Unification in Description Logics
Part I: Introduction

Oliver Ferndndez Gil

Chair of Automata Theory

TECHNISCHE
@ UNIVERSITAT
DRESDEN

ESSLLI'19
Riga, August 2019

1/22

What is unification?

2/22

What is unification?

3/22

What is unification?

Unification problem: make two given first-order logic terms syntactically equal.

3/22

What is unification?

Unification problem: make two given first-order logic terms syntactically equal.

t:f(x,g(a,b)) s:f(g(y,b), X)

3/22

What is unification?

Unification problem: make two given first-order logic terms syntactically equal.

t:f(x,g(a,b)) s:f(g(y,b), X)

Q: can x and y be substituted in s and t by terms such that the resulting terms are “identical”?

3/22

What is unification?
Unification problem: make two given first-order logic terms syntactically equal.

t:f(x,g(a,b)) s:f(g(y,b), X)

Q: can x and y be substituted in s and t by terms such that the resulting terms are “identical”?

1

x + g(a, b),y ~ b is a solution of s =’ t (a unifier).

3/22

What is unification?

Unification problem: make two given first-order logic terms syntactically equal.

t:f(x,g(a,b)) s:f(g(y,b), X)

Q: can x and y be substituted in s and t by terms such that the resulting terms are “identical”?

1

x + g(a, b),y ~ b is a solution of s =’ t (a unifier).

Originally introduced in automated deduction

3/22

What is unification?
Unification problem: make two given first-order logic terms syntactically equal.

t:f(x,g(a,b)) s:f(g(y,b), X)

Q: can x and y be substituted in s and t by terms such that the resulting terms are “identical”?

1

x + g(a, b),y ~ b is a solution of s =’ t (a unifier).

Originally introduced in automated deduction

e Basic operation of J.A. Robinson’s resolution inference principle [Rob65].

3/22

What is unification?

Unification problem: make two given first-order logic terms syntactically equal.

t:f(x,g(a,b)) s:f(g(y,b), X)

Q: can x and y be substituted in s and t by terms such that the resulting terms are “identical”?

1

x + g(a, b),y ~ b is a solution of s =’ t (a unifier).

Originally introduced in automated deduction

e Basic operation of J.A. Robinson’s resolution inference principle [Rob65].

e Important! To compute a most general unifier (mgu).

3/22

What is unification?

Unification problem: make two given first-order logic terms syntactically equal.

t:f(x,g(a,b)) s:f(g(y,b), X)

Q: can x and y be substituted in s and t by terms such that the resulting terms are “identical”?

1

x + g(a, b),y ~ b is a solution of s =’ t (a unifier).

Originally introduced in automated deduction

e Basic operation of J.A. Robinson’s resolution inference principle [Rob65].

e Important! To compute a most general unifier (mgu).

f(x,y) =" f(y,x) has many solutions: x,y + f(x),x,y — f(f(x)),...

3/22

What is unification?

Unification problem: make two given first-order logic terms syntactically equal.

t:f(x,g(a,b)) s:f(g(y,b), X)

Q: can x and y be substituted in s and t by terms such that the resulting terms are “identical”?

1

x + g(a, b),y ~ b is a solution of s =’ t (a unifier).

Originally introduced in automated deduction

e Basic operation of J.A. Robinson’s resolution inference principle [Rob65].

e Important! To compute a most general unifier (mgu).

f(x,y) =" f(y,x) has many solutions: x,y + f(x),x,y — f(f(x)),...

x +— y generates all of them, i.e., it is a mgu

3/22

What is unification?

Unification problem: make two given first-order logic terms syntactically equal.

t:f(x,g(a,b)) s:f(g(y,b), X)

Q: can x and y be substituted in s and t by terms such that the resulting terms are “identical”?

1

x + g(a, b),y ~ b is a solution of s =’ t (a unifier).

Originally introduced in automated deduction

e Basic operation of J.A. Robinson’s resolution inference principle [Rob65].

e Important! To compute a most general unifier (mgu).

f(x,y) =" f(y,x) has many solutions: x,y + f(x),x,y — f(f(x)),...

x +— y generates all of them, i.e., it is a mgu

Rediscovered in the area of term rewriting systems.

3/22

What is unification?

Unification problem: make two given first-order logic terms syntactically equal.

t:f(x,g(a,b)) s:f(g(y,b), X)

Q: can x and y be substituted in s and t by terms such that the resulting terms are “identical”?

1

x + g(a, b),y ~ b is a solution of s =’ t (a unifier).

Originally introduced in automated deduction

e Basic operation of J.A. Robinson’s resolution inference principle [Rob65].

e Important! To compute a most general unifier (mgu).

f(x,y) =" f(y,x) has many solutions: x,y + f(x),x,y — f(f(x)),...

x +— y generates all of them, i.e., it is a mgu

Rediscovered in the area of term rewriting systems.

o Knuth-Bendix completion algorithm [KB70]

3/22

Equational Unification

4/22

Equational Unification

Initial goal: to integrate troublesome axioms (like commutativity, associativity) into the
unification process.

4/22

Equational Unification

Initial goal: to integrate troublesome axioms (like commutativity, associativity) into the
unification process.

e Changes the nature of the problem:

f(a,x) =" f(b, y) has no solution w.r.t. “syntactic unification”.

4/22

Equational Unification
Initial goal: to integrate troublesome axioms (like commutativity, associativity) into the
unification process.

e Changes the nature of the problem:

f(a,x) =" f(b, y) has no solution w.r.t. “syntactic unification”.

But, x — b,y > ais a solution w.r.t. C = {f(x,y) = f(y,x)}

4/22

Equational Unification

Initial goal: to integrate troublesome axioms (like commutativity, associativity) into the

unification process.

e Changes the nature of the problem:

f(a,x) =" f(b, y) has no solution w.r.t. “syntactic unification”.

But, x — b,y > ais a solution w.r.t. C = {f(x,y) = f(y,x)}
f(ar b) =C f(b 8)

4/22

Equational Unification

Initial goal: to integrate troublesome axioms (like commutativity, associativity) into the

unification process.
e Changes the nature of the problem:
f(a,x) =" f(b, y) has no solution w.r.t. “syntactic unification”.

