
Unification in Description Logics
Part III: Unification in the DL FL0

Oliver Fernández Gil

Chair of Automata Theory

ESSLLI’19

Riga, August 2019

1/25

The DL FL0

• Fragment of ALC:

C ::= > | A | C u C | ∀r .C

• Received much attention in the early days of DL research, but

• it was later shown that subsumption w.r.t. acyclic TBoxes is not tractable,

• and in the presence of GCIs ExpTime-complete. Same complexity as the more
expressive DL ALC.

• However,

• Reasoning in FL0 has an interesting connection to formal language problems.

• The unification problem corresponds to unification in ACUIh.

2/25

The DL FL0

• Fragment of ALC:

C ::= > | A | C u C | ∀r .C

• Received much attention in the early days of DL research, but

• it was later shown that subsumption w.r.t. acyclic TBoxes is not tractable,

• and in the presence of GCIs ExpTime-complete. Same complexity as the more
expressive DL ALC.

• However,

• Reasoning in FL0 has an interesting connection to formal language problems.

• The unification problem corresponds to unification in ACUIh.

2/25

The DL FL0

• Fragment of ALC:

C ::= > | A | C u C | ∀r .C

• Received much attention in the early days of DL research, but

• it was later shown that subsumption w.r.t. acyclic TBoxes is not tractable,

• and in the presence of GCIs ExpTime-complete. Same complexity as the more
expressive DL ALC.

• However,

• Reasoning in FL0 has an interesting connection to formal language problems.

• The unification problem corresponds to unification in ACUIh.

2/25

The DL FL0

• Fragment of ALC:

C ::= > | A | C u C | ∀r .C

• Received much attention in the early days of DL research, but

• it was later shown that subsumption w.r.t. acyclic TBoxes is not tractable,

• and in the presence of GCIs ExpTime-complete. Same complexity as the more
expressive DL ALC.

• However,

• Reasoning in FL0 has an interesting connection to formal language problems.

• The unification problem corresponds to unification in ACUIh.

2/25

The DL FL0

• Fragment of ALC:

C ::= > | A | C u C | ∀r .C

• Received much attention in the early days of DL research, but

• it was later shown that subsumption w.r.t. acyclic TBoxes is not tractable,

• and in the presence of GCIs ExpTime-complete. Same complexity as the more
expressive DL ALC.

• However,

• Reasoning in FL0 has an interesting connection to formal language problems.

• The unification problem corresponds to unification in ACUIh.

2/25

The DL FL0

• Fragment of ALC:

C ::= > | A | C u C | ∀r .C

• Received much attention in the early days of DL research, but

• it was later shown that subsumption w.r.t. acyclic TBoxes is not tractable,

• and in the presence of GCIs ExpTime-complete. Same complexity as the more
expressive DL ALC.

• However,

• Reasoning in FL0 has an interesting connection to formal language problems.

• The unification problem corresponds to unification in ACUIh.

2/25

The DL FL0

• Fragment of ALC:

C ::= > | A | C u C | ∀r .C

• Received much attention in the early days of DL research, but

• it was later shown that subsumption w.r.t. acyclic TBoxes is not tractable,

• and in the presence of GCIs ExpTime-complete. Same complexity as the more
expressive DL ALC.

• However,

• Reasoning in FL0 has an interesting connection to formal language problems.

• The unification problem corresponds to unification in ACUIh.

2/25

Connection to formal languages - Subsumption

Normal form

• Apply ∀r .(C u D) ≡ ∀r .C u ∀r .D as rewrite rule (from left to right):

∀r .(∀s.A u ∀r .B) u ∀r .A u B ∀r .∀s.A u ∀r .∀r .B u ∀r .A u B

• Abbreviate using languages over NR:

∀rs.A u ∀rr .B u ∀r .A u B ∀{rs, r}.A u ∀{rr , ε}.B

• Let NC = {A1, . . . ,Ak}. Then, every pair of concepts C ,D can be represented as:

C ≡ ∀L1.A1 u . . . u ∀Lk .Ak ,

D ≡ ∀R1.A1 u . . . u ∀Rk .Ak ,

where Li ,Ri are finite languages over NR.

Characterization of subsumption [BN01]

C v D iff Ri ⊆ Li for all i , 1 ≤ i ≤ k.

→ Subsumption is polynomial w.r.t. T = ∅.

3/25

Connection to formal languages - Subsumption

Normal form

• Apply ∀r .(C u D) ≡ ∀r .C u ∀r .D as rewrite rule (from left to right):

∀r .(∀s.A u ∀r .B) u ∀r .A u B ∀r .∀s.A u ∀r .∀r .B u ∀r .A u B

• Abbreviate using languages over NR:

∀rs.A u ∀rr .B u ∀r .A u B ∀{rs, r}.A u ∀{rr , ε}.B

• Let NC = {A1, . . . ,Ak}. Then, every pair of concepts C ,D can be represented as:

C ≡ ∀L1.A1 u . . . u ∀Lk .Ak ,

D ≡ ∀R1.A1 u . . . u ∀Rk .Ak ,

where Li ,Ri are finite languages over NR.

Characterization of subsumption [BN01]

C v D iff Ri ⊆ Li for all i , 1 ≤ i ≤ k.

→ Subsumption is polynomial w.r.t. T = ∅.

