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Reasoning procedures requirements

. The procedure should be a decision procedure for the problem.

2. The procedure should be as efficient as possible:

preferably optimal w.r.t. the (worst-case) complexity of the problem

Given a DL (like ALC) and an inference problem (like satisfiability)
one must answer the following questions:

e [s the inference problem decidable for this DL?

e [f yes, how complex is the problem?
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(I_Tn)dec 1dabi llf\ of a problem

e To show that a problem 1s decidable, 1t 1s enough to describe a
decision procedure,

and prove that it is one (sound, complete, terminating).

e To show that a problem 1s undecidable, one must show that there cannot
be a decision procedure:

— Diagonalization: leads assumption that there 1s such a procedure to
a contradiction (e.g.: Halting problem for TMs).

— Reduction: show that a problem known to be undecidable can be
reduced to our problem.

Problem B
Problem A

computable

A decidable - B decidable
A undecidable » 3 undecidable
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& omplexjt}--‘ of a problem

Complexity class: collects problems that can be solved within a certain resource bound
e P: problems solvable in polynomial time by a deterministic machine
e NP: problems solvable in polynomial time by a nondeterministic machine
e PSpace: problems solvable with polynomial space by a deterministic machine
e NPSpace: problems solvable with polynomial space by a nondeterministic machine
e ExpTime: problems solvable in exponential time by a deterministic machine

e NExpTime: problems solvable in exponential time by a nondeterministic machine

P C NP C PSpace = NPSpace C ExpTime C NExpTime

Savitch’s theorem

Stri Eide s P  ExaTh open problem
Slriciness L S S:
rictness of the inclusions C ExpTime P e
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& omplexjt}--‘ of a problem

A problem 1s complete for a complexity class K if 1t 1s in K and hard for K:

e in K: show that there 1s a decision procedure that works within the re-
source bound defining K

e hard for K: all problems in K can be reduced in polynomial time to this
problem

— direct proof: show that any TM that runs within the resource bound
can be polynomially simulated by a problem instance

— proof by reduction:

Problem B
Problem A

computable

in poly. time
Ain K E BinK

A K-hard » B K-hard
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Complexity of reasoning in ALC

e The satisfiability, subsumption, instance and consistency problem in
ALC (without TBox) are PSpace-complete.

The same 1s true w.r.t. acyclic TBoxes.
In PSpace: modification of the tableau-based algorithm l
PSpace-hard: reduction of QBF (quantified Boolean formulae)
e W.r.t. general TBoxes, all these problems are ExpTime-complete.

In ExpTime: automata-based algorithm

ExpTime-hard: simulation of polynomial space alternating TMs

e There are “simple” extensions of ALC for which satisfiability (and thus
all other problems) are undecidable.

ALC with general TBoxes and feature agreements
. . # 4
reduction of the domino problem

Dresden @ Franz Paader



Satisfiability problem in ALC without TBoxes

Tableau-based decision procedure

e start with ABox of form Ay = {Cyy(ap) };

e because of Savitch’s theorem, we can ignore non-determinism,

1.e., the U-rule chooses one successor ABox;
e thus only one complete ABox 1s generated;

¢ unfortunately, this complete ABox may be exponential in the size of Cj:

o
(-Tf'-i-l

Jr. AN dr.B size of (), is
3r.AMN 3r.B NYr.C; linear in n

The tableau-based decision procedure generates a

tree-shaped model with 2" leafs.
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PSpace algorithm for satisfiability in ALC without TBoxes

Dresden

The complete ABox (tree-shaped model) generated by the tableau-based

decision procedure may be exponential, but
e the branching factor is linear in the size of Cy;
e the length of each path in the tree is linear in the size of C;

e the size of each node label (concept assertions for this node) is
polynomial in the size of Cy;

e rule application is local: concerns a node and one direct successor;

e obvious contradictions are local: concern the label of one node.

[dea:

generate/explore the tree in a depth-first manner
while keeping only one path in memory
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PSpace algorithm for satisfiability in ALC without TBoxes

T
/

Idea:

generate/explore the tree in a depth-first manner

while keeping only one path in memory
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PSPHC‘S ﬂlgﬂl*iﬂ]ﬂl formulation as a recursive procedure

The procedure sat takes as input a finite set C of .ALC-concept descriptions,

and returns true 1ff their conjunction is satisfiable.

sat(C) = if {A,~A} C C for some A € N¢
then return false
elseifCNDel
then sat((C \ {C N D})u{C,D})

else if CUD eC
then sat((C \ {C U D}HU{C}PHorsat((C\{CUD})uU{D})

else if forall Ir.C € C
sat(C U {D | Vr.D € C})

then return true

else return false
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PSpace algorithm extension to ABox consistency

Precompletion: apply non-generating tableau-rules (M-rule, Li-rule,V-rule)

to the ABox until no such rule applies
e non-deterministic rule (Ll-rule) again harmless due to Savitch’s theorem;
e size of each precompletion polynomial in the size of the input ABox;
e aprecompleted ABox A is consistent iff the concepts

Lo 1) &
f‘['-!.r::'[:.r'-l

are (separately) satisfiable for all individual names a in A.