But, x — b,y > ais a solution w.r.t. C = {f(x,y) = f(y,x)}
f(a> b) =C f(b a)

o A little bit more formal/general,

Equational theory. Let E by a set of identities between first-order terms. The
equational theory defined by =g consists of all identities s = t that can be
“derived” from E.

E-unification problem. I := {s; =f t1,...,5, =f t,}. A substitution ¢ is an
E-unifier of T if

a(si)) =g o(ti), forall 1 <i < n.

4/22

Equational Unification

Most general unifiers need not exist

5/22

Equational Unification

Most general unifiers need not exist
e A C-unification problem with two minimal “non-comparable” unifiers:

r={f(x,y) =% f(a,b)} X+ a,y— b x+— by a

5/22

Equational Unification

Most general unifiers need not exist
e A C-unification problem with two minimal “non-comparable” unifiers:

r={f(x,y) =% f(a,b)} xr>a,y—>b xrbyrra

o Notion of a mgu needs to be extended to that of

a minimal complete set of unifiers.

5/22

Equational Unification

Most general unifiers need not exist
e A C-unification problem with two minimal “non-comparable” unifiers:

r={f(x,y) =% f(a,b)} xr>a,y—>b xrbyrra

o Notion of a mgu needs to be extended to that of

a minimal complete set of unifiers.

o Unification type: cardinality of such sets.

5/22

Equational Unification

Most general unifiers need not exist
e A C-unification problem with two minimal “non-comparable” unifiers:

r={f(x,y) =% f(a,b)} xr>a,y—>b xrbyrra

o Notion of a mgu needs to be extended to that of

a minimal complete set of unifiers.

o Unification type: cardinality of such sets.

e It can be infinite:
(associativity) A = {f(x, f(y,z)) = f(f(x,y),2z)} and T = {f(a,x) =} f(x,a)}

5/22

Equational Unification

Most general unifiers need not exist
e A C-unification problem with two minimal “non-comparable” unifiers:

r={f(x,y) =% f(a,b)} xr>a,y—>b xrbyrra

o Notion of a mgu needs to be extended to that of

a minimal complete set of unifiers.

o Unification type: cardinality of such sets.

e It can be infinite:
(associativity) A = {f(x, f(y,z)) = f(f(x,y),2z)} and T = {f(a,x) =} f(x,a)}

e minimal complete sets of unifiers may not exist (we will later see)

5/22

Unification theory

It investigates:

6/22

Unification theory

It investigates:

o Decidability and complexity of E-unification problems.

6/22

Unification theory
It investigates:

o Decidability and complexity of E-unification problems.

e Computation of E-unifiers (if they exists).

6/22

Unification theory

It investigates:
o Decidability and complexity of E-unification problems.
e Computation of E-unifiers (if they exists).

e Unification type of equational theories.

6/22

Unification theory
It investigates:
o Decidability and complexity of E-unification problems.

e Computation of E-unifiers (if they exists).

e Unification type of equational theories.

Applications in many areas:

6/22

Unification theory

It investigates:
o Decidability and complexity of E-unification problems.
e Computation of E-unifiers (if they exists).

e Unification type of equational theories.

Applications in many areas:

e Databases, Information retrieval, Planning Systems, ...

6/22

Unification theory

It investigates:
o Decidability and complexity of E-unification problems.
e Computation of E-unifiers (if they exists).

o Unification type of equational theories.

Applications in many areas:
e Databases, Information retrieval, Planning Systems, ...

e Description Logics: detecting redundancies in ontologies.

6/22

Unification theory

It investigates:
o Decidability and complexity of E-unification problems.
e Computation of E-unifiers (if they exists).

o Unification type of equational theories.

Applications in many areas:
e Databases, Information retrieval, Planning Systems, ...
e Description Logics: detecting redundancies in ontologies.

e Modal Logics: special case of recognizability of admissible inference rules.

6/22

Description Logics

dl.kr.org

7/22

What are Description Logics (DLs)?

“...a family of knowledge representation languages that can be used to represent
knowledge of an application domain in a structured and well-understood way..."

8/22

What are Description Logics (DLs)?

“...a family of knowledge representation languages that can be used to represent
knowledge of an application domain in a structured and well-understood way..."

Important notions of the domain — represented as concept descriptions:

8/22

What are Description Logics (DLs)?

“...a family of knowledge representation languages that can be used to represent
knowledge of an application domain in a structured and well-understood way..."

Important notions of the domain — represented as concept descriptions:

8/22

What are Description Logics (DLs)?

“...a family of knowledge representation languages that can be used to represent
knowledge of an application domain in a structured and well-understood way..."

Important notions of the domain — represented as concept descriptions:

. a human, that is an athlete,
plays baseball, wears a helmet or a cap,
is not lazy, only owns shiny baseball bats ...

8/22

What are Description Logics (DLs)?

“...a family of knowledge representation languages that can be used to represent
knowledge of an application domain in a structured and well-understood way..."

Important notions of the domain — represented as concept descriptions:

Atomic properties — Concept names
Human, Athlete, Baseball, Helmet, . . .

. a human, that is an athlete,
plays baseball, wears a helmet or a cap,
is not lazy, only owns shiny baseball bats ...

8/22

What are Description Logics (DLs)?

“...a family of knowledge representation languages that can be used to represent
knowledge of an application domain in a structured and well-understood way..."

Important notions of the domain — represented as concept descriptions:

Atomic properties — Concept names
Human, Athlete, Baseball, Helmet, . . .

Relations — Role names

. lays, wears
. a human, that is an athlete, plays,

plays baseball, wears a helmet or a cap,
is not lazy, only owns shiny baseball bats ...

8/22

What are Description Logics (DLs)?

“...a family of knowledge representation languages that can be used to represent
knowledge of an application domain in a structured and well-understood way..."

Important notions of the domain — represented as concept descriptions:

Atomic properties — Concept names
Human, Athlete, Baseball, Helmet, . . .

Relations — Role names

. lays, wears
. a human, that is an athlete, plays,

plays baseball, wears a helmet or a cap,
is not lazy, only owns shiny baseball bats ...

