Dresden

Description Logics

Franz Baader
Theoretical Computer Science
TU Dresden
Germany

Motivation and introduction to Description Logics
Tableau-based reasoning procedures
Automata-based reasoning procedures
Complexity of reasoning in Description Logics

Reasoning in inexpressive Description Logics

2 Franz Baader

Reasoning procedures requirements

1. The procedure should be a decision procedure for the problem.

2. The procedure should be as efficient as possible:

preferably optimal w.r.t. the (worst-case) complexity of the problem

3. The procedure should be practical:

easy to implement and optimize, and behave well in applications

The tableau-based resoning procedure for ALC
e satisfies the first requirement, as shown in the previous lecture.

e Highly-optimized implementations in systems like FaCT and RACER
demonstrate that it satisfies the third requirement.

e It does not satisfy the second requirement in the presence of GCls.

Dresden @ Franz Paader

Tableau-based procedures disadvantages

e the consistency problem for ALC with GClIs is ExpTime-complete, but it is
very hard to design a tableau-based algorithm that is better than NExpTime:

— exponentially long chains of role successors may be generated
before blocking occurs

— to each individual in the chain, non-deterministic rules may be applied

e termination requires blocking:
— proof of termination and soundness becomes more complicated

— for more expressive DLs (e.g., with number restrictions and

inverse roles) one needs sophisticated blocking conditions

Dresden @ Franz Paader

Automata-based procedures general idea

For simplicity, we restrict the attention to satisfiability,

i.e., consistency of an ABox of the form {Cy(ay)} w.r.t. a general TBox 7.

e Show that Cj is satisfiable w.r.t. 7 iff T and {Cj(a)} have a
tree-shaped model with root ay.

e Translate Cy, 7 into a tree automaton A, 7 that accepts exactly the
tree-shaped models of 7 and {Cjy(ag) }

e Test A 7 for emptiness: is there a tree accepted by A¢, 77

Dresden

2 Franz Baader

Automata-based procedures advantages and disadvantages

Dresden

separation between DL-dependent part (translation) from

DL-independent part (emptiness test)

termination 1s not an issue 1f we use automata working on infinite trees
well-suited for showing ExpTime upper-bounds:

translation 1s exponential, emptiness test polynomial

usually also best-case exponential:

translation required before emptiness test can be applied

no optimized implementations available

2 Franz Baader

Infinite trees definition

We consider infinite trees with a fixed out-degree £, whose nodes are

labeled with elements from a finite alphabet >_:

Example: £ =2 and £ = {a, b}

this tree 1s described by the mapping

o 1 t:{0,1}" — X with
o b 1f u starts with ()
,IF[”] ,

()
00_¢" 01 10 1
ﬁD\ o) (@)

k-ary tree over 2:
t:{0,....,.k =1} > X

0

a otherwise

Dresden @ Franz Paader

Automata on infinite trees informal description

The automaton labels nodes of the tree with states.

Q= {Hu-ﬁrﬁ’ﬁ

g I = {fm}

(q0,a) = (q1,92) (qo,a)

{1 .
(q1,0) = (q1,q1)

(g2, a) = (g2, q2)

The root 1s labeled with an initial state.

The labeling of the other nodes must be compatible
with the transition relation.

The transition relation may be non-deterministic.

Dresden

— (g2, 1)

2 Franz Baader

Automata on infinite trees formal description

2, 1. A) where

A looping automaton working on k-ary trees is of the form A = (C

=

e () is a finite set of states, and / C () the set of initial states;
e . is a finite alphabet;
e A C (Q x X x Q" is the transition relation.

A run of this automaton on a k-ary tree
t:{0,...,k— 1} - Yisa k-ary tree
A |+ PR k — 1}* — (@ such that

The run is called initial 1f q1 q1

e i) e [.

