALC
with GCls.

[B., etal., KI'O7] introduce labeled variant of the subsumption algorithm
for £L with GCls.
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Glass Box Approach by modifying a specific

tableau-based algorithm

already there
with label 6

yd

V-rule: (Vr.C')(a) € A and 7r(a,b)e A ~» addC(b)to A

label label 1) label 0 V (o A1)

already there
with label 0

yd

4
GCI-rule: CC DeT and aoccursin A~ add (-CU D)(a)to A

label a; label 6 V a;
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[B. & Penaloza, Tableaux’07]

Pinpointing in general tableaux [B. & Penaloza. JLC 10]

e define a general notion of a tableau system that captures
— most of the known tableau procedures for DLs
— also other decision procedures, like the polytime subsumption algorithm
for £L, congruence closure, . ..
e define the pinpointing extension of a tableau system:

— show correctness: terminating runs of the pinpointing extension com-
pute a pinpointing formula

— 1n general, termination does not transfer to the pinpointing extension

* there are terminating tableau systems whose pinpointing extension
does not terminate

* for a given terminating tableau system, it is undecidable whether its
pinpointing extension terminates

e define the notion of ordered forest tableaux:

— always terminate and so do their pinpointing extensions
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[B. & Penaloza, IJICAR’08]

Automata-based plnp()lntlng [B. & Penaloza, JAR’10]

Given set of axioms 7 and possible consequence C,
automata-based decision procedures

e construct an automaton A = A(7,C).

e perform emptiness test for A.

o TEC iff L(A) =0.

e Define the notion of an axiomatic automaton 4(7, C) that “contains”
all the automata A(S,C) forS§ C 7T

e Transform a given axiomatic automaton into a weighted automaton whose
behaviour is a pinpoining formula

e Show how to compute the behaviour.
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[Kalyanpur et al., ISWC’07]
Black Box Approaches [B. & Suntistivaraporn, KR-MED’08]

[Suntisrivaraporn, 2009]
[Horridge et al., SUM’09]

e naive approach that considers all subsets of 7 and tests which of them has
the consequence 1s not practical for large ontologies like SNOMED CT
(> 360000 axioms)

e more practical approaches are all based on the following idea:
(a) Design an efficient procedure for extracting one MinA.

(b) Use this procedure within Reiter’s Hitting Set Tree algorithm to
compute all MinAs.

e useful optimization: first compute a subset of the ontology that is
— easy to compute
— rather small
— contains all MinAs

Then apply the HST approach to this subset.
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Extracting one MinA

Dresden

Naive linear algorithm:

Go through the axioms accord-
ing to some fixed order.

For each axiom, check whether
the consequence still holds if it is
removed from the current axiom
set.

If yes, then remove it;
otherwise keep it.

Number of calls to inference pro-
cedure linear in |7 |

Very simple, no overhead.

extracting a MinA S from a set of axioms 7

Logarithmic algorithm:

Partition 7 into two halves

For each half, check whether the
consequence still holds if it is re-
moved from the current ontology.

If yes for one of them, then re-
curse on this half.

Otherwise, do “something smart.”

Number of calls to inference pro-
cedure logarithmic in |7 |, but still
linear in |S|

Higher overhead, which may not
pay off if |7|/|S]| is small.
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Extracting one MinA

Dresden

Naive linear algorithm:

Go through the axioms accord-
ing to some fixed order.

If yes, then remove it;
otherwise keep it.

Number of calls to inference pro-
cedure linear in |7 |

Very simple, no overhead.

extracting a MinA S from a set of axioms 7

Logarithmic algorithm:

e Partition 7 into two halves

e For each half, check whether the
consequence s+ e

e Otherwise, do “something smart.”

+ Number of calls to inference pro-
cedure logarithmic in |7 |, but still
linear in |S|

— Higher overhead, which may not
pay off if |7|/|S]| is small.
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Extracting one MinA

Dresden

Naive linear algorithm:

Go through the axioms accord-
ing to some fixed order.

If yes, then remove it;
otherwise keep it.

Number of calls to inference pro-
cedure linear in |7 |

Very simple, no overhead.

extracting a MinA S from a set of axioms 7

Logarithmic algorithm:

e Partition 7 into two halves

e For each half, check whether the
consequence s+ Cogre-

e Otherwise, do “something smart.”

+ Number of calls to inference pro-
cedure logarithmic in |7 |, but still
linear in |S|

— Higher overhead, which may not
pay off if |7|/|S]| is small.

© Franz Baader



Extracting one MinA experimental results for SNOMED CT

e The amputation example has exactly one MinA, which has cardinality 6.

— The logarithmic algorithm can extract this MinA, but take 26 min.