3/25

Connection to formal languages - Subsumption

Normal form

• Apply ∀r .(C u D) ≡ ∀r .C u ∀r .D as rewrite rule (from left to right):

∀r .(∀s.A u ∀r .B) u ∀r .A u B ∀r .∀s.A u ∀r .∀r .B u ∀r .A u B

• Abbreviate using languages over NR:

∀rs.A u ∀rr .B u ∀r .A u B ∀{rs, r}.A u ∀{rr , ε}.B

• Let NC = {A1, . . . ,Ak}. Then, every pair of concepts C ,D can be represented as:

C ≡ ∀L1.A1 u . . . u ∀Lk .Ak ,

D ≡ ∀R1.A1 u . . . u ∀Rk .Ak ,

where Li ,Ri are finite languages over NR.

Characterization of subsumption [BN01]

C v D iff Ri ⊆ Li for all i , 1 ≤ i ≤ k.

→ Subsumption is polynomial w.r.t. T = ∅.

3/25

Connection to formal languages - Subsumption

Normal form

• Apply ∀r .(C u D) ≡ ∀r .C u ∀r .D as rewrite rule (from left to right):

∀r .(∀s.A u ∀r .B) u ∀r .A u B ∀r .∀s.A u ∀r .∀r .B u ∀r .A u B

• Abbreviate using languages over NR:

∀rs.A u ∀rr .B u ∀r .A u B ∀{rs, r}.A u ∀{rr , ε}.B

• Let NC = {A1, . . . ,Ak}. Then, every pair of concepts C ,D can be represented as:

C ≡ ∀L1.A1 u . . . u ∀Lk .Ak ,

D ≡ ∀R1.A1 u . . . u ∀Rk .Ak ,

where Li ,Ri are finite languages over NR.

Characterization of subsumption [BN01]

C v D iff Ri ⊆ Li for all i , 1 ≤ i ≤ k.

→ Subsumption is polynomial w.r.t. T = ∅.

3/25

Connection to formal languages - Subsumption

Normal form

• Apply ∀r .(C u D) ≡ ∀r .C u ∀r .D as rewrite rule (from left to right):

∀r .(∀s.A u ∀r .B) u ∀r .A u B ∀r .∀s.A u ∀r .∀r .B u ∀r .A u B

• Abbreviate using languages over NR:

∀rs.A u ∀rr .B u ∀r .A u B ∀{rs, r}.A u ∀{rr , ε}.B

• Let NC = {A1, . . . ,Ak}. Then, every pair of concepts C ,D can be represented as:

C ≡ ∀L1.A1 u . . . u ∀Lk .Ak ,

D ≡ ∀R1.A1 u . . . u ∀Rk .Ak ,

where Li ,Ri are finite languages over NR.

Characterization of subsumption [BN01]

C v D iff Ri ⊆ Li for all i , 1 ≤ i ≤ k.

→ Subsumption is polynomial w.r.t. T = ∅.

3/25

Connection to formal languages - Subsumption

Normal form

• Apply ∀r .(C u D) ≡ ∀r .C u ∀r .D as rewrite rule (from left to right):

∀r .(∀s.A u ∀r .B) u ∀r .A u B ∀r .∀s.A u ∀r .∀r .B u ∀r .A u B

• Abbreviate using languages over NR:

∀rs.A u ∀rr .B u ∀r .A u B ∀{rs, r}.A u ∀{rr , ε}.B

• Let NC = {A1, . . . ,Ak}. Then, every pair of concepts C ,D can be represented as:

C ≡ ∀L1.A1 u . . . u ∀Lk .Ak ,

D ≡ ∀R1.A1 u . . . u ∀Rk .Ak ,

where Li ,Ri are finite languages over NR.

Characterization of subsumption [BN01]

C v D iff Ri ⊆ Li for all i , 1 ≤ i ≤ k.

→ Subsumption is polynomial w.r.t. T = ∅.

3/25

Connection to formal languages - Subsumption

Normal form

• Apply ∀r .(C u D) ≡ ∀r .C u ∀r .D as rewrite rule (from left to right):

∀r .(∀s.A u ∀r .B) u ∀r .A u B ∀r .∀s.A u ∀r .∀r .B u ∀r .A u B

• Abbreviate using languages over NR:

∀rs.A u ∀rr .B u ∀r .A u B ∀{rs, r}.A u ∀{rr , ε}.B

• Let NC = {A1, . . . ,Ak}. Then, every pair of concepts C ,D can be represented as:

C ≡ ∀L1.A1 u . . . u ∀Lk .Ak ,

D ≡ ∀R1.A1 u . . . u ∀Rk .Ak ,

where Li ,Ri are finite languages over NR.

Characterization of subsumption [BN01]

C v D iff Ri ⊆ Li for all i , 1 ≤ i ≤ k.

→ Subsumption is polynomial w.r.t. T = ∅.

3/25

Connection to formal languages - Subsumption

Normal form

• Apply ∀r .(C u D) ≡ ∀r .C u ∀r .D as rewrite rule (from left to right):

∀r .(∀s.A u ∀r .B) u ∀r .A u B ∀r .∀s.A u ∀r .∀r .B u ∀r .A u B

• Abbreviate using languages over NR:

∀rs.A u ∀rr .B u ∀r .A u B ∀{rs, r}.A u ∀{rr , ε}.B

• Let NC = {A1, . . . ,Ak}. Then, every pair of concepts C ,D can be represented as:

C ≡ ∀L1.A1 u . . . u ∀Lk .Ak ,

D ≡ ∀R1.A1 u . . . u ∀Rk .Ak ,

where Li ,Ri are finite languages over NR.