Looping automaton: no additional condition based on accepting states

Dresden @ Franz Paader

Accepted tree language

The tree language accepted by the looping automaton A is

L(.A) := {t | there is an initial run of .4 on the k-ary tree #}

Consider the following binary tree language over ¥ = {a, b}:

L := {t | a never occurs below a b in t}

{a
A= (Q,%,1,A) with

- {2 o {er? t}’e‘;}; i :-l i
'rfh /

L .Ir = {{:tf”._fjh}; qi i (a

e A ={(qs,b) — (qu,q)} U ./ \

{(ga,a) — (¢,4)]4q,¢ € Q}

Dresden @ Franz Paader

Accepted tree language

The tree language accepted by the looping automaton A is

L(A) := {t | there is a run of A on the k-ary tree t}

Consider the following binary tree language over ¥ = {a, b}:

L := {t | a never occurs below a b in t}

./4— {(JEJ{_\JW][h Ga

- {J o {er?qb}; i :l i
"rfh /

¢ I=1d 4} Qb

e A ={(qs,b) — (qu,q)} U ./ \

{(ga,a) — (¢,4)]4q,¢ € Q}

Dresden @ Franz Paader

The emptiness problem for looping tree automata

Given: a looping tree automaton .4

Question: is L(A) = ()?

Top-down approach:

e label root with an initial state:

e apply transition relation to label successor nodes.

Problem:

e (ermination requires blocking if states are repeated on a path;

NP

e if the automaton 1s non-deterministic, then we must consider

all possibile initial states and transitions.

Dresden @ Franz Paader

The emptiness test Bottom-up approach

Dresden

e Compute all bad states, 1.e., states that cannot occur in a run.

e L(A) =1 iff all initial states are bad.

Bady(A) :=)

Bad;(.A) := {q | there is no transition (q,-) — (-)}
g =1

while Bad;(A) # Bad;_;(.A) do

Bad;.(A) := Bad;(A) U {q | for all transitions (q,-) = (q1, ..., qx)
there is j with ¢; € Bad;(A)}
1:=1+1
od

Answer “empty” iff I C Bad;(.A)

2 Franz Baader

The emptiness test Bottom-up approach

The algorithm decides the emptiness problem in polynomial time:

e the while-loop always terminates after at most |()| iterations:

Bady(.A) C Bad;(.A) C Badsy(.A) C ... C Bad.(.A) = Bad;;1(A)
for some k& < |

e every single iteration of the loop can be done in polynomial time;
e if ¢ € Bad;(.A) for some ¢ > 0 then ¢ cannot occur in a run of A;
e if ¢ & Bad,(.A) then there is a run containing ¢ as label of the root;

for some tree

e ifi € I\ Bad,(.A) then there is an initial run.

Dresden @ Franz Paader

Tree model property of ALC.

Interpretations can be viewed as graphs:

e nodes are the elements of _‘{I;

o daitisn of sl vielde ol model of
e interpretation of roles yields edges; |
’ oY) AC3r.B
e I
¢ interpretation of concepts yields node labels. BLC dr.A a €A
AUBLC ds. T

Starting with a given node, the graph
can be unraveled into a tree without

“changing membership™ in concepts.
model of

ALC Jdr.B

B C dr.A
AUBLC ds.T

Dresden @ Franz Paader

Tree model property of ALC.

T general ALC-TBox, (' ALC-concept:

(' is satisfiable w.r.t. 7
iff

there is a tree model of T

whose root belongs to '

model of

ACdr.B

BLC 3r.A a€ Ar
AUBLC ds. T

Dresden

model of

AC dr.B
BLCdr.A
AUBLC ds.T

2 Franz Baader

Subdescriptions of ALC-concept descriptions

e C € N¢: Sub(A) :={A} for A € N¢;
o C=C1NCyorC =C1UCs: Sub(C) := {C}USub(C}) USub(Cs);

e C==DorC=3r.DorC =Vr.D: Sub(C):={C} U Sub(D).

Sub(AM3r(AUB)) ={AN3r(AUB), A, 3r(AUB), AUB, B}

Sub(7T) = U Sub(C') U Sub(D)

CCDeT

e the cardinality of Sub((') is bounded by the size of ('

e the size of the elements of Sub(C') is bounded by the size of C';

e cardinality and size of Sub(7) is polynomial in the size of 7.

Dresden @ Franz Paader

Extension of tree models

Let 7 be a general TBox, (y a concept description,
and 7 a tree model of 7 whose root belongs to (.

to trees labeled with subdescriptions

Extend node labels to subdescriptions from .S := Sub(7) U Sub(C))):

{d) = {C e S|de C*).