Concept descriptions: built using the concept/role constructors provided by a DL.

Human M Athlete M Jwears.(Helmet U Cap)r
Jplays.Baseball 1 —Lazy M Yowns_bat.Shiny

8/22

What are Description Logics (DLs)? Semantics

Formal semantics inherited from first-order logic

9/22

What are Description Logics (DLs)? Semantics
Formal semantics inherited from first-order logic
T:

d. °
h o

ds

9/22

What are Description Logics (DLs)? Semantics

Formal semantics inherited from first-order logic

/4
Ca Human, Athlete A
E!l‘p} { . } Concept names: unary predicates
d>
CI3 d4
. .
{Athlete, Human, Lazy } ds {Baseball}
.
{Shiny}

9/22

What are Description Logics (DLs)? Semantics

Formal semantics inherited from first-order logic

I:
Ca Human, Athlete A
glvp} wears { . } Concept names: unary predicates
d>
wears lays
owns_bat Role names: binary predicates
CI3 d4
L
{Athlete, Human, Lazy } ds {Baseball}
L]
{Shiny}

9/22

What are Description Logics (DLs)? Semantics

Formal semantics inherited from first-order logic

I:
Ca Human, Athlete A
glvp} wears { . } Concept names: unary predicates
d>
wears lays
owns_bat Role names: binary predicates
CI3 d4
L
{Athlete, Human, Lazy } ds {Baseball}
L]
{Shiny}

Formulas (concept descriptions)

9/22

What are Description Logics (DLs)? Semantics

Formal semantics inherited from first-order logic

T:
{Cap} RS {Human,‘ Athlete}
di)
d>
wears lays
owns_bat
ds3 ds
.
{Athlete, Human, Lazy} ds {Baseball}
°
{Shiny}

Formulas (concept descriptions)

Concept constructors

m vr.C
~3rC L

<nr.C T

Concept names: unary predicates

Role names: binary predicates

9/22

What are Description Logics (DLs)? Semantics

Formal semantics inherited from first-order logic

I:
Ca Human, Athlete A
glvp} wears { . } Concept names: unary predicates
d>
wears lays
owns_bat Role names: binary predicates
CI3 d4
L
{Athlete, Human, Lazy } ds {Baseball}
L]
{Shiny}

Formulas (concept descriptions)

Concept constructors
mn Vr.C
- dr.C |, L

<nr.C T -

ALC

9/22

What are Description Logics (DLs)? Semantics

Formal semantics inherited from first-order logic

I:
E]fgp} wears {Human, Athlete} Concept names: unary predicates
wears
owns_bat Role names: binary predicates
CI3 d4
L
{Athlete, Human, Lazy} ds {Baseball}
L]

{Shiny}

Formulas (concept descriptions)

Concept constructors Semantics
M Vr.C (Human M Athlete)” = {d», d3}
- dr.C |, L
<nr.C T -

ALC

9/22

What are Description Logics (DLs)? Semantics

Formal semantics inherited from first-order logic

I:
E,ffp} wears {Human, Athlete} Concept names: unary predicates
wears
owns_bat Role names: binary predicates
CI3 d4
L
{Athlete, Human, Lazy} ds {Baseball}
L]

{Shiny}

Formulas (concept descriptions)

Concept constructors Semantics
M Vr.C (Human M Athlete)” = {d», d3}
— 3ar.C |, L (Cap U Helmet)Z = {d;}
<nr.C T -

ALC

9/22

What are Description Logics (DLs)? Semantics

Formal semantics inherited from first-order logic

I:
E,ffp} wears {Human, Athlete} Concept names: unary predicates
wears
owns_bat Role names: binary predicates
CI3 d4
L
{Athlete, Human, Lazy} ds {Baseball}
L]

{Shiny}

Formulas (concept descriptions)

Concept constructors Semantics
M Vr.C (Human M Athlete)” = {d», d3}
~ 3rC L (Cap U Helmet)Z = {d;}
<nrc T (—Lazy)? = {d1, d2, ds, ds}

ALC

9/22

What are Description Logics (DLs)? Semantics

Formal semantics inherited from first-order logic

I:
E,ffp} wears {Human, Athlete} Concept names: unary predicates
wears
owns_bat Role names: binary predicates
CI3 d4
L
{Athlete, Human, Lazy} ds {Baseball}
L]

{Shiny}

Formulas (concept descriptions)

Concept constructors Semantics
n vrc (Human M Athlete)” = {d>,d3} (3plays.Baseball)” = {d>}
- 3dr.C |, L (Cap U Helmet)Z = {d;}
<nr.c T -« (-Lazy)T = {d1,d>, ds, d5}

ALC

9/22

What are Description Logics (DLs)? Semantics

Formal semantics inherited from first-order logic

I:
Ca Human, Athlete A
E,lop} wears { } Concept names: unary predicates
wears . .
owns_bat Role names: binary predicates
CI3 d4
L
{Athlete, Human, Lazy} ds {Baseball}
L]
{Shiny}

Formulas (concept descriptions)

Concept constructors Semantics
n vrc (Human M Athlete)” = {d>,d3} (3plays.Baseball)” = {d>}
- 3rC L (Cap U Helmet)” = {d:} (Vowns_bat.Shiny)T = dom(Z)
<nr.c T -« (-Lazy)T = {d1,d>, ds, d5}

ALC

9/22

What are Description Logics (DLs)? Semantics

Formal semantics inherited from first-order logic

I:
C Human, Athlet)
E,lfp} wears {Human, Athlete} Concept names: unary predicates
d>
wears lays
owns_bat Role names: binary predicates
d3 da
L
{Athlete, Human, Lazy} ds {Baseball}
L]
{Shiny}
Formulas (concept descriptions)
Concept constructors Semantics
n vr.C (Human 1 Athlete)” = {d2, d3} (3plays.Baseball)T = {d>}
- dr.C ;L (Cap U Helmet)? = {d1} (Vowns_bat.Shiny)T = dom(Z)
<nr.c T (-Lazy)” = {d1, da, ds, d5}