Characterization of subsumption [BN01]

C v D iff Ri ⊆ Li for all i , 1 ≤ i ≤ k.

→ Subsumption is polynomial w.r.t. T = ∅.

3/25

Connection to formal languages - Subsumption

Normal form

• Apply ∀r .(C u D) ≡ ∀r .C u ∀r .D as rewrite rule (from left to right):

∀r .(∀s.A u ∀r .B) u ∀r .A u B ∀r .∀s.A u ∀r .∀r .B u ∀r .A u B

• Abbreviate using languages over NR:

∀rs.A u ∀rr .B u ∀r .A u B ∀{rs, r}.A u ∀{rr , ε}.B

• Let NC = {A1, . . . ,Ak}. Then, every pair of concepts C ,D can be represented as:

C ≡ ∀L1.A1 u . . . u ∀Lk .Ak ,

D ≡ ∀R1.A1 u . . . u ∀Rk .Ak ,

where Li ,Ri are finite languages over NR.

Characterization of subsumption [BN01]

C v D iff Ri ⊆ Li for all i , 1 ≤ i ≤ k. → Subsumption is polynomial w.r.t. T = ∅.

3/25

Connection to formal languages - Unification

Let Γ = {C ≡? D}.

Considering variables as concept names, Γ can be seen as:

∀L1.A1 u . . . u ∀Lk .Ak u ∀L∗1 .X1 u . . . u ∀L∗m.Xm

≡?

∀R1.A1 u . . . u ∀Rk .Ak u ∀R∗1 .X1 u . . . u ∀R∗m.Xm

Example

∀r .(A1 u ∀r .A2) u ∀r .∀s.X1 ≡? ∀r .∀s.(∀s.A1 u ∀r .A2) u ∀r .X1 u ∀r .∀r .A2

∀{r}.A1 u ∀{rr}.A2 u ∀{rs}.X1 ≡? ∀{rss}.A1 u ∀{rsr , rr}.A2 u ∀{r}.X1

What to replace X1 for to make the resulting forms “equal”?

X1 7→ A1 u ∀s.A1 u ∀r .A2 A1: {r} ∪ {rs.ε, rs.s}
=

{rss} ∪ {r .ε, r .s}

A2: {rr} ∪ {rs.r}
=

{rsr , rr} ∪ {r .r}

Fixing A1 is idependent of fixing A2, and vice versa!

4/25

Connection to formal languages - Unification

Let Γ = {C ≡? D}.

Considering variables as concept names, Γ can be seen as:

∀L1.A1 u . . . u ∀Lk .Ak u ∀L∗1 .X1 u . . . u ∀L∗m.Xm

≡?

∀R1.A1 u . . . u ∀Rk .Ak u ∀R∗1 .X1 u . . . u ∀R∗m.Xm

Example

∀r .(A1 u ∀r .A2) u ∀r .∀s.X1 ≡? ∀r .∀s.(∀s.A1 u ∀r .A2) u ∀r .X1 u ∀r .∀r .A2

∀{r}.A1 u ∀{rr}.A2 u ∀{rs}.X1 ≡? ∀{rss}.A1 u ∀{rsr , rr}.A2 u ∀{r}.X1

What to replace X1 for to make the resulting forms “equal”?

X1 7→ A1 u ∀s.A1 u ∀r .A2 A1: {r} ∪ {rs.ε, rs.s}
=

{rss} ∪ {r .ε, r .s}

A2: {rr} ∪ {rs.r}
=

{rsr , rr} ∪ {r .r}

Fixing A1 is idependent of fixing A2, and vice versa!

4/25

Connection to formal languages - Unification

Let Γ = {C ≡? D}.

Considering variables as concept names, Γ can be seen as:

∀L1.A1 u . . . u ∀Lk .Ak u ∀L∗1 .X1 u . . . u ∀L∗m.Xm

≡?

∀R1.A1 u . . . u ∀Rk .Ak u ∀R∗1 .X1 u . . . u ∀R∗m.Xm

Example

∀r .(A1 u ∀r .A2) u ∀r .∀s.X1 ≡? ∀r .∀s.(∀s.A1 u ∀r .A2) u ∀r .X1 u ∀r .∀r .A2

∀{r}.A1 u ∀{rr}.A2 u ∀{rs}.X1 ≡? ∀{rss}.A1 u ∀{rsr , rr}.A2 u ∀{r}.X1

What to replace X1 for to make the resulting forms “equal”?

X1 7→ A1 u ∀s.A1 u ∀r .A2 A1: {r} ∪ {rs.ε, rs.s}
=

{rss} ∪ {r .ε, r .s}

A2: {rr} ∪ {rs.r}
=

{rsr , rr} ∪ {r .r}

Fixing A1 is idependent of fixing A2, and vice versa!

4/25

Connection to formal languages - Unification

Let Γ = {C ≡? D}.

Considering variables as concept names, Γ can be seen as:

∀L1.A1 u . . . u ∀Lk .Ak u ∀L∗1 .X1 u . . . u ∀L∗m.Xm

≡?

∀R1.A1 u . . . u ∀Rk .Ak u ∀R∗1 .X1 u . . . u ∀R∗m.Xm

Example

∀r .(A1 u ∀r .A2) u ∀r .∀s.X1 ≡? ∀r .∀s.(∀s.A1 u ∀r .A2) u ∀r .X1 u ∀r .∀r .A2

∀{r}.A1 u ∀{rr}.A2 u ∀{rs}.X1 ≡? ∀{rss}.A1 u ∀{rsr , rr}.A2 u ∀{r}.X1

What to replace X1 for to make the resulting forms “equal”?

