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Originally introduced in automated deduction

e Basic operation of J.A. Robinson’s resolution inference principle [Rob65].

e Important! To compute a most general unifier (mgu).

f(x,y) =" f(y,x) has many solutions: x,y + f(x),x,y — f(f(x)),...

x +— y generates all of them, i.e., it is a mgu

Rediscovered in the area of term rewriting systems.

o Knuth-Bendix completion algorithm [KB70]
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Equational Unification

Initial goal: to integrate troublesome axioms (like commutativity, associativity) into the

unification process.
e Changes the nature of the problem:
f(a,x) =" f(b, y) has no solution w.r.t. “syntactic unification”.

But, x — b,y > ais a solution w.r.t. C = {f(x,y) = f(y,x)}
f(a> b) =C f(b a)

o A little bit more formal/general,

Equational theory. Let E by a set of identities between first-order terms. The
equational theory defined by =g consists of all identities s = t that can be
“derived” from E.

E-unification problem. I := {s; =f t1,...,5, =f t,}. A substitution ¢ is an
E-unifier of T if

a(si)) =g o(ti), forall 1 <i < n.
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o Unification type: cardinality of such sets.

e It can be infinite:
(associativity) A = {f(x, f(y,z)) = f(f(x,y),2z)} and T = {f(a,x) =} f(x,a)}

e minimal complete sets of unifiers may not exist (we will later see)
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Unification theory

It investigates:
o Decidability and complexity of E-unification problems.
e Computation of E-unifiers (if they exists).

o Unification type of equational theories.

Applications in many areas:
e Databases, Information retrieval, Planning Systems, ...
e Description Logics: detecting redundancies in ontologies.

e Modal Logics: special case of recognizability of admissible inference rules.
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What are Description Logics (DLs)?

“...a family of knowledge representation languages that can be used to represent
knowledge of an application domain in a structured and well-understood way..."

Important notions of the domain — represented as concept descriptions:

Atomic properties — Concept names
Human, Athlete, Baseball, Helmet, . . .

Relations — Role names

. lays, wears
. a human, that is an athlete, plays,

plays baseball, wears a helmet or a cap,
is not lazy, only owns shiny baseball bats ...

Concept descriptions: built using the concept/role constructors provided by a DL.

Human M Athlete M Jwears.(Helmet U Cap)r
Jplays.Baseball 1 —Lazy M Yowns_bat.Shiny
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What are Description Logics (DLs)? Semantics

Formal semantics inherited from first-order logic

I:
C Human, Athlet )
E,lfp} wears {Human, Athlete} Concept names: unary predicates
d>
wears lays
owns_bat Role names: binary predicates
d3 da
L
{Athlete, Human, Lazy} ds {Baseball}
L]
{Shiny}
Formulas (concept descriptions)
Concept constructors Semantics
n vr.C (Human 1 Athlete)” = {d2, d3}  (3plays.Baseball)T = {d>}
- dr.C ;L (Cap U Helmet)? = {d1} (Vowns_bat.Shiny)T = dom(Z)
<nr.c T (-Lazy)” = {d1, da, ds, d5}

A
ALC Vr.C=-3r~C CUD=—=(-Cn-D) L=-T
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(Baseball_Player)T = ()% T = T iff T satisfies
(Pitcher) C (Baseball_Player I 3throws.Fastball)? all definitions/GCls in T°

Assertional knowledge (knowledge about concrete situations)

Pitcher(pedro) A finite set of assertions is called an ABox A

Shiny(s) —Lazy(omar) A knowledge base is a pair K = (T, A)

Human(pedro) .
Entailments of K: Pedro throws FastBall, ...
owns_bat(omar, s)
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Reasoning in DLs

Standard Inferences

o Concept satisfiability.

e Subsumption.

Instance: Two concepts C, D and a TBox 7.
Question: Does C* C D in all models Z of 77

e Knowledge base consistency, query answering.

Non-Standard Inferences

Most specific generalizations.

e Least common subsumer.

Unification.

11/22
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An Introduction to
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Detecting redundancies in ontologies - TBoxes

e Suppose that the second developer uses a different definition, i.e., c) instead of b):
a) Ffinding.(Head_injury 1 Jseverity.Severe)
not unifiable!

c) dstatus.Emergency M 3finding.(Severe_injury M Jfinding_site.Head)

e But they are, in presence of background knowledge (TBox) containing the GCl:

finding.3severity.Severe C Jstatus.Emergency

15/22
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Let 7 be a general TBox that is ground. An L-unification problem w.r.t. 7 is of the form:
r={G="0y,...,C, =" D,}.
A substitution o is a unifier of I w.r.t. T if

o(G) =7 o(Di), forall 1 <i<n.

Definition 1 corresponds to the special case where 7 = ().

The decision problem

L-Unification Decision Problem

Instance: A ground general TBox 7 and an L-unification problem T.
Question: Is there a unifier o of [ w.r.t. 77
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e o € M implies ¢ is a unifier of T.
e if o is a unifier of I', then 6 < o for some 8 € M.

M is called minimal, iff M also satisfies:
e if 0,0 € M, then o0 < 0 implies o = 6.

e Unification type

An L-unification problem I has type
e unitary iff it has a minimal complete M of size 1.
o finitary iff it has a finite minimal complete M.
o finitary iff it has an infinite minimal complete M.
e zero iff it does not have a minimal complete M.
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e First investigated for FLo: ExpTime-complete w.r.t. the empty TBox.
e In £L, the problem is easier: NP-complete.

e Only a few results exist for unification w.r.t. arbitrary TBoxes.

Boolean DLs

e Important open problem: unification in the nomal modal logic K (syntactic variant
of ALC).

o Undecidability results for very expressive DLs: transferred from research in Modal
Logics.
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