A
ALC Vr.C=-3r~C CUD=—=(-Cn-D) L=-T

9/22

What are Description Logics (DLs)? Representing knowledge

Terminological knowledge (general knowledge about the domain)

10/22

What are Description Logics (DLs)? Representing knowledge

Terminological knowledge (general knowledge about the domain)

Concept definitions
Baseball_Player =

10/22

What are Description Logics (DLs)? Representing knowledge

Terminological knowledge (general knowledge about the domain)

Concept definitions Concept inclusions (GCls)

Baseball_Player = pitchers are baseball players
and throw fastball

10/22

What are Description Logics (DLs)? Representing knowledge

Terminological knowledge (general knowledge about the domain)

Concept definitions Concept inclusions (GCls)
Baseball_Player = pitchers are baseball players N Pitcher C Baseball_Playerm
and throw fastball Jthrows.Fastball

10/22

What are Description Logics (DLs)? Representing knowledge

Terminological knowledge (general knowledge about the domain)

Concept definitions Concept inclusions (GCls)
Baseball_Player = pitchers are baseball players N Pitcher C Baseball_Playerm
and throw fastball Jthrows.Fastball

A finite set of definitions/GCls is called a TBox T

10/22

What are Description Logics (DLs)? Representing knowledge

Terminological knowledge (general knowledge about the domain)

Concept definitions Concept inclusions (GCls)
Baseball_Player = pitchers are baseball players N Pitcher C Baseball_Playerm
and throw fastball Jthrows.Fastball

A finite set of definitions/GCls is called a TBox T
Semantics

(Baseball_Player)? = ()%
(Pitcher)? C (Baseball_Player M 3throws.Fastball)®

10/22

What are Description Logics (DLs)? Representing knowledge

Terminological knowledge (general knowledge about the domain)

Concept definitions Concept inclusions (GCls)
Baseball_Player = pitchers are baseball players N Pitcher C Baseball_Playerm
and throw fastball Jthrows.Fastball

A finite set of definitions/GCls is called a TBox T

Semantics
(Baseball_Player)T = ()% T = T iff T satisfies
(Pitcher) C (Baseball_Player I 3throws.Fastball)? all definitions/GCls in T°

10/22

What are Description Logics (DLs)? Representing knowledge

Terminological knowledge (general knowledge about the domain)

Concept definitions Concept inclusions (GCls)
Baseball_Player = pitchers are baseball players N Pitcher C Baseball_Playerm
and throw fastball Jthrows.Fastball

A finite set of definitions/GCls is called a TBox T

Semantics
(Baseball_Player)T = ()% T = T iff T satisfies
(Pitcher) C (Baseball_Player I 3throws.Fastball)? all definitions/GCls in T°

Assertional knowledge (knowledge about concrete situations)

10/22

What are Description Logics (DLs)? Representing knowledge

Terminological knowledge (general knowledge about the domain)

Concept definitions Concept inclusions (GCls)
Baseball_Player = pitchers are baseball players N Pitcher C Baseball_Playerm
and throw fastball Jthrows.Fastball

A finite set of definitions/GCls is called a TBox T

Semantics
(Baseball_Player)T = ()% T = T iff T satisfies
(Pitcher) C (Baseball_Player I 3throws.Fastball)? all definitions/GCls in T°

Assertional knowledge (knowledge about concrete situations)

Pitcher(pedro)

Shiny(s) —Lazy(omar)
Human(pedro)

owns_bat(omar, s)

10/22

What are Description Logics (DLs)? Representing knowledge

Terminological knowledge (general knowledge about the domain)

Concept definitions Concept inclusions (GCls)
Baseball_Player = pitchers are baseball players N Pitcher C Baseball_Playerm
and throw fastball Jthrows.Fastball

A finite set of definitions/GCls is called a TBox T

Semantics
(Baseball_Player)T = ()% T = T iff T satisfies
(Pitcher) C (Baseball_Player I 3throws.Fastball)? all definitions/GCls in T°

Assertional knowledge (knowledge about concrete situations)

Pitcher(pedro) A finite set of assertions is called an ABox A

Shiny(s) —Lazy(omar)
Human(pedro)

owns_bat(omar, s)

10/22

What are Description Logics (DLs)? Representing knowledge

Terminological knowledge (general knowledge about the domain)

Concept definitions Concept inclusions (GCls)
Baseball_Player = pitchers are baseball players N Pitcher C Baseball_Playerm
and throw fastball Jthrows.Fastball

A finite set of definitions/GCls is called a TBox T

Semantics
(Baseball_Player)T = ()% T = T iff T satisfies
(Pitcher) C (Baseball_Player I 3throws.Fastball)? all definitions/GCls in T°

Assertional knowledge (knowledge about concrete situations)

Pitcher(pedro) A finite set of assertions is called an ABox A

Shiny(s) —Lazy(omar) A knowledge base is a pair K = (T, A)
Human(pedro)

owns_bat(omar, s)

10/22

What are Description Logics (DLs)? Representing knowledge

Terminological knowledge (general knowledge about the domain)

Concept definitions Concept inclusions (GCls)
Baseball_Player = pitchers are baseball players N Pitcher C Baseball_Playerm
and throw fastball Jthrows.Fastball

A finite set of definitions/GCls is called a TBox T

Semantics
(Baseball_Player)T = ()% T = T iff T satisfies
(Pitcher) C (Baseball_Player I 3throws.Fastball)? all definitions/GCls in T°

Assertional knowledge (knowledge about concrete situations)

Pitcher(pedro) A finite set of assertions is called an ABox A

Shiny(s) —Lazy(omar) A knowledge base is a pair K = (T, A)

Human(pedro) .
Entailments of K: Pedro throws FastBall, ...
owns_bat(omar, s)

10/22

Reasoning in DLs

Standard Inferences

11/22

Reasoning in DLs

Standard Inferences

o Concept satisfiability.

e Subsumption.

Instance: Two concepts C, D and a TBox 7.

Question: Does CT C D7 in all models Z of 77

e Knowledge base consistency, query answering.

11/22

Reasoning in DLs

Standard Inferences

o Concept satisfiability.

e Subsumption.

Instance: Two concepts C, D and a TBox 7.