X1 7→ A1 u ∀s.A1 u ∀r .A2 A1: {r} ∪ {rs.ε, rs.s}
=

{rss} ∪ {r .ε, r .s}

A2: {rr} ∪ {rs.r}
=

{rsr , rr} ∪ {r .r}

Fixing A1 is idependent of fixing A2, and vice versa!

4/25

Connection to formal languages - Unification

Let Γ = {C ≡? D}.

Considering variables as concept names, Γ can be seen as:

∀L1.A1 u . . . u ∀Lk .Ak u ∀L∗1 .X1 u . . . u ∀L∗m.Xm

≡?

∀R1.A1 u . . . u ∀Rk .Ak u ∀R∗1 .X1 u . . . u ∀R∗m.Xm

Example

∀r .(A1 u ∀r .A2) u ∀r .∀s.X1 ≡? ∀r .∀s.(∀s.A1 u ∀r .A2) u ∀r .X1 u ∀r .∀r .A2

∀{r}.A1 u ∀{rr}.A2 u ∀{rs}.X1 ≡? ∀{rss}.A1 u ∀{rsr , rr}.A2 u ∀{r}.X1

What to replace X1 for to make the resulting forms “equal”?

X1 7→ A1 u ∀s.A1 u ∀r .A2 A1: {r} ∪ {rs.ε, rs.s}
=

{rss} ∪ {r .ε, r .s}

A2: {rr} ∪ {rs.r}
=

{rsr , rr} ∪ {r .r}

Fixing A1 is idependent of fixing A2, and vice versa!

4/25

Connection to formal languages - Unification

Let Γ = {C ≡? D}.

Considering variables as concept names, Γ can be seen as:

∀L1.A1 u . . . u ∀Lk .Ak u ∀L∗1 .X1 u . . . u ∀L∗m.Xm

≡?

∀R1.A1 u . . . u ∀Rk .Ak u ∀R∗1 .X1 u . . . u ∀R∗m.Xm

Example

∀r .(A1 u ∀r .A2) u ∀r .∀s.X1 ≡? ∀r .∀s.(∀s.A1 u ∀r .A2) u ∀r .X1 u ∀r .∀r .A2

∀{r}.A1 u ∀{rr}.A2 u ∀{rs}.X1 ≡? ∀{rss}.A1 u ∀{rsr , rr}.A2 u ∀{r}.X1

What to replace X1 for to make the resulting forms “equal”?

X1 7→ A1 u ∀s.A1 u ∀r .A2 A1: {r} ∪ {rs.ε, rs.s}
=

{rss} ∪ {r .ε, r .s}

A2: {rr} ∪ {rs.r}
=

{rsr , rr} ∪ {r .r}

Fixing A1 is idependent of fixing A2, and vice versa!

4/25

Connection to formal languages - Unification

Let Γ = {C ≡? D}.

Considering variables as concept names, Γ can be seen as:

∀L1.A1 u . . . u ∀Lk .Ak u ∀L∗1 .X1 u . . . u ∀L∗m.Xm

≡?

∀R1.A1 u . . . u ∀Rk .Ak u ∀R∗1 .X1 u . . . u ∀R∗m.Xm

Example

∀r .(A1 u ∀r .A2) u ∀r .∀s.X1 ≡? ∀r .∀s.(∀s.A1 u ∀r .A2) u ∀r .X1 u ∀r .∀r .A2

∀{r}.A1 u ∀{rr}.A2 u ∀{rs}.X1 ≡? ∀{rss}.A1 u ∀{rsr , rr}.A2 u ∀{r}.X1

What to replace X1 for to make the resulting forms “equal”?

X1 7→ A1 u ∀s.A1 u ∀r .A2 A1: {r} ∪ {rs.ε, rs.s}
=

{rss} ∪ {r .ε, r .s}

A2: {rr} ∪ {rs.r}
=

{rsr , rr} ∪ {r .r}

Fixing A1 is idependent of fixing A2, and vice versa!

4/25

Connection to formal languages - Unification

Let Γ = {C ≡? D}.

Considering variables as concept names, Γ can be seen as:

∀L1.A1 u . . . u ∀Lk .Ak u ∀L∗1 .X1 u . . . u ∀L∗m.Xm

≡?

∀R1.A1 u . . . u ∀Rk .Ak u ∀R∗1 .X1 u . . . u ∀R∗m.Xm

Example

∀r .(A1 u ∀r .A2) u ∀r .∀s.X1 ≡? ∀r .∀s.(∀s.A1 u ∀r .A2) u ∀r .X1 u ∀r .∀r .A2

∀{r}.A1 u ∀{rr}.A2 u ∀{rs}.X1 ≡? ∀{rss}.A1 u ∀{rsr , rr}.A2 u ∀{r}.X1

What to replace X1 for to make the resulting forms “equal”?

X1 7→ A1 u ∀s.A1 u ∀r .A2 A1: {r} ∪ {rs.ε, rs.s}
=

{rss} ∪ {r .ε, r .s}

A2: {rr} ∪ {rs.r}
=

{rsr , rr} ∪ {r .r}

Fixing A1 is idependent of fixing A2, and vice versa!

4/25

Connection to formal languages - Unification

Let Γ = {C ≡? D}.

Considering variables as concept names, Γ can be seen as:

∀L1.A1 u . . . u ∀Lk .Ak u ∀L∗1 .X1 u . . . u ∀L∗m.Xm

≡?

