Description Logics

Franz Baader
Theoretical Computer Science
TU Dresden
Germany

- 1. Motivation and introduction to Description Logics
- 2. Tableau-based reasoning procedures
- 3. Automata-based reasoning procedures
- 4. Complexity of reasoning in Description Logics
- 5. Reasoning in inexpressive Description Logics

Description Logics

Franz Baader
Theoretical Computer Science
TU Dresden
Germany

Literature:

The Description Logic Handbook edited by F. Baader, D. Calvanese, D. McGuinness, D. Nardi, P. Patel-Schneider Cambridge University Press

Knowledge Representation

general goal

"develop formalisms for providing high-level descriptions of the world that can be effectively used to build intelligent applications"

[Brachman & Nardi, 2003]

- formalism: well-defined syntax and formal, unambiguous semantics
- high-level description: only relevant aspects represented, others left out
- intelligent applications: must be able to reason about the knowledge,
 and infer implicit knowledge from the explicitly represented knowledge
- effectively used: need for practical reasoning tools and efficient implementations

Terminological knowledge

formalize the terminology of the application domain:

- · define important notions (classes, relations, objects) of the domain
- state constraints on the way these notions can be interpreted
- deduce consequences of definitions and constraints: subclass relationships, instance relationships

Example: domain summer school

- classes (concepts) like Person, Lecturer, Course, Student, . . .
- relations (roles) like teaches, attends, likes, . . .
- objects (individuals) like Franz, Raj, ...
- constraints like: every course must have a student, courses are only taught by lecturers, ...

Description Logics

class of logic-based knowledge representation formalisms tailored towards representing terminological knowledge

Descended from semantic networks and frames via the system KL-ONE [Brach-man&Schmolze 85]. Emphasis on well-defined basic inference procedures: subsumption and instance problem.

Phase 1:

- implementation of incomplete systems (Back, Classic, Loom)
- based on structural subsumption algorithms

Phase 2:

- development of tableau-based algorithms and complexity results
- first implementation of tableau-based systems (Kris, Crack)
- first formal investigation of optimization methods

Phase 3:

- tableau-based algorithms for very expressive DLs
- highly optimized tableau-based systems (FaCT, Racer)
- relationship to modal logic and decidable fragments of FOL

Description logic system

structure

3.

description

language

 constructors for building complex concepts out of atomic concepts and roles

formal, logic-based semantics

TBox

defines the terminology of the application domain

ABox

states facts about a specific "world"

knowledge base

4.

reasoning component

- derive implicitly respresented knowledge (e.g., subsumption)
- "practical" algorithms

The description language

prototypical DL ALC

Set N_C of concept names and disjoint set N_R of role names.

ALC-concept descriptions are defined by induction:

- If $A \in N_C$, then A is an \mathcal{ALC} -concept description.
- If C, D are \mathcal{ALC} -concept descriptions, and $r \in N_R$, then the following are \mathcal{ALC} -concept descriptions:
 - $C \sqcap D$ (conjunction)
 - $C \sqcup D$ (disjunction)
 - $\neg C$ (negation)
 - $\forall r.C$ (value restriction)
 - $-\exists r.C$ (existential restriction)

Abbreviations:

$$- \top := A \sqcup \neg A \text{ (top)}$$

$$- \perp := A \sqcap \neg A$$
 (bottom)

$$-C \Rightarrow D := \neg C \sqcup D$$
 (implication)

The description language

examples of ALC-concept descriptions

Person

□ Female

Person □ ∃attends.Course

Person $\sqcap \forall$ attends.(Course $\sqcap \neg$ Easy)

Person $\sqcap \exists teaches.(Course \sqcap \forall topic.DL)$

Person $\sqcap \forall teaches.(Course \sqcap \exists topic.(DL \sqcup NMR))$

The description language

semantics of ALC-concept descriptions

An interpretation $\mathcal{I} = (\Delta^{\mathcal{I}}, \cdot^{\mathcal{I}})$ consists of a non-empty domain $\Delta^{\mathcal{I}}$ and an interpretation function $\cdot^{\mathcal{I}}$:

• $A^{\mathcal{I}} \subseteq \Delta^{\mathcal{I}}$ for all $A \in N_C$,

concepts interpreted as sets

• $r^{\mathcal{I}} \subseteq \Delta^{\mathcal{I}} \times \Delta^{\mathcal{I}}$ for all $r \in N_R$.