1 (A)
@ ay < f"lf

\‘ (4)
. 14} model of

{b’} : S
1A} < BC 3r.A
& WU Aupcaa

{(ap) = {A,AU B,3r.B,3s.A}
{(by) = {B,AU B,3r.A,3s.A}

f{jt"q;] == {AJ ..""1 L] H}

Sub(7) U Sub(A) = {A,3r.B, B,3r.A, AU B, 3s.A}

Dresden

2 Franz Baader

Tree automaton main idea

Given 7 and (y, construct a looping automaton that accepts

the extended tree models of 7 whose root label contains (.

Problem: mismatch between the underlying kinds of trees

1. Edge labels: extended tree models have roles as edge labels,

automata work on trees without edge labels

Solution: add role names to node label of successors

{r,A,AUB,3r.B,3s.A}

\
s, A A
\:. { , A1, UB}

ir.B. AL B, 3r.A, d35.4}

r

Dresden

2 Franz Baader

Tree automaton

Problem: mismatch between the underlying kinds of trees

2. Varying arity: extended tree models have no fixed number of successors,

automata work on trees with fixed arity k

Solution: take as & the number of all existential restrictions in S

S={A,3r.B,B,3r.A, AU B,3s.A} » k=3

e a given tree model can be modified into one where nodes have

at most & successors

e for missing successors we can generated dummies

& @ O,
{r,B,AUB,dr.A,3s.A} {s,A, AU B}

Dresden @ Franz Paader

Preliminaries required to define the trees that
our automata are supposed to accept

Let 7 be a general TBox and (y a concept description.

Normalization 1:

Without loss of generality we assume that the GClIs in 7 are of the form T C D:
C C D canbereplacedby TC -C'UD

Normalization 2:

Without loss of generality we assume that 'y and all concept descriptions in T

are 1n negation normal form (NNF).

We define
S = ciLlher]l U Sl.lh'.r_ (.f[]]'
k= card({C € S| C is an existential restriction})

Dresden @ Franz Paader

Hintikka trees the trees that our automata are supposed to accept

The node labels of these trees are Hintikka sets.

A set L C S U Npiscalled Hintikkaset if L =0 or
e [contains exactly one role name occurring in S’

e f TCDeTthenD e L;

o ifCMND € Lthen {C,D} C L; H

set of all Hintikka sets

o if CUDE Lthen{C,D}NL #0;

e {A,~A} € L for all concept names A.

Dresden @ Franz Paader

Hintikka trees the trees that our automata are supposed to accept

The k-ary tree h : {0,...,k — 1}* — H is a Hintikka tree for 7 and C, if

o (€ hle)

e For all nodes u, the tuple (h(u), h(u0), ..., h(u(k — 1))) satisfies

the following Hintikka successor conditions:
— if h(u) = () then A(ui) = () foralli € {0,...,k — 1};
— if dr.C' € h(u) then there is an ¢ with {C,r} C h(ui);

— ifVr.C' € hi(u)and r € h(uz) then C' € h(uz).

'y is satisfiable w.r.t. T

1ff

there 1s a Hintikka tree for 7 and

Dresden @ Franz Paader

Tree automaton accepting the Hintikka trees for 7 and Cj

Ac 7:=(Q, %, I, A) where

28 ek states and node labels are Hintikka sets
o [={LeQ|Cye L}; initial states contain C)

e A= {({}ﬁ a, qo, - - ~:G*L-—1]' = {:u) X X X (QL |
g = oand (q, gy, . .., qr—1) satisfies the Hintikka successor condition }

run identical to tree

The k-ary tree h : {0, ...,k — 1}* — H is accepted by A 1

iff

it is a Hintikka tree for 7 and (),

Dresden @ Franz Paader

Main result

Satisfiability of ALC-concept descriptions w.r.t. general ALC-TBoxes

can be decided in exponential time.

1. C is satisfiable w.r.t. 7 iff there is a Hintikka tree for 7 and C
iff L(Ac,7)#0

2. The size of Aq 7 is exponential in the size of Cjy and 7.

3. The emptiness test is polynomial in the size of A¢, 7.

Note:

this bound 1s worst-case optimal since one can show

ExpTime hardness of the problem

Dresden @ Franz Paader

