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Knowledge Representation general goal

“develop formalisms for providing high-level descriptions of the world

that can be effectively used to build intelligent applications™
| Brachman & Nardi, 2003]

e formalism: well-defined syntax and formal, unambiguous semantics
e high-level description: only relevant aspects represented, others left out

e intelligent applications: must be able to reason about the knowledge,
and infer implicit knowledge from the explicitly represented knowledge

e cffectively used: need for practical reasoning tools and efficient imple-
mentations
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Terminological knowledge

formalize the terminology of the application domain:
e define important notions (classes, relations, objects) of the domain
e state constraints on the way these notions can be interpreted

e deduce consequences of definitions and constraints:

subclass relationships, instance relationships

Example: domain summer school
e classes (concepts) like Person, Lecturer, Course, Student, ...
e relations (roles) like teaches, attends, likes, ...
e objects (individuals) like Franz, Raj, ...

e constraints like: every course must have a student,
courses are only taught by lecturers, ...
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Dexscri ptiﬂ n Logics class of logic-based knowledge representation formalisms
i tallored towards representing termimological knowledge

Descended from semantic networks and frames via the system KL-ONE [Brach-
man&Schmolze 85]. Emphasis on well-defined basic inference procedures:
subsumption and instance problem.

Phase 1:

¢ implementation of incomplete systems (Back, Classic, Loom)

e based on structural subsumption algorithms

Phase 2:

e development of tableau-based algorithms and complexity results

e first implementation of tableau-based systems (Kris, Crack)

e first formal investigation of optimization methods

Phase 3:

e (ableau-based algorithms for very expressive DLs

e highly optimized tableau-based systems (FaCT, Racer)

e relationship to modal logic and decidable fragments of FOL
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Description logic svstem structure

1. TBox ¢ 3

defines the terminology of
the application domain

e constructors for
building complex ABox 3 e derive implicitly
concepts out of states facts about a respresented knowledge
atomic concepts specific “world” (e.g., subsumption)
and roles : :
e “practical” algorithms
e formal, logic-based
semantics knowledge base
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The description language prototypical DL ALC

Set N¢ of concept names and disjoint set [V of role names.

ALC-concept descriptions are defined by induction:
o If A € N¢,then A is an ALC-concept description.

o IfC, D are ALC-concept descriptions, and r € Np,
then the following are .ALC-concept descriptions:

— (' D (conjunction)

— (' D (disjunction)
Abbreviations:
— —=(' (negation
aeg ) - T:=AU-A (top)
— Wr.C' (value restriction) ~ 1 :=An-A (bottom)
— dr.(’ (existential restriction) — (' = D :=-CUD (implication)
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The {;|65{3-1‘i1}’[i011 lﬂﬂgllﬂge examples of ALC-concept descriptions

Person ' Female

Person M dattends.Course

Person M Vattends.(Course 'l —Easy)

Person M dteaches.(Course M Vtopic.DL)

Person [ Vteaches.(Course 1 dtopic.(DL LI NMR))
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The {lﬁ‘ﬂt—l‘iptiﬂﬂ lﬂﬂgljﬂge semantics of ALC-concept descriptions

An interpretation Z = (A%, -7) consists of a non-empty domain A?

and an interpretation function -*:
o AT C Al forall A € N, concepts interpreted as sets
o 11 C A? x A? forallr € Np. roles interpreted as binary relations

The interpretation function is extended to ALC-concept descriptions as follows:
e (CNDE:=CtNnD?
e (CUD*:=C*uD?
o (-O)F = AT\ C?

o (Vr.C)* :={de A |foralle € AT : (d,e) € r* implies e € C*}

o (Ir.C)Y :={de Al |thereise € AT : (d,e) € v’ and e € C*}
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Example of an interpretation

Person Person Person
® Male Male Female
teaches
teaches teaches teaches

Y

Y v
O Course O Course O Course O Course

topic e : IC IC
I l J'm]m, tn]m:/ W ‘/npiNipm

() AT () DL ()NMR () ML () McC

( Person M 3teaches.(Course M Ytopic.DL) }'= {F}

( Person N Vteaches.(Course M Jtopic.(DL LI NMR)) )*= {F, M}
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Relationship with First-order Logic