Question: Does CT C D7 in all models Z of 77

e Knowledge base consistency, query answering.

Non-Standard Inferences

11/22

Reasoning in DLs

Standard Inferences

o Concept satisfiability.

e Subsumption.

Instance: Two concepts C, D and a TBox 7.
Question: Does C* C D in all models Z of 77

e Knowledge base consistency, query answering.

Non-Standard Inferences

Most specific generalizations.

e Least common subsumer.

Unification.

11/22

More on DLs...

An Introduction to

4 7 r,}
= O e 1
RTTRITNS

Franz Baader

lan Horrocks

Ol Satr

12/22

Unification in Description Logics

13/22

Detecting redundancies in ontologies

14/22

Detecting redundancies in ontologies

e Two developers of a medical ontology define in two
different ways:

14/22

Detecting redundancies in ontologies

e Two developers of a medical ontology define in two
different ways:

a) Ffinding.(Head_injury M 3severity.Severe)

14/22

Detecting redundancies in ontologies

e Two developers of a medical ontology define in two
different ways:

a) Ffinding.(Head_injury M 3severity.Severe)

b) Ffinding.(Severe_injury M Ifinding_site.Head)

14/22

Detecting redundancies in ontologies

e Two developers of a medical ontology define
different ways:

a) Ffinding.(Head_injury M 3severity.Severe)
not equivalent, but meant to represent the same notion!

b) Ffinding.(Severe_injury M Ifinding_site.Head)

in two

14/22

Detecting redundancies in ontologies

e Two developers of a medical ontology define
different ways:

a) Ffinding.(Head_injury M 3severity.Severe)
not equivalent, but meant to represent the same notion!

b) Ffinding.(Severe_injury M Ifinding_site.Head)

e Can they be made equivalent?

in two

14/22

Detecting redundancies in ontologies

e Two developers of a medical ontology define
different ways:

a) Ffinding.(Head_injury M 3severity.Severe)
not equivalent, but meant to represent the same notion!

b) Ffinding.(Severe_injury M Ifinding_site.Head)

e Can they be made equivalent?

@ Select Head_injury and Severe_injury as variables.

in two

14/22

Detecting redundancies in ontologies

e Two developers of a medical ontology define
different ways:

a) Ffinding.(Head_injury M 3severity.Severe)
not equivalent, but meant to represent the same notion!

b) Ffinding.(Severe_injury M Ifinding_site.Head)

e Can they be made equivalent?
@ Select Head_injury and Severe_injury as variables.

® Apply the substitution (add definitions to the ontology):

in two

14/22

Detecting redundancies in ontologies

e Two developers of a medical ontology define
different ways:

a) Ffinding.(Head_injury M 3severity.Severe)
not equivalent, but meant to represent the same notion!

b) Ffinding.(Severe_injury M Ifinding_site.Head)

e Can they be made equivalent?
@ Select Head_injury and Severe_injury as variables.
® Apply the substitution (add definitions to the ontology):

Head_injury — Injury M 3finding_site.Head
Severe_injury — Injury M Jseverity.Severe

in two

14/22

Detecting redundancies in ontologies

e Two developers of a medical ontology define in two
different ways:

a) Ffinding.(Head_injury M 3severity.Severe)
not equivalent, but meant to represent the same notion!

b) Ffinding.(Severe_injury M Ifinding_site.Head)

e Can they be made equivalent?
@ Select Head_injury and Severe_injury as variables.

® Apply the substitution (add definitions to the ontology):

Head_injury — Injury M 3finding_site.Head Unification of
Severe_injury — Injury 1 3severity.Severe concept descriptions

14/22

Detecting redundancies in ontologies

e Two developers of a medical ontology define in two
different ways:

a) Ffinding.(Head_injury M 3severity.Severe)
not equivalent, but meant to represent the same notion!

b) Ffinding.(Severe_injury M Ifinding_site.Head)

e Can they be made equivalent?
@ Select Head_injury and Severe_injury as variables.

® Apply the substitution (add definitions to the ontology):

Head_injury — Injury M 3finding_site.Head Unification of
Severe_injury — Injury 1 3severity.Severe concept descriptions

e Semi-automated process: suggests possible candidates to ontology engineers.

14/22

Detecting redundancies in ontologies - TBoxes

e Suppose that the second developer uses a different definition, i.e., c) instead of b):

15/22

Detecting redundancies in ontologies - TBoxes

e Suppose that the second developer uses a different definition, i.e., c) instead of b):

a) Ifinding.(Head_injury M Jseverity.Severe)

c) dstatus.Emergency M 3finding.(Severe_injury M Jfinding_site.Head)

15/22

Detecting redundancies in ontologies - TBoxes

e Suppose that the second developer uses a different definition, i.e., c) instead of b):
a) Ifinding.(Head_injury M Jseverity.Severe)
not unifiable!

c) dstatus.Emergency M 3finding.(Severe_injury M Jfinding_site.Head)

15/22

Detecting redundancies in ontologies - TBoxes

e Suppose that the second developer uses a different definition, i.e., c) instead of b):
a) Ffinding.(Head_injury 1 Jseverity.Severe)
not unifiable!

c) dstatus.Emergency M 3finding.(Severe_injury M Jfinding_site.Head)

e But they are, in presence of background knowledge (TBox) containing the GCl:

finding.3severity.Severe C Jstatus.Emergency

15/22

Unification in DLs. Formal definition

16/22

Unification in DLs. Formal definition

Let £ be some description logic.

16/22

Unification in DLs. Formal definition

Let £ be some description logic.

e The set N¢ of concept names is partitioned into two sets:

16/22

Unification in DLs. Formal definition

Let £ be some description logic.

e The set N¢ of concept names is partitioned into two sets:
e N,: concept variables (like Head_injury and Severe_injury).

16/22

Unification in DLs. Formal definition

Let £ be some description logic.

e The set N¢ of concept names is partitioned into two sets:
e N,: concept variables (like Head_injury and Severe_injury).
e Nc: concept constants (like Severe, Head, Emergency).