{Vr.—A, Ir.B}

®

{BU v-uv-r.ﬂé}/' l
;
"*“\® {AUVr-B,3r.A)
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PSpace algorithm extension to ABox consistency

Precompletion: apply non-generating tableau-rules (M-rule, Li-rule,V-rule)

to the ABox until no such rule applies
e non-deterministic rule (Ll-rule) again harmless due to Savitch’s theorem;
e size of each precompletion polynomial in the size of the input ABox;
e aprecompleted ABox A is consistent iff the concepts

Co= I1 C
C'la)eA

are (separately) satisfiable for all individual names a in A.

ks {Vr.-A,3r.B,Vr.~B}
ey (b) Cy=Vr.—mAN3Ir.BNVr.-B

—;B : vaf —1}3 fa
: <$/' l?‘ 1s unsatisfiable
‘?\® {A LI Yy —B, dr.A,—~A, Vf',_lB}
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PSPHGB ﬂlg(}l*iﬂ]ﬂl extension to acyclic TBoxes

Problem: expansion of TBox may result in an exponential blow-up

Idea: expansion only “on demand”

The expansion-rule

Condition: A contains A(a) for a definition A = C' € T, but not C'(a)

Action: A :=AU{C(a)}

The approach for obtaining a PSpace algorithm described before
also works 1n the presence of this rule.
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PSpace hardness by reduction to QBF

A quantified Boolean formula (QBF) is of the form

Y = hp1-- - QuPa-p
where (); € {3,V} and  is a propositional formula
over the variables p;, ..., p,.

Validity of v: well-known PSpace-complete problem

e if n = (0 then ¢ contains no variables:
i valid 1ff ¢ evaluates to 1.

e if n > 0, then consider %o = @Qap2.-+-Qupn-lp1 < 0] and
Y1 = Qi‘pi- T QHPH-:{;[)“ = E]

if ()1 =V then v valid iff vy and v, valid

if ()1 =3 then © valid iff ¥ or ey valid
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Valid lt}. of QBF example

Vp1.dpo.3p3.(p1 — (p2 A p3)) is valid
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Reduction of validity of QBF to satisfiability in ALC

Idea: describe such an evaluation tree with an ALC-concept

Role names:

r yields the edges of the tree

Concept names:

b 2 . . :
Fiy... Iy one for each propositional variable p;

f WP SN T’ contains nodes at depth > 1

Auxiliary concept descriptions:

n+1
Depth := 'Ij1 1; = 1 C' = D abbreviates ~C' U D
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Reduction of validity of QBF to satisfiability in ALC

Auxiliary concept descriptions:

Determined: from depth 7 on, the value of p; is fixed

I

V1AT: =% ((F= Y B [ (B = Yr P )))

=1

Branching: encodes the quantifier prefix (1py. - - Qupn

M (T: N -Tiv1) = (@Gr(Liqa N T N Fyg) M
’ %:f:”; | Ir.(Tiva M ~Tip2 M 2 Fya))

B

M P ) = Gelo =g BBl
0<i1<n-1

3?‘.(??‘4_1 [] _'T,é-|-2 [ _‘pé-l-l)}
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Reduction of validity of QBF to satisfiability in ALC

Auxiliary concept descriptions:

Encoding of ¢: to obtain C', we

replace p; by /7, and the Boolean operations A, V, = by 1, LI, =

The reduction concept C'.:

It
Ton-T1nl1Vr..--¥r. (Depth
=04 times .
Determined M
Branching I

(T = C,))

Y valid iff (O satisfiable | — satisfiability PSpace-hard

subsumption, consistency,
instance problem as well
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ALCF extension of ALC by feature agreements

Feature: symbol for a partial function (functional role)

ff: AT — AT partial function

Feature chain: composition of partial functions

(f] --'fu}I - J't[j: Al 17(::: [:fl '--fn)I(d) = fﬂ(' 2 fl[:fl(d)) gt }

Features can be used like roles 1n value and existential restrictions:

Vf.C and 3f.C

Feature agreement: uw = v where u, v are feature chains
with semantics:

')I = {d € A* | ut(d) = f?I{rr’} and both are defined }
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ALCF extension of ALC by feature agreements

Example:

individuals having the same eyecolor as their mother:

mother eyecolor = eyecolor

GClI:

if the eyecolor of father and mother agree, then the child also has this eyecolor

father eyecolor = mother eyecolor L father eyecolor = eyecolor

Feature agreement: uw = v where u, v are feature chains

with semantics:

(u = v)F = {d € AT | v*(d) = v*(d) and both are defined}
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Domino pr(}blem well-known undecidable problem

Domino types: squares with colored edges

arbitrarily many for every type

may not be turned

Domino problem:

can we tile the quarter plane such that touching edges match
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Domino problem more formal definition

Domino system D = (D, H, V)

D: finite set of domino types
H: horizontal compatibility relation H C D x D

V1 vertical compatibility relation V' C D x D

Solution of D Domino problem

mapping £ : N x N — [ such that Given a domino system D

Question does 1t have a solution
o (t(z,y),t(zx+1,y)) € H

o (t(z,y),t(z,y+1) eV
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Reduction of the domino problem to
satisfiability in ALCF with GCls

C{'.IHL‘E]H NaImnes.

Ay foreveryd € D a € A; means: domino d is placed at this position

Role names:

r and u r for “righ[“‘ , 1 for uupn I
GCls: :
T ¥ =89 enforces the grid H.Ej U
-
TE j,lg, —(Ag M Ag) every position has at most one domino
==’
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Reduction of the domino problem to
satisfiability in ALCF with GCls

GCls:
TE IT(A;= LU 3Ir.d;) horizontal compatibility
— deD (d.d')eH '
FE A= Ll SHedyl vertical compatibility
de D (d.d')el ;
Concept description: Cs = Ll Ay

del)

(' is satisfiable w.r.t. the above GCls
satisfiability w.r.t. GCIs
in ALCJF undecidable

T

the domino problem has a solution

Dresden @ Franz Paader



AEC VETSUS AEC.}— complexity of satisfiability and subsumption

ALC ALCF
no TBox PSpace-complete PSpace-complete
acyclic TBox PSpace-complete NExpTime-complete
general TBox ExpTime-complete undecidable
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