— First computing reachability based module and then applying
linear algorithm performs much better: 0.54 sec

direct-procedure-site
ArmputationOfFinger
AmputationOfFingerWithoutThumb

AmputationOfHand

Fingerg
Hand;»

Dresden

eI

NN

procedure-site
AmputationOfFingerWithout Thumb

HandExcision M
JroleGroup. (Idirect-procedure-site.Finger ¢ 1 Imethod.Amputation)

HandExcision M
JroleGroup. (Iprocedure-site.Hand g M Imethed. Amputation)
DigitOfHand ¢ M Hand

Handg M UpperExtremity,,
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Extracting one MinA experimental results for SNOMED CT

[B. & Suntisrivaraporn, KR-MED’08§]

25000
considered 27 477 21377

subsumptions 20000
15000 @ #Modules
m #MinA
10000 ‘

5000
0
N o
. ‘ v
time (sec) A QN
NS S
extract module 0.02/3.97 AR N R R
LRSS
ECARIIAN
\

logarithmic alg. 1.03/9.58

linear alg. 0.67/5.04
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Extracting ALL MinAs

Number of MinAs:

e 60% have only one MinA

o 25% have 2-9 MinAs

experimental results for SNOMED CT
on 27 477 subsumptions

Easy Samples

[Suntisrivaraporn, 2009]

e 15% have > 10 MinAs Hard Samples computed only the first 10
Time to extract HST search time §Subs. calls Total :;11_1:-:;.

Samples module (5¥OMED excl. subs. calls o "I testing time
(avg,/max) (avg/max) \8VE/max) (avg/max)

easy-samples 0.01 / 2.06 0.07 / 44.08 | 177.60 /4732 8.80 / 131.97

hard-samples 0.02 / 3.96 0.00 / 30.90 | TE9.98 /4308 | 37.77 / 375.68

Table 6.10: Time results (second) of the modularization-based HST pinpointing algo-
rithm on (SNOMED,

Dresden
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Extracting AlLL MlIl AS experimental results for SNOMED CT

on 27 477 subsumptions

25
=
u 20
Em
55 15
“ B
v E
gz 10
E =
S 5
a

0

[Suntisrivaraporn, 2009]

Number of
all MinAs

2 3 4 5 6 7 8 9

Figure 6.10: Relative frequency of the numbers of all MinAs for easy-samples in

ﬂS NOMED

Dresden
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Complexity of pinpointing in &£

Dresden

The number of MinAs can become exponential in the cardinality of 7 :

Tn={B, 1 EPNQ;,PCB,QCB|1<i<n}

%):BOEBTL

e 7, consists of 3n GCIs.

e The consequence By C B, has 2" MinAs.

[B. et al., KI'07]
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Complexit of pinpointing in £L
P Y PP 8 [B. et al., KI'07]

Determining the least cardinality of a MinA is intractable:

The following problem is NP-complete:

Given: general £L£ TBox T, concept names A, B, natural number n

Question: is there a subset 7' of T of cardinality < n with 7' E A C B?

Reduction from the NP-complete Hitting Set Problem:

Given: finite sets 57, ..., S, natural number n

Question: is there a set .S of cardinality < n with SNS; # @ fori =1,..., k?

Dresden © Franz Baader




Complexity of pinpointing in &£

Dresden

St1=A{p11,-- P15 -5 Sk =APk1> -, Pre, )

T = {P;CQi|1<i<k1<j<{iuU

{@1n...NQLE B} U
{ACP;|1<i<k1<j<{}

S1, ..., Sk has a Hitting Set of cardinality < n.
iff
Thereis 7' C T of cardinality < n + k + 1 with 7' = A C B.

[B. et al., KI'07]
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Complexity of pinpointing in &£

[Penaloza & Sertkaya, KR’ 10]

Another intractable problem for MinAs: axiom relevance

Is a given axiom a possible culprit for an erroneous consequence?

Given: general £L TBox 7, concept names A, B,GCIC C D € T

Question: is there a MinA Sfor AC Bin7 suchthat C C D € S?

This problem is also NP-complete!
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Enumeration Complexity

of pinpointing in £L
[Penaloza & Sertkaya, KR’ 10]

e We have seen: the number of MinAs may be exponential.

e Thus, it may take exponential time to enumerate all MinAs.

e What if the number of MinAs is actually polynomial?

May it still take exponential time to compute them?

Output polynomiality

and the size of all MinAs.

An algorithm for enumerating all MinAs is output polynomial

iff it runs in time polynomial in the size of the TBox

Dresden
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Enumeration Complexity of pinpointing in &£

[Penaloza & Sertkaya, KR’ 10]

Unless P=NP, there is no output polynomial algorithm

for enumerating all MinAs in £L.

This 1s an easy consequence of the fact that

the following problem is coNP-complete:

Given: general £L£ TBox 7, concept names A, B, set M of subsets of 7.

Question: is M the set of all MinAs of A C B w.r.t. 7?
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Questions?