16/22

Unification in DLs. Formal definition

Let £ be some description logic.

e The set N¢ of concept names is partitioned into two sets:
e N,: concept variables (like Head_injury and Severe_injury).
e Nc: concept constants (like Severe, Head, Emergency).

o A substitution o is a mapping of the form:
o : Ny — the set of all £ concept descriptions.

16/22

Unification in DLs. Formal definition

Let £ be some description logic.

e The set N¢ of concept names is partitioned into two sets:
e N,: concept variables (like Head_injury and Severe_injury).
e Nc: concept constants (like Severe, Head, Emergency).

o A substitution o is a mapping of the form:

o : Ny — the set of all £ concept descriptions.

o is extended to arbitrary concepts inductively

16/22

Unification in DLs. Formal definition

Let £ be some description logic.

e The set N¢ of concept names is partitioned into two sets:
e N,: concept variables (like Head_injury and Severe_injury).
e Nc: concept constants (like Severe, Head, Emergency).

o A substitution o is a mapping of the form:
o : Ny — the set of all £ concept descriptions.

o is extended to arbitrary concepts inductively (in ALC):
o(T):=T o(A) := A, for all A€ N
o(CMD):=0o(C)no(D) o(CuD):=0(C)uo(D)
o(3r.C) :=3r.c(C) o(Vr.C) :=Vr.o(C)

16/22

Unification in DLs. Formal definition

Let £ be some description logic.

e The set N¢ of concept names is partitioned into two sets:
e N,: concept variables (like Head_injury and Severe_injury).
e Nc: concept constants (like Severe, Head, Emergency).

o A substitution o is a mapping of the form:
o : Ny — the set of all £ concept descriptions.

o is extended to arbitrary concepts inductively (in ALC):
o(T):=T o(A) := A, for all A€ N
o(CMD):=0o(C)no(D) o(CuD):=0(C)uo(D)
o(3r.C) :=3r.c(C) o(Vr.C) :=Vr.o(C)

Definition 1 (L-unification)

An L-unification problem is of the form:
r={G="0,...,C, =" D,}.
A substitution o is a unifier of I if
o(G)=o(Dj), forall1 <i<n.

16/22

Unification in DLs. Formal definition - TBoxes

Restricted to ground TBoxes: a general TBox 7 is ground if it contains no variables.

17/22

Unification in DLs. Formal definition - TBoxes

Restricted to ground TBoxes: a general TBox 7 is ground if it contains no variables.

Definition 2 (L-unification w.r.t. a general TBox)

Let 7 be a general TBox that is ground. An L-unification problem w.r.t. 7 is of the form:
r={G="0y,...,C, =" D,}.
A substitution o is a unifier of I w.r.t. T if

a(G) =7 o(D;), forall 1 < i < n.

Definition 1 corresponds to the special case where 7 = ().

17/22

Unification in DLs. Formal definition - TBoxes

Restricted to ground TBoxes: a general TBox 7 is ground if it contains no variables.

Definition 2 (L-unification w.r.t. a general TBox)

Let 7 be a general TBox that is ground. An L-unification problem w.r.t. 7 is of the form:
r={G="0y,...,C, =" D,}.
A substitution o is a unifier of I w.r.t. T if

o(G) =7 o(Di), forall 1 <i<n.

Definition 1 corresponds to the special case where 7 = ().

The decision problem

L-Unification Decision Problem

Instance: A ground general TBox 7 and an L-unification problem T.
Question: Is there a unifier o of [w.r.t. 77

17/22

Unification in DLs. Additional notions from unification theory

18/22

Unification in DLs. Additional notions from unification theory

e Comparing unifiers. Instantiation pre-order <.

Let 0, 0 be two unifiers of an L-unification problem . We define,
0 < o iff exists A s.t. o(X) = A(6(X)) for all X €T.

18/22

Unification in DLs. Additional notions from unification theory

e Comparing unifiers. Instantiation pre-order <.

Let 0, 0 be two unifiers of an L-unification problem . We define,
0 < o iff exists A s.t. o(X) = A(6(X)) for all X €T.

o Minimal complete set of unifiers.

A set of substitutions M is a complete set of unifiers of I iff

e o0 € M implies o is a unifier of T.

e if o is a unifier of I', then 6 < o for some 8 € M.

18/22

Unification in DLs. Additional notions from unification theory

e Comparing unifiers. Instantiation pre-order <.

Let 0, 0 be two unifiers of an L-unification problem . We define,
0 < o iff exists A s.t. o(X) = A(6(X)) for all X €T.

o Minimal complete set of unifiers.

A set of substitutions M is a complete set of unifiers of I iff
e o € M implies ¢ is a unifier of T.
e if o is a unifier of I', then 6 < o for some 8 € M.

M is called minimal, iff M also satisfies:
e if 0,0 € M, then o0 < 0 implies o = 6.

18/22

Unification in DLs. Additional notions from unification theory

e Comparing unifiers. Instantiation pre-order <.

Let 0, 0 be two unifiers of an L-unification problem . We define,
0 < o iff exists A s.t. o(X) = A(6(X)) for all X €T.

o Minimal complete set of unifiers.

A set of substitutions M is a complete set of unifiers of I iff
e o € M implies ¢ is a unifier of T.
e if o is a unifier of I', then 6 < o for some 8 € M.

M is called minimal, iff M also satisfies:
e if 0,0 € M, then o0 < 0 implies o = 6.

e Unification type

18/22

Unification in DLs. Additional notions from unification theory

e Comparing unifiers. Instantiation pre-order <.

Let 0, 0 be two unifiers of an L-unification problem . We define,
0 < o iff exists A s.t. o(X) = A(0(X)) for all X €T.

o Minimal complete set of unifiers.

A set of substitutions M is a complete set of unifiers of I iff
e o € M implies ¢ is a unifier of T.
e if o is a unifier of I', then 6 < o for some 8 € M.

M is called minimal, iff M also satisfies:
e if 0,0 € M, then o0 < 0 implies o = 6.

e Unification type

An L-unification problem I has type

e unitary iff it has a minimal complete M of size 1.

18/22

Unification in DLs. Additional notions from unification theory

e Comparing unifiers. Instantiation pre-order <.