∀R1.A1 u . . . u ∀Rk .Ak u ∀R∗1 .X1 u . . . u ∀R∗m.Xm

Example

∀r .(A1 u ∀r .A2) u ∀r .∀s.X1 ≡? ∀r .∀s.(∀s.A1 u ∀r .A2) u ∀r .X1 u ∀r .∀r .A2

∀{r}.A1 u ∀{rr}.A2 u ∀{rs}.X1 ≡? ∀{rss}.A1 u ∀{rsr , rr}.A2 u ∀{r}.X1

What to replace X1 for to make the resulting forms “equal”?

X1 7→ A1 u ∀s.A1 u ∀r .A2 A1: {r} ∪ {rs.ε, rs.s}
=

{rss} ∪ {r .ε, r .s}

A2: {rr} ∪ {rs.r}
=

{rsr , rr} ∪ {r .r}

Fixing A1 is idependent of fixing A2, and vice versa!

4/25

Unification in FL0 → Solving linear equations

Example (continuation)

{r} ∪ {rs}.X1,A1
=? {rss} ∪ {r}.X1,A1

{rr} ∪ {rs}.X1,A2
=? {rsr , rr} ∪ {r}.X1,A2

Formally,

∀L1.A1 u . . . u ∀Lk .Ak u ∀L∗1 .X1 u . . . u ∀L∗m.Xm

≡?

∀R1.A1 u . . . u ∀Rk .Ak u ∀R∗1 .X1 u . . . u ∀R∗m.Xm

has a solution iff for all 1 ≤ i ≤ k the equation:

Li ∪ L∗1 .X1,i ∪ . . . ∪ L∗m.X1,m

=?

Ri ∪ R∗1 .X1,i ∪ . . . ∪ R∗m.X1,m

has a finite solution.

Why finite?

5/25

Unification in FL0 → Solving linear equations

Example (continuation)

{r} ∪ {rs}.X1,A1
=? {rss} ∪ {r}.X1,A1

{rr} ∪ {rs}.X1,A2
=? {rsr , rr} ∪ {r}.X1,A2

Formally,

∀L1.A1 u . . . u ∀Lk .Ak u ∀L∗1 .X1 u . . . u ∀L∗m.Xm

≡?

∀R1.A1 u . . . u ∀Rk .Ak u ∀R∗1 .X1 u . . . u ∀R∗m.Xm

has a solution iff for all 1 ≤ i ≤ k the equation:

Li ∪ L∗1 .X1,i ∪ . . . ∪ L∗m.X1,m

=?

Ri ∪ R∗1 .X1,i ∪ . . . ∪ R∗m.X1,m

has a finite solution.

Why finite?

5/25

Unification in FL0 → Solving linear equations

Example (continuation)

{r} ∪ {rs}.X1,A1
=? {rss} ∪ {r}.X1,A1

{rr} ∪ {rs}.X1,A2
=? {rsr , rr} ∪ {r}.X1,A2

Formally,

∀L1.A1 u . . . u ∀Lk .Ak u ∀L∗1 .X1 u . . . u ∀L∗m.Xm

≡?

∀R1.A1 u . . . u ∀Rk .Ak u ∀R∗1 .X1 u . . . u ∀R∗m.Xm

has a solution iff for all 1 ≤ i ≤ k the equation:

Li ∪ L∗1 .X1,i ∪ . . . ∪ L∗m.X1,m

=?

Ri ∪ R∗1 .X1,i ∪ . . . ∪ R∗m.X1,m

has a finite solution.

Why finite?

5/25

Unification in FL0 → Solving linear equations

Example (continuation)

{r} ∪ {rs}.X1,A1
=? {rss} ∪ {r}.X1,A1

{rr} ∪ {rs}.X1,A2
=? {rsr , rr} ∪ {r}.X1,A2

Formally,

∀L1.A1 u . . . u ∀Lk .Ak u ∀L∗1 .X1 u . . . u ∀L∗m.Xm

≡?

∀R1.A1 u . . . u ∀Rk .Ak u ∀R∗1 .X1 u . . . u ∀R∗m.Xm

has a solution iff for all 1 ≤ i ≤ k the equation:

Li ∪ L∗1 .X1,i ∪ . . . ∪ L∗m.X1,m

=?

Ri ∪ R∗1 .X1,i ∪ . . . ∪ R∗m.X1,m

has a finite solution.

Why finite?

5/25

Unification in FL0 → Solving linear equations

Example (continuation)

{r} ∪ {rs}.X1,A1
=? {rss} ∪ {r}.X1,A1

{rr} ∪ {rs}.X1,A2
=? {rsr , rr} ∪ {r}.X1,A2

Formally,

∀L1.A1 u . . . u ∀Lk .Ak u ∀L∗1 .X1 u . . . u ∀L∗m.Xm

≡?

∀R1.A1 u . . . u ∀Rk .Ak u ∀R∗1 .X1 u . . . u ∀R∗m.Xm

has a solution iff for all 1 ≤ i ≤ k the equation:

Li ∪ L∗1 .X1,i ∪ . . . ∪ L∗m.X1,m

=?

Ri ∪ R∗1 .X1,i ∪ . . . ∪ R∗m.X1,m

has a finite solution.

Why finite?

5/25

Unification in FL0 → Solving linear equations

Example (continuation)

{r} ∪ {rs}.X1,A1
=? {rss} ∪ {r}.X1,A1

{rr} ∪ {rs}.X1,A2
=? {rsr , rr} ∪ {r}.X1,A2

Formally,

∀L1.A1 u . . . u ∀Lk .Ak u ∀L∗1 .X1 u . . . u ∀L∗m.Xm

≡?