ALC can be seen as a fragment of first-order logic:
e (Concept names are unary predicates, and role names are binary predicates.

e Concept descriptions C' yield formulae with one free variable 7,.(C'):
- 7.(A) = A(x) for A € N¢
- 17(C' N D) :=1,(C) A (D)
- 7:(CU D) :=7,(C) V 1,(D)
- 7(—C) = -71,(C)
= 1, (¥r.C) = Yy.(r(z,y) > 7,(C))
— 7(3r.0) == Fy.(r(z,y) A 7,(C))

y variable different from x

(' and 7,.(C') have the same semantics:

CI={de AT |T [ r(C)z « d]}
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Relationship with First-order Logic

ALC can be seen as a fragment of first-order logic:
e (Concept names are unary predicates, and role names are binary predicates.

e Concept descriptions C' yield formulae with one free variable 7,.(C'):

These formulae belong to known decidable subclasses of first-order logic:

— two-variable fragment

— guarded fragment

T.(Vr. (AN 3dr.B)) = Vy.(r(z,y) = (AN dr.B))

= Vy.(r(z,y) = (Aly) A dz.(r(y,2) A B(2))))
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Relationship with Modal Logic

multimodal K:

T.'\-i_ Y o 1.11- i -11 s i -'1. i {-!11- - -
ALC is a syntactic variant of the basic modal logic K: several pairs of

boxes and diamonds

e Concept names are propositional variables,

and role names are names for transition relations.

e Concept descriptions C' yield modal formulae 6#(C'):
- 0(A) :==afor A € N¢
- (CND)=6C)NEO(D)
- (CuUD)=6(C)Vve(D)
- 0(—~C) :=-0(C)
- 4(Vr.C) :=0,0(C)
- §(3r.C) .= <,8(C)

C and 0(C') have the same semantics: C7 is the set of worlds that make 8(C')
true in the Kripke structure described by Z.
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Additional constructors

ALC is only an example of a description logic.

DL researchers have introduced and investigated many additional constructors.

‘ Example I

Number restrictions: (> nr.C'), (<nr.C') with semantics
(>nr.CY = {de€ Al |card({e| (d,e) € vt ANe € C*}) > n)}
(<nr.C)Yt = {de Al |card({e]| (d,e) € rf Ae € C*}) < n}

Persons that attend at most 3 courses, of which at least 2 have the topic DL:

g

Person M (< 3 attends.Course ) M (> 2 attends.(Course M Jtopic.DL))

Dresden

2 Franz Baader



Additional constructors

In addition to concept constructors, one can also introduce role constructors.

‘ Example I

Inverse roles: if r is a role, then » ' denotes its inverse

—{[f ) | (d, e) EII}

Inverse roles can be used like role names in value and existential restrictions.

Teacher of a boring course:

Person M 3teaches.(Course M Vattends '.(Bored LJ Sleeping))
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Terminolo gics mtroduce names for complex descriptions

A concept defintion is of the form A = ' where
e A is a concept name;

e (' is aconcept description.

A TBox 1s a finite set of concept definitions that
e does not contain multiple definitions;

e does not contain cyclic definitions.

Defined concept occurs on left-hand side of a definition

Primitive concept does not occur on left-hand side of a definition
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Terminologies semantics and example

An interpretation Z is a model of a TBox 7T if it satisfies all

its concept definitions:

AL =C? foral A=CeT

Woman = Person 1 Female
Man = Person 1 —=Female
Course = dtopic. T
Lecturer = Person M dteaches.Course
Student = Person 'l Jattends.Course
BusyLecturer = Lecturer [ (> 3teaches.Course)
BadLecturer = Lecturer [ Vteaches.(Vattends ™ '.(Bored LI Sleeping))
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Terminologies beyond concept definitions

Modern DL systems allow their users to state more general constraints

for the interpretation of concepts.