Let 0, 0 be two unifiers of an L-unification problem . We define,

0 < o iff exists A s.t. o(X) = A(0(X)) for all X €T.

o Minimal complete set of unifiers.

A set of substitutions M is a complete set of unifiers of I iff
e o € M implies ¢ is a unifier of T.
e if o is a unifier of I', then 6 < o for some 8 € M.

M is called minimal, iff M also satisfies:
e if 0,0 € M, then o0 < 0 implies o = 6.

e Unification type

An L-unification problem I has type

e unitary iff it has a minimal complete M of size 1.

o finitary iff it has a finite minimal complete M.

18/22

Unification in DLs. Additional notions from unification theory

e Comparing unifiers. Instantiation pre-order <.

Let 0, 0 be two unifiers of an L-unification problem . We define,
0 < o iff exists A s.t. o(X) = A(0(X)) for all X €T.

o Minimal complete set of unifiers.

A set of substitutions M is a complete set of unifiers of I iff
e o € M implies ¢ is a unifier of T.
e if o is a unifier of I', then 6 < o for some 8 € M.

M is called minimal, iff M also satisfies:
e if 0,0 € M, then o0 < 0 implies o = 6.

e Unification type

An L-unification problem I has type

e unitary iff it has a minimal complete M of size 1.
o finitary iff it has a finite minimal complete M.

o finitary iff it has an infinite minimal complete M.

18/22

Unification in DLs. Additional notions from unification theory

e Comparing unifiers. Instantiation pre-order <.

Let 0, 0 be two unifiers of an L-unification problem . We define,
0 < o iff exists A s.t. o(X) = A(0(X)) for all X €T.

o Minimal complete set of unifiers.

A set of substitutions M is a complete set of unifiers of I iff
e o € M implies ¢ is a unifier of T.
e if o is a unifier of I', then 6 < o for some 8 € M.

M is called minimal, iff M also satisfies:
e if 0,0 € M, then o0 < 0 implies o = 6.

e Unification type

An L-unification problem I has type
e unitary iff it has a minimal complete M of size 1.
o finitary iff it has a finite minimal complete M.
o finitary iff it has an infinite minimal complete M.
e zero iff it does not have a minimal complete M.

18/22

Additional motivation — Unification modulo an equational theory

19/22

Additional motivation — Unification modulo an equational theory

e For many DLs, = can be axiomatized using finitely many equational axioms.

o Unification in such a DL can be viewed as unification modulo the corresponding
equational theory.

19/22

Additional motivation — Unification modulo an equational theory

e For many DLs, = can be axiomatized using finitely many equational axioms.

o Unification in such a DL can be viewed as unification modulo the corresponding
equational theory.

Example (DL F Lo, only T,rM,Vr.C)

19/22

Additional motivation — Unification modulo an equational theory

e For many DLs, = can be axiomatized using finitely many equational axioms.

o Unification in such a DL can be viewed as unification modulo the corresponding
equational theory.

Example (DL F Lo, only T,rM,Vr.C)

e Concept descriptions vs. terms:

concept var. — variable symbols
concept const. — free constants

19/22

Additional motivation — Unification modulo an equational theory

e For many DLs, = can be axiomatized using finitely many equational axioms.

o Unification in such a DL can be viewed as unification modulo the corresponding
equational theory.

Example (DL F Lo, only T,rM,Vr.C)

e Concept descriptions vs. terms:

concept var. — variable symbols concept constr. — function symbols
concept const. — free constants Yy = {/\27 hr111 o hrnl7 1}

19/22

Additional motivation — Unification modulo an equational theory

e For many DLs, = can be axiomatized using finitely many equational axioms.

o Unification in such a DL can be viewed as unification modulo the corresponding
equational theory.

Example (DL F Lo, only T,rM,Vr.C)

e Concept descriptions vs. terms:

concept var. — variable symbols concept constr. — function symbols
concept const. — free constants Yy = {/\27 hr111 o hrnl7 1}

concept descriptions ¢ 5
over Ng = {r,...,m} erms over

19/22

Additional motivation — Unification modulo an equational theory

e For many DLs, = can be axiomatized using finitely many equational axioms.

o Unification in such a DL can be viewed as unification modulo the corresponding
equational theory.

Example (DL F Lo, only T,rM,Vr.C)

e Concept descriptions vs. terms:

concept var. — variable symbols concept constr. — function symbols
concept const. — free constants Yy = {/\27 hr111 o hrnl7 1}

concept descriptions ¢ 5
over Ng = {r,...,m} erms over

AMNVYn. T NVr.(XMNB) ———— aAh, (1) A hy,(x A b)

19/22

Additional motivation — Unification modulo an equational theory

e For many DLs, = can be axiomatized using finitely many equational axioms.

o Unification in such a DL can be viewed as unification modulo the corresponding
equational theory.

Example (DL F Lo, only T,rM,Vr.C)

e Concept descriptions vs. terms:

concept var. — variable symbols concept constr. — function symbols
concept const. — free constants Yy = {/\27 hr111 o hrnl7 1}

concept descriptions ¢ 5
over Ng = {r,...,m} erms over

AMNVYn. T NVr.(XMNB) ———— aAh, (1) A hy,(x A b)

e Equational theory — axiomatizes equivalence in F Lo

19/22

Additional motivation — Unification modulo an equational theory

e For many DLs, = can be axiomatized using finitely many equational axioms.

o Unification in such a DL can be viewed as unification modulo the corresponding
equational theory.

Example (DL F Lo, only T,rM,Vr.C)

e Concept descriptions vs. terms:

concept var. — variable symbols concept constr. — function symbols
concept const. — free constants Yy = {/\27 hr111 o hrnl7 1}

concept descriptions ¢ 5
over Ng = {r,...,m} erms over

AMNVYn. T NVr.(XMNB) ———— aAh, (1) A hy,(x A b)

e Equational theory — axiomatizes equivalence in F Lo
Mis
commutative — ,
associative — ,

idempotent — ,
has T as unit —

19/22

Additional motivation — Unification modulo an equational theory

e For many DLs, = can be axiomatized using finitely many equational axioms.

o Unification in such a DL can be viewed as unification modulo the corresponding
equational theory.