∀R1.A1 u . . . u ∀Rk .Ak u ∀R∗1 .X1 u . . . u ∀R∗m.Xm

has a solution iff for all 1 ≤ i ≤ k the equation:

Li ∪ L∗1 .X1,i ∪ . . . ∪ L∗m.X1,m

=?

Ri ∪ R∗1 .X1,i ∪ . . . ∪ R∗m.X1,m

has a finite solution.

Why finite?

5/25

Unification in FL0 → Solving linear equations

Example (continuation)

{r} ∪ {rs}.X1,A1
=? {rss} ∪ {r}.X1,A1

{rr} ∪ {rs}.X1,A2
=? {rsr , rr} ∪ {r}.X1,A2

Formally,

∀L1.A1 u . . . u ∀Lk .Ak u ∀L∗1 .X1 u . . . u ∀L∗m.Xm

≡?

∀R1.A1 u . . . u ∀Rk .Ak u ∀R∗1 .X1 u . . . u ∀R∗m.Xm

has a solution iff for all 1 ≤ i ≤ k the equation:

Li ∪ L∗1 .X1,i ∪ . . . ∪ L∗m.X1,m

=?

Ri ∪ R∗1 .X1,i ∪ . . . ∪ R∗m.X1,m

has a finite solution.
Why finite?

5/25

How to solve these linear equations?

• A solution of a single equation can be seen as a finite language:

in our example, L1 = {r , rs, rss} and L2 = {rr , rsr} for A1 and A2, resp.

• A language over a finite alphabet can be represented as a tree:

r∗ : ◦

◦

◦

r

◦

s

r

◦

s

. . .

. . .

t1 : ◦

◦

◦

r

◦

◦

r

◦

s

s

r

◦

s

t2 : ◦

◦

◦

r

◦

◦

r

◦

s

s

r

◦

s

• Construct a finite tree automata AE such that

L(AE) 6= ∅ iff E has a solution.

• AE accepts exactly the trees representing solutions of an equation.

6/25

How to solve these linear equations?

• A solution of a single equation can be seen as a finite language:

in our example, L1 = {r , rs, rss} and L2 = {rr , rsr} for A1 and A2, resp.

• A language over a finite alphabet can be represented as a tree:

r∗ : ◦

◦

◦

r

◦

s

r

◦

s

. . .

. . .

t1 : ◦

◦

◦

r

◦

◦

r

◦

s

s

r

◦

s

t2 : ◦

◦

◦

r

◦

◦

r

◦

s

s

r

◦

s

• Construct a finite tree automata AE such that

L(AE) 6= ∅ iff E has a solution.

• AE accepts exactly the trees representing solutions of an equation.

6/25

How to solve these linear equations?

• A solution of a single equation can be seen as a finite language:

in our example, L1 = {r , rs, rss} and L2 = {rr , rsr} for A1 and A2, resp.

• A language over a finite alphabet can be represented as a tree:

r∗ : ◦

◦

◦

r

◦

s

r

◦

s

. . .

. . .

t1 : ◦

◦

◦

r

◦

◦

r

◦

s

s

r

◦

s

t2 : ◦

◦

◦

r

◦

◦

r

◦

s

s

r

◦

s

• Construct a finite tree automata AE such that

L(AE) 6= ∅ iff E has a solution.

• AE accepts exactly the trees representing solutions of an equation.

6/25

How to solve these linear equations?

• A solution of a single equation can be seen as a finite language:

in our example, L1 = {r , rs, rss} and L2 = {rr , rsr} for A1 and A2, resp.

• A language over a finite alphabet can be represented as a tree:

r∗ : ◦

◦

◦

r

◦

s

r

◦

s

. . .

. . .

t1 : ◦

◦

◦

r

◦

◦

r

◦

s

s

r

◦

s

t2 : ◦

◦

◦

r

◦

◦

r

◦

s

s

r

◦

s

• Construct a finite tree automata AE such that

L(AE) 6= ∅ iff E has a solution.

• AE accepts exactly the trees representing solutions of an equation.

6/25

How to solve these linear equations?

• A solution of a single equation can be seen as a finite language:

in our example, L1 = {r , rs, rss} and L2 = {rr , rsr} for A1 and A2, resp.

• A language over a finite alphabet can be represented as a tree:

r∗ : ◦

◦

◦

r

◦

s

r

◦

s

. . .

. . .

t1 : ◦

◦

◦

r

◦

◦

r

◦

s

s

r

◦

s

t2 : ◦

◦

◦

r

◦

◦

r

◦

s

s

r

◦

s

• Construct a finite tree automata AE such that

L(AE) 6= ∅ iff E has a solution.

• AE accepts exactly the trees representing solutions of an equation.

6/25

How to solve these linear equations?

• A solution of a single equation can be seen as a finite language:

in our example, L1 = {r , rs, rss} and L2 = {rr , rsr} for A1 and A2, resp.

• A language over a finite alphabet can be represented as a tree:

r∗ : ◦

◦

◦

r

◦

s

r

◦

s

. . .

. . .

t1 : ◦

◦

◦

r

◦

◦

r

◦

s

s

r

◦

s

t2 : ◦

◦

◦

r

◦

◦

r

◦

s

s

r

◦

s

• Construct a finite tree automata AE such that

L(AE) 6= ∅ iff E has a solution.