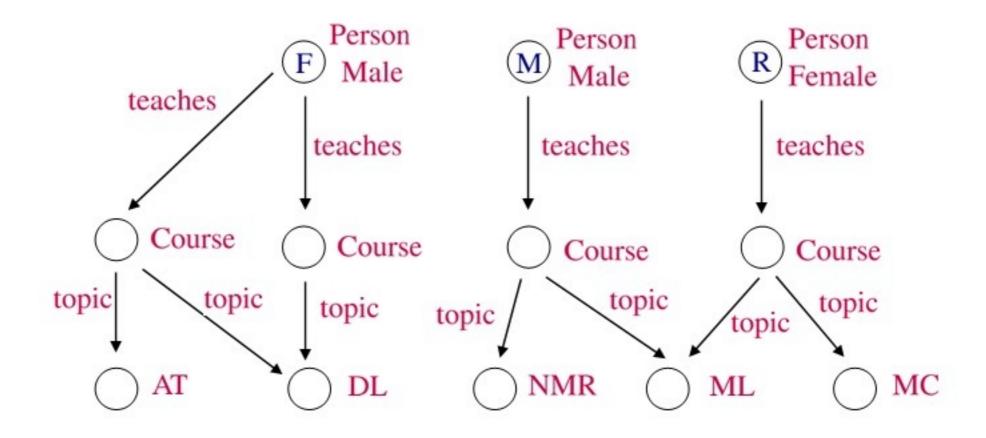
roles interpreted as binary relations

The interpretation function is extended to ALC-concept descriptions as follows:

- $(C \sqcap D)^{\mathcal{I}} := C^{\mathcal{I}} \cap D^{\mathcal{I}}$
- $\bullet \ (C \sqcup D)^{\mathcal{I}} := C^{\mathcal{I}} \cup D^{\mathcal{I}}$
- $\bullet \ (\neg C)^{\mathcal{I}} := \Delta^{\mathcal{I}} \setminus C^{\mathcal{I}}$
- $(\forall r.C)^{\mathcal{I}} := \{d \in \Delta^{\mathcal{I}} \mid \text{ for all } e \in \Delta^{\mathcal{I}} : (d, e) \in r^{\mathcal{I}} \text{ implies } e \in C^{\mathcal{I}} \}$
- $(\exists r.C)^{\mathcal{I}} := \{d \in \Delta^{\mathcal{I}} \mid \text{there is } e \in \Delta^{\mathcal{I}} : (d,e) \in r^{\mathcal{I}} \text{ and } e \in C^{\mathcal{I}} \}$

Example

of an interpretation



(Person $\sqcap \exists teaches.(Course \sqcap \forall topic.DL))^{\mathcal{I}} = \{F\}$

Person \sqcap ∀teaches.(Course \sqcap ∃topic.(DL \sqcup NMR)))^{\mathcal{I}} = {F, M}

Relationship with First-order Logic

ALC can be seen as a fragment of first-order logic:

- Concept names are unary predicates, and role names are binary predicates.
- Concept descriptions C yield formulae with one free variable $\tau_x(C)$:

-
$$\tau_x(A) := A(x)$$
 for $A \in N_C$

$$- \tau_x(C \sqcap D) := \tau_x(C) \wedge \tau_x(D)$$

$$-\tau_x(C\sqcup D):=\tau_x(C)\vee\tau_x(D)$$

$$-\tau_x(\neg C) := \neg \tau_x(C)$$

-
$$\tau_x(\forall r.C) := \forall y.(r(x,y) \to \tau_y(C))$$

-
$$\tau_x(\exists r.C) := \exists y.(r(x,y) \land \tau_y(C))$$

y variable different from x

C and $\tau_x(C)$ have the same semantics:

$$C^{\mathcal{I}} = \{ d \in \Delta^{\mathcal{I}} \mid \mathcal{I} \models \tau_x(C)[x \leftarrow d] \}$$

Relationship with First-order Logic

ALC can be seen as a fragment of first-order logic:

- Concept names are unary predicates, and role names are binary predicates.
- Concept descriptions C yield formulae with one free variable $\tau_x(C)$:

These formulae belong to known decidable subclasses of first-order logic:

- two-variable fragment
- guarded fragment

$$\tau_x(\forall r.(A \sqcap \exists r.B)) = \forall y.(r(x,y) \to \tau_y(A \sqcap \exists r.B))$$
$$= \forall y.(r(x,y) \to (A(y) \land \exists z.(r(y,z) \land B(z))))$$

Relationship with Modal Logic

 \mathcal{ALC} is a syntactic variant of the basic modal logic K:

- Concept names are propositional variables,
 and role names are names for transition relations.
- Concept descriptions C yield modal formulae $\theta(C)$:

$$-\theta(A) := a \text{ for } A \in N_C$$

$$- \theta(C \sqcap D) := \theta(C) \land \theta(D)$$

$$-\theta(C \sqcup D) := \theta(C) \vee \theta(D)$$

$$-\theta(\neg C) := \neg \theta(C)$$

$$-\theta(\forall r.C) := \Box_r \theta(C)$$

$$-\theta(\exists r.C) := \diamondsuit_r\theta(C)$$

C and $\theta(C)$ have the same semantics: $C^{\mathcal{I}}$ is the set of worlds that make $\theta(C)$ true in the Kripke structure described by \mathcal{I} .

several pairs of boxes and diamonds

Additional constructors

ALC is only an example of a description logic.

DL researchers have introduced and investigated many additional constructors.

Example

Number restrictions: $(\geq n \, r.C)$, $(\leq n \, r.C)$ with semantics

$$(\geq n \, r.C)^{\mathcal{I}} \ := \ \{d \in \Delta^{\mathcal{I}} \mid \operatorname{card}(\{e \mid (d,e) \in r^{\mathcal{I}} \wedge e \in C^{\mathcal{I}}\}) \geq n\}$$

$$(\leq n \, r.C)^{\mathcal{I}} \ := \ \{d \in \Delta^{\mathcal{I}} \mid \operatorname{card}(\{e \mid (d,e) \in r^{\mathcal{I}} \wedge e \in C^{\mathcal{I}}\}) \leq n\}$$

Persons that attend at most 3 courses, of which at least 2 have the topic DL:

Person $\sqcap (\leq 3 \text{ attends.Course}) \sqcap (\geq 2 \text{ attends.(Course } \sqcap \exists \text{topic.DL}))$

Additional constructors

In addition to concept constructors, one can also introduce role constructors.

Example

Inverse roles: if r is a role, then r^{-1} denotes its inverse

$$(r^{-1})^{\mathcal{I}} := \{ (e, d) \mid (d, e) \in r^{\mathcal{I}} \}$$

Inverse roles can be used like role names in value and existential restrictions.

Teacher of a boring course:

Person $\sqcap \exists teaches.(Course \sqcap \forall attends^{-1}.(Bored \sqcup Sleeping))$

Terminologies

introduce names for complex descriptions

A concept defintion is of the form $A \equiv C$ where

- A is a concept name;
- C is a concept description.