Example (DL F Lo, only T,rM,Vr.C)

e Concept descriptions vs. terms:

concept var. — variable symbols concept constr. — function symbols
concept const. — free constants Yy = {/\27 hr111 o hrnl7 1}

concept descriptions ¢ 5
over Ng = {r,...,m} erms over

AMNVYn. T NVr.(XMNB) ———— aAh, (1) A hy,(x A b)

e Equational theory — axiomatizes equivalence in F Lo
Mis Vr; satisfies
commutative — , VT =T=
associative — , Vri(CMD)=Vr.CNvr.D
idempotent — , 1

has T as unit —

19/22

Additional motivation — Unification modulo an equational theory

Lemma 3 [BNO1]

Let C and D be two F Ly concept descriptions. Then,
C =D iff T(C) ~ACUIh ’T(D)

20/22

Additional motivation — Unification modulo an equational theory

Lemma 3 [BNO1]
Let C and D be two F Ly concept descriptions. Then,

C =D iff T(C) ~ACUIh ’T(D)

Results can be transferred

20/22

Additional motivation — Unification modulo an equational theory

Lemma 3 [BNO1]
Let C and D be two F Ly concept descriptions. Then,

C =D iff T(C) ~ACUIh ’T(D)

Results can be transferred

=’ D has a unifier iff 7(C) and 7(D) are unifiable.

20/22

Additional motivation — Unification modulo an equational theory

Lemma 3 [BNO1]
Let C and D be two F Ly concept descriptions. Then,

C =D iff T(C) ~ACUIh ’T(D)

Results can be transferred
=’ D has a unifier iff 7(C) and 7(D) are unifiable.

=
Unification in ACUIh is ExpTime-complete.

20/22

Additional motivation — Unification modulo an equational theory

Lemma 3 [BNO1]
Let C and D be two F Ly concept descriptions. Then,

C =D iff T(C) ~ACUIh ’T(D)

Results can be transferred

=’ D has a unifier iff 7(C) and 7(D) are unifiable.
=
Unification in ACUIh is ExpTime-complete.

F Lo has unification type zero (ACUlh has unification type zero [Baa93].)

20/22

Additional motivation — Unification modulo an equational theory

Lemma 3 [BNO1]
Let C and D be two F Ly concept descriptions. Then,

C =D iff T(C) ~ACUIh ’T(D)

Results can be transferred

=’ D has a unifier iff 7(C) and 7(D) are unifiable.
=
Unification in ACUIh is ExpTime-complete.

F Lo has unification type zero (ACUlh has unification type zero [Baa93].)

Unification w.r.t. a TBox — unification w.r.t. an additional set of ground identities:

T={GCD,...,C,C D)} = Gr = Q{T(c,-) AT(D;) = 7(D)}.

20/22

Additional motivation — Unification modulo an equational theory

Lemma 3 [BNO1]
Let C and D be two F Ly concept descriptions. Then,

C =D iff T(C) ~ACUIh ’T(D)

Results can be transferred
=’ D has a unifier iff 7(C) and 7(D) are unifiable.

=
Unification in ACUIh is ExpTime-complete.

F Lo has unification type zero (ACUlh has unification type zero [Baa93].)

Unification w.r.t. a TBox — unification w.r.t. an additional set of ground identities:

T={GCD,...,C,C D)} = Gr = Q{T(c,-) AT(D;) = 7(D)}.

C =7 D iff 7(C) =acuihucy 7(D).

20/22

Research on unification in DLs

21/22

Research on unification in DLs

Mostly concentrated in sub-Boolean fragments of ALC

21/22

Research on unification in DLs

Mostly concentrated in sub-Boolean fragments of ALC

e First investigated for FLo: ExpTime-complete w.r.t. the empty TBox.

21/22

Research on unification in DLs

Mostly concentrated in sub-Boolean fragments of ALC

e First investigated for FLo: ExpTime-complete w.r.t. the empty TBox.

e In £L, the problem is easier: NP-complete.

21/22

Research on unification in DLs

Mostly concentrated in sub-Boolean fragments of ALC

e First investigated for FLo: ExpTime-complete w.r.t. the empty TBox.
e In £L, the problem is easier: NP-complete.

e Only a few results exist for unification w.r.t. arbitrary TBoxes.

21/22

Research on unification in DLs

Mostly concentrated in sub-Boolean fragments of ALC

e First investigated for FLo: ExpTime-complete w.r.t. the empty TBox.

e In £L, the problem is easier: NP-complete.

e Only a few results exist for unification w.r.t. arbitrary TBoxes.

Boolean DLs

21/22

Research on unification in DLs

Mostly concentrated in sub-Boolean fragments of ALC

e First investigated for FLo: ExpTime-complete w.r.t. the empty TBox.
e In £L, the problem is easier: NP-complete.

e Only a few results exist for unification w.r.t. arbitrary TBoxes.

Boolean DLs

e Important open problem: unification in the nomal modal logic K (syntactic variant
of ALC).

21/22

Research on unification in DLs

Mostly concentrated in sub-Boolean fragments of ALC

e First investigated for FLo: ExpTime-complete w.r.t. the empty TBox.
e In £L, the problem is easier: NP-complete.

e Only a few results exist for unification w.r.t. arbitrary TBoxes.

Boolean DLs

e Important open problem: unification in the nomal modal logic K (syntactic variant
of ALC).

o Undecidability results for very expressive DLs: transferred from research in Modal
Logics.

21/22

References |

@ Franz Baader.
Unification in commutative theories, hilbert’s basis theorem, and grébner bases.
J. ACM, 40(3):477-503, 1993.

@ Franz Baader and Paliath Narendran.
Unification of Concept Terms in Description Logics.
J. Symb. Comput., 31(3):277-305, 2001.

@ DONALD E. KNUTH and PETER B. BENDIX.
Simple word problems in universal algebras.
In JOHN LEECH, editor, Computational Problems in Abstract Algebra, pages 263 —
297. Pergamon, 1970.

[® John Alan Robinson.
A machine-oriented logic based on the resolution principle.
J. ACM, 12(1):23-41, 1965.

22/22