• AE accepts exactly the trees representing solutions of an equation.

6/25

How to solve these linear equations?

• A solution of a single equation can be seen as a finite language:

in our example, L1 = {r , rs, rss} and L2 = {rr , rsr} for A1 and A2, resp.

• A language over a finite alphabet can be represented as a tree:

r∗ : ◦

◦

◦

r

◦

s

r

◦

s

. . .

. . .

t1 : ◦

◦

◦

r

◦

◦

r

◦

s

s

r

◦

s

t2 : ◦

◦

◦

r

◦

◦

r

◦

s

s

r

◦

s

• Construct a finite tree automata AE such that

L(AE) 6= ∅ iff E has a solution.

• AE accepts exactly the trees representing solutions of an equation.

6/25

Detour to finite tree automata

Definition 11 (Σ-tree)

Let Σ be a finite alphabet such that each f ∈ Σ has a rank rk(f) ≥ 0. A finite Σ-tree is a
mapping t : dom(t)→ Σ such that:

• dom(t) is a finite subset of {1, . . . ,max(rk(f))}∗,
• ε ∈ dom(t),

• u.i ∈ dom(t) iff u ∈ dom(t) and i ≤ rk(t(u)).

Leaves of t must be mapped to constants, i.e., arity 0.

Example

Let Σ = {f (2)
0 , f

(2)
1 , c

(0)
0 , c

(0)
1 }

not a tree f0

f1 c2

a tree f0

f1

c0 f1

c0 c1

c0

t1 : ◦

◦

◦

r

◦

◦

r

◦

s

s

r

◦

s

7/25

Detour to finite tree automata

Definition 11 (Σ-tree)

Let Σ be a finite alphabet such that each f ∈ Σ has a rank rk(f) ≥ 0. A finite Σ-tree is a
mapping t : dom(t)→ Σ such that:

• dom(t) is a finite subset of {1, . . . ,max(rk(f))}∗,
• ε ∈ dom(t),

• u.i ∈ dom(t) iff u ∈ dom(t) and i ≤ rk(t(u)).

Leaves of t must be mapped to constants, i.e., arity 0.

Example

Let Σ = {f (2)
0 , f

(2)
1 , c

(0)
0 , c

(0)
1 }

not a tree f0

f1 c2

a tree f0

f1

c0 f1

c0 c1

c0

t1 : ◦

◦

◦

r

◦

◦

r

◦

s

s

r

◦

s

7/25

Detour to finite tree automata

Definition 11 (Σ-tree)

Let Σ be a finite alphabet such that each f ∈ Σ has a rank rk(f) ≥ 0. A finite Σ-tree is a
mapping t : dom(t)→ Σ such that:

• dom(t) is a finite subset of {1, . . . ,max(rk(f))}∗,

• ε ∈ dom(t),

• u.i ∈ dom(t) iff u ∈ dom(t) and i ≤ rk(t(u)).

Leaves of t must be mapped to constants, i.e., arity 0.

Example

Let Σ = {f (2)
0 , f

(2)
1 , c

(0)
0 , c

(0)
1 }

not a tree f0

f1 c2

a tree f0

f1

c0 f1

c0 c1

c0

t1 : ◦

◦

◦

r

◦

◦

r

◦

s

s

r

◦

s

7/25

Detour to finite tree automata

Definition 11 (Σ-tree)

Let Σ be a finite alphabet such that each f ∈ Σ has a rank rk(f) ≥ 0. A finite Σ-tree is a
mapping t : dom(t)→ Σ such that:

• dom(t) is a finite subset of {1, . . . ,max(rk(f))}∗,
• ε ∈ dom(t),

• u.i ∈ dom(t) iff u ∈ dom(t) and i ≤ rk(t(u)).

Leaves of t must be mapped to constants, i.e., arity 0.

Example

Let Σ = {f (2)
0 , f

(2)
1 , c

(0)
0 , c

(0)
1 }

not a tree f0

f1 c2

a tree f0

f1

c0 f1

c0 c1

c0

t1 : ◦

◦

◦

r

◦

◦

r

◦

s

s

r

◦

s

7/25

Detour to finite tree automata

Definition 11 (Σ-tree)

Let Σ be a finite alphabet such that each f ∈ Σ has a rank rk(f) ≥ 0. A finite Σ-tree is a
mapping t : dom(t)→ Σ such that:

• dom(t) is a finite subset of {1, . . . ,max(rk(f))}∗,
• ε ∈ dom(t),

• u.i ∈ dom(t) iff u ∈ dom(t) and i ≤ rk(t(u)).

Leaves of t must be mapped to constants, i.e., arity 0.

Example

Let Σ = {f (2)
0 , f

(2)
1 , c

(0)
0 , c

(0)
1 }

not a tree f0

f1 c2

a tree f0

f1

c0 f1

c0 c1

c0

t1 : ◦

◦

◦

r

◦

◦

r

◦

s

s

r

◦

s

7/25

Detour to finite tree automata

Definition 11 (Σ-tree)

Let Σ be a finite alphabet such that each f ∈ Σ has a rank rk(f) ≥ 0. A finite Σ-tree is a
mapping t : dom(t)→ Σ such that:

• dom(t) is a finite subset of {1, . . . ,max(rk(f))}∗,
• ε ∈ dom(t),

• u.i ∈ dom(t) iff u ∈ dom(t) and i ≤ rk(t(u)).

Leaves of t must be mapped to constants, i.e., arity 0.