A general concept inclusion axiom (GCI) 1s of the form

(' C D where C', D may be complex concept descriptions.

general TBox

An interpretation Z is a model of a|set of GCIs 7

its concept inclusions:

if 1t satisfies all

("'I D* forall C & Y

Lecturer 'l Student T |

Course 1 Vattends ™ '.Sleeping C Boring
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ABox assertions state properties of individuals

An assertion 18 of the form

('(a) (concept assertion) or  r(a,b) (role assertion)

where (' is a concept description, 7 is a role, and a. b are individual names
from a set /Ny of such names.

An ABox 1s a finite set of assertions.

An interpretation Z is a model of an ABox A if it satisfies all

its assertions: 7 assigns elements of
af e (% for all C(a) € A A’ to individual names
(af,b%) € r* forall r(a,b) € A

Lecturer( FRANZ), teaches(FRANZ,Cl1),
Course(Cl1 ), topic(C1,T1),

DL(T1)
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Rea SDlliﬂg makes mmplicitly represented knowledge explicit,
provided as service by the DL system, e.g.:

polynomial
Subsumption: Is C' a subconcept of D? reductions
. g . o
C C+ D iff C* C D? for all models Z of the TBox 7.
Aty ol slvinre . \ l‘. - ’ 1 .-'::'
Satisfiability: Is the concept C' non-contradictory?
C is satisfiable w.r.t. 7 iff C* # 0 for some model Z of 7.
Consistency: Is the ABox A non-contradictory?
A is consistent w.r.t. 7 iff it has a model that is also a model of 7.
*—
Instantiation: Is e an instance of C'?
o ) - —
A =7 Cle) iff e € C7T for all models Z of 7 and A.
N presence

of negation
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Reductions between inference problems

Subsumption to satishiability:

C' C+ D iff C M =D isunsatisfiable w.r.t. T

Satisfiability to subsumption:

(' is satisfiable w.r.t. 7 iff not C C+ L

Satisfiability to consistency:

(' is satisfiable w.r.t. 7 iff {C'(a)} is consistent w.r.t. T

Instance to consistency:

a is an instance of C' w.r.t. 7 and A iff AU{—C(a)} is inconsistent w.r.t. T

Consistency to instance :

A is consistent w.r.t. 7 iff a is not an instance of 1 w.rt. 7 and A
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Reduction getting 11d of the TBox

Expansion of concepts:

For a given TBox 7 and concept description (', the expansion C'7 of C' w.rt. T
is obtained from C' by

e replacing defined concepts by their definitions

e until no more defined concepts occur.

Woman = Person [ Female
T Course = dtopic. T
Lecturer = Person I dteaches.Course

Woman M Lecturer expands to

Person 'l Female M Person 'l dteaches.(Jtopic. T )

Dresden @ Franz Paader



Reduction getting 11d of the TBox

Since TBoxes are acyclic, expansion always terminates,

but the expanded concept may be exponential in the size of 7.

Ay = Vr.A;NVs.Ay
A = Vr.A,MNVs. A, The size of 7T is linear in n,

but the expansion A/ contains A, 2" times.
Vr.A, NVs.A,

| o
|
—
S
m—
-

Reductions:
o (' issatisfiable w.rt. 7 iff C7 is satisfiable w.r.t. the empty TBox .

e CCyD iff CTCyD7.

e Consistency and the instance problem can be treated similarly.
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Computing the subsumption hierarchy of

Classification

all concept names occurring in the TBox.

Man

Person 'l =Female

Woman Person 'l Female

Malel.ecturer Man N dteaches.Course

Woman M1 dteaches.Course

FemalelLecturer

FemalelLecturer L Malelecturer

]

Lecturer

BusyLecturer = Lecturer [l (> 3teaches.Course|
Man /I,cc[urcr Woman
MaleLecturer BusyLecturer FemalelLecturer
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Realization

Computing the most specific concept names in the TBox

to which an ABox individual belongs.

Man

Woman
MalelLecturer
FemalelLecturer
Lecturer

BusyLecturer

]

Il

Person ' =Female

Person I'l Female

Man M dteaches.Course

Woman N Jteaches.Course
FemalelLecturer Ll MaleLecturer

Lecturer ' (> 3 teaches.Course

Man(FRANZ), teaches(FRANZ,CI1).
Course(Cl1)

FRANZ 1s an instance of Man, Lecturer, MaleLecturer.
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