A TBox is a finite set of concept definitions that

$$\begin{array}{ccc}
A & \equiv & C \\
A & \equiv & D
\end{array}$$
 for $C \neq D$

$$A \equiv B \sqcap \forall r.P$$

$$B \equiv P \sqcap \forall r.C$$

$$C \equiv \exists r.A$$

Defined concept occurs on left-hand side of a definition

Primitive concept does not occur on left-hand side of a definition

Terminologies

semantics and example

An interpretation \mathcal{I} is a model of a TBox \mathcal{T} if it satisfies all its concept definitions:

$$A^{\mathcal{I}} = C^{\mathcal{I}}$$
 for all $A \equiv C \in \mathcal{T}$

Woman \equiv Person \sqcap Female

Man \equiv Person $\sqcap \neg$ Female

Course $\equiv \exists topic. \top$

Lecturer ≡ Person □ ∃teaches.Course

Student ≡ Person □ ∃attends.Course

BusyLecturer \equiv Lecturer \sqcap (≥ 3 teaches.Course)

BadLecturer \square Lecturer \square \forall teaches.(\forall attends⁻¹.(Bored \square Sleeping))

Terminologies

beyond concept definitions

Modern DL systems allow their users to state more general constraints for the interpretation of concepts.

A general concept inclusion axiom (GCI) is of the form

 $C \sqsubseteq D$ where C, D may be complex concept descriptions.

general TBox

An interpretation \mathcal{I} is a model of a set of GCIs \mathcal{T} if it satisfies all its concept inclusions:

$$C^{\mathcal{I}} \subseteq D^{\mathcal{I}}$$
 for all $C \sqsubseteq D \in \mathcal{T}$

Course $\sqcap \forall attends^{-1}$. Sleeping \sqsubseteq Boring

Lecturer \sqcap Student $\sqsubseteq \bot$

ABox assertions

state properties of individuals

An assertion is of the form

from a set N_I of such names.

C(a) (concept assertion) or r(a,b) (role assertion) where C is a concept description, r is a role, and a,b are individual names

An ABox is a finite set of assertions.

An interpretation \mathcal{I} is a model of an ABox \mathcal{A} if it satisfies all its assertions:

$$a^{\mathcal{I}} \in C^{\mathcal{I}}$$
 for all $C(a) \in \mathcal{A}$ $(a^{\mathcal{I}}, b^{\mathcal{I}}) \in r^{\mathcal{I}}$ for all $r(a, b) \in \mathcal{A}$

 \mathcal{I} assigns elements of $\Delta^{\mathcal{I}}$ to individual names

$$\begin{array}{ll} Lecturer(FRANZ), & teaches(FRANZ,C1), \\ Course(C1), & topic(C1,T1), \\ DL(T1) & \end{array}$$

Reasoning

makes implicitly represented knowledge explicit, provided as service by the DL system, e.g.:

Subsumption: Is C a subconcept of D?

 $C \sqsubseteq_{\mathcal{T}} D \text{ iff } C^{\mathcal{I}} \subseteq D^{\mathcal{I}} \text{ for all models } \mathcal{I} \text{ of the TBox } \mathcal{T}.$

Satisfiability: Is the concept C non-contradictory?

C is satisfiable w.r.t. \mathcal{T} iff $C^{\mathcal{I}} \neq \emptyset$ for some model \mathcal{I} of \mathcal{T} .

Consistency: Is the ABox A non-contradictory?

 \mathcal{A} is consistent w.r.t. \mathcal{T} iff it has a model that is also a model of \mathcal{T} .

Instantiation: Is e an instance of C?

 $\mathcal{A} \models_{\mathcal{T}} C(e) \text{ iff } e^{\mathcal{I}} \in C^{\mathcal{I}} \text{ for all models } \mathcal{I} \text{ of } \mathcal{T} \text{ and } \mathcal{A}.$

in presence of negation

polynomial

reductions

Reductions

between inference problems

Subsumption to satisfiability:

$$C \sqsubseteq_{\mathcal{T}} D$$
 iff $C \sqcap \neg D$ is unsatisfiable w.r.t. \mathcal{T}

Satisfiability to subsumption:

C is satisfiable w.r.t.
$$\mathcal{T}$$
 iff not $C \sqsubseteq_{\mathcal{T}} \bot$

Satisfiability to consistency:

C is satisfiable w.r.t.
$$\mathcal{T}$$
 iff $\{C(a)\}$ is consistent w.r.t. \mathcal{T}

Instance to consistency:

a is an instance of C w.r.t. \mathcal{T} and \mathcal{A} iff $\mathcal{A} \cup \{\neg C(a)\}$ is inconsistent w.r.t. \mathcal{T}

Consistency to instance:

 \mathcal{A} is consistent w.r.t. \mathcal{T} iff a is not an instance of \bot w.r.t. \mathcal{T} and \mathcal{A}

Reduction

getting rid of the TBox

Expansion of concepts:

For a given TBox \mathcal{T} and concept description C, the expansion $C^{\mathcal{T}}$ of C w.r.t. \mathcal{T} is obtained from C by

- replacing defined concepts by their definitions
- until no more defined concepts occur.

```
Woman \equiv Person \sqcap Female

Course \equiv ∃topic.\sqcap

Lecturer \equiv Person \sqcap ∃teaches.Course
```

Woman

☐ Lecturer expands to

Person \sqcap Female \sqcap Person \sqcap \exists teaches.(\exists topic. \top)

Reduction

getting rid of the TBox

Since TBoxes are acyclic, expansion always terminates,

but the expanded concept may be exponential in the size of \mathcal{T} .

$$A_0 \equiv \forall r.A_1 \sqcap \forall s.A_1$$

$$A_1 \equiv \forall r.A_2 \sqcap \forall s.A_2$$

$$\vdots$$

$$A_{n-1} \equiv \forall r.A_n \sqcap \forall s.A_n$$

The size of \mathcal{T} is linear in n, but the expansion $A_0^{\mathcal{T}}$ contains A_n 2^n times.

Reductions:

- C is satisfiable w.r.t. \mathcal{T} iff $C^{\mathcal{T}}$ is satisfiable w.r.t. the empty TBox \emptyset .
- $C \sqsubseteq_{\mathcal{T}} D$ iff $C^{\mathcal{T}} \sqsubseteq_{\emptyset} D^{\mathcal{T}}$.

Consistency and the instance problem can be treated similarly.

Classification

Computing the subsumption hierarchy of all concept names occurring in the TBox.

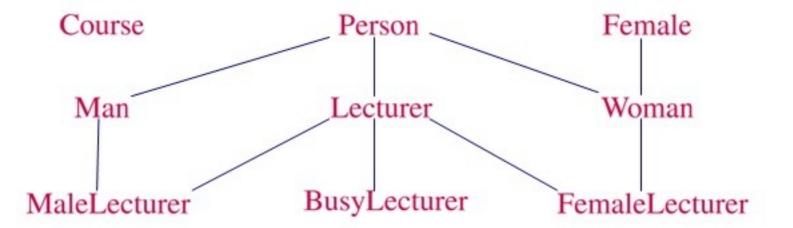
Man \equiv Person $\sqcap \neg$ Female

Woman \equiv Person \sqcap Female

MaleLecturer \equiv Man $\sqcap \exists$ teaches. Course

FemaleLecturer ≡ Woman □ ∃teaches.Course

BusyLecturer \equiv Lecturer \cap (\geq 3 teaches.Course)



Realization

Computing the most specific concept names in the TBox to which an ABox individual belongs.

```
Man \equiv Person \sqcap \negFemale
```

```
Woman \equiv Person \sqcap Female
```

MaleLecturer \equiv Man $\sqcap \exists$ teaches. Course

FemaleLecturer ≡ Woman □ ∃teaches.Course

BusyLecturer \equiv Lecturer \cap (≥ 3 teaches.Course)

```
Man(FRANZ), teaches(FRANZ, C1), Course(C1)
```

FRANZ is an instance of Man, Lecturer, MaleLecturer.

most specific