Example

Let Σ = {f (2)
0 , f

(2)
1 , c

(0)
0 , c

(0)
1 }

not a tree f0

f1 c2

a tree f0

f1

c0 f1

c0 c1

c0

t1 : ◦

◦

◦

r

◦

◦

r

◦

s

s

r

◦

s

7/25

Detour to finite tree automata

Definition 11 (Σ-tree)

Let Σ be a finite alphabet such that each f ∈ Σ has a rank rk(f) ≥ 0. A finite Σ-tree is a
mapping t : dom(t)→ Σ such that:

• dom(t) is a finite subset of {1, . . . ,max(rk(f))}∗,
• ε ∈ dom(t),

• u.i ∈ dom(t) iff u ∈ dom(t) and i ≤ rk(t(u)).

Leaves of t must be mapped to constants, i.e., arity 0.

Example

Let Σ = {f (2)
0 , f

(2)
1 , c

(0)
0 , c

(0)
1 }

not a tree f0

f1 c2

a tree f0

f1

c0 f1

c0 c1

c0

t1 : ◦

◦

◦

r

◦

◦

r

◦

s

s

r

◦

s

7/25

Detour to finite tree automata

Definition 11 (Σ-tree)

Let Σ be a finite alphabet such that each f ∈ Σ has a rank rk(f) ≥ 0. A finite Σ-tree is a
mapping t : dom(t)→ Σ such that:

• dom(t) is a finite subset of {1, . . . ,max(rk(f))}∗,
• ε ∈ dom(t),

• u.i ∈ dom(t) iff u ∈ dom(t) and i ≤ rk(t(u)).

Leaves of t must be mapped to constants, i.e., arity 0.

Example

Let Σ = {f (2)
0 , f

(2)
1 , c

(0)
0 , c

(0)
1 }

not a tree f0

f1 c2

a tree f0

f1

c0 f1

c0 c1

c0

t1 : ◦

◦

◦

r

◦

◦

r

◦

s

s

r

◦

s

7/25

Detour to finite tree automata

Definition 11 (Σ-tree)

Let Σ be a finite alphabet such that each f ∈ Σ has a rank rk(f) ≥ 0. A finite Σ-tree is a
mapping t : dom(t)→ Σ such that:

• dom(t) is a finite subset of {1, . . . ,max(rk(f))}∗,
• ε ∈ dom(t),

• u.i ∈ dom(t) iff u ∈ dom(t) and i ≤ rk(t(u)).

Leaves of t must be mapped to constants, i.e., arity 0.

Example

Let Σ = {f (2)
0 , f

(2)
1 , c

(0)
0 , c

(0)
1 }

not a tree f0

f1 c2

a tree f0

f1

c0 f1

c0 c1

c0

t1 : ◦

◦

◦

r

◦

◦

r

◦

s

s

r

◦

s

7/25

Detour to finite tree automata

Definition 12 (Root-to-frontier tree automata)

A root-to-frontier tree automaton (RFA) on Σ-trees is a tuple A = (Σ,Q, I ,∆,F) where:

• Q is a finite set of states.

• I ⊆ Q is the set of initial states.

• ∆ is a transition function s.t.:

∀f ∈ Σ, rk(f) = n > 0: ∆(f) ⊆ Q × Qn.

• F : Σ0 → 2Q (the acceptance condition).

A run ρ of A on a Σ-tree t is a mapping ρ : dom(t)→ Q such that:

(ρ(u), ρ(u.1), . . . , ρ(u.n)) ∈ ∆, for all u with rk(u) = n > 0.

This run is successful if,

• ρ(ε) ∈ I

• ρ(u) ∈ F (t(u)), for all leaves u of t.

Tree language accepted by A:

L(A) = {t | A has a successful run on t}.

8/25

Detour to finite tree automata

Definition 12 (Root-to-frontier tree automata)

A root-to-frontier tree automaton (RFA) on Σ-trees is a tuple A = (Σ,Q, I ,∆,F) where:

• Q is a finite set of states.

• I ⊆ Q is the set of initial states.

• ∆ is a transition function s.t.:

∀f ∈ Σ, rk(f) = n > 0: ∆(f) ⊆ Q × Qn.

• F : Σ0 → 2Q (the acceptance condition).

A run ρ of A on a Σ-tree t is a mapping ρ : dom(t)→ Q such that:

(ρ(u), ρ(u.1), . . . , ρ(u.n)) ∈ ∆, for all u with rk(u) = n > 0.

This run is successful if,

• ρ(ε) ∈ I

• ρ(u) ∈ F (t(u)), for all leaves u of t.

Tree language accepted by A:

L(A) = {t | A has a successful run on t}.

8/25

Detour to finite tree automata

Definition 12 (Root-to-frontier tree automata)

A root-to-frontier tree automaton (RFA) on Σ-trees is a tuple A = (Σ,Q, I ,∆,F) where:

• Q is a finite set of states.

• I ⊆ Q is the set of initial states.

• ∆ is a transition function s.t.:

∀f ∈ Σ, rk(f) = n > 0: ∆(f) ⊆ Q × Qn.

• F : Σ0 → 2Q (the acceptance condition).

A run ρ of A on a Σ-tree t is a mapping ρ : dom(t)→ Q such that:

(ρ(u), ρ(u.1), . . . , ρ(u.n)) ∈ ∆, for all u with rk(u) = n > 0.

This run is successful if,

• ρ(ε) ∈ I

• ρ(u) ∈ F (t(u)), for all leaves u of t.

Tree language accepted by A:

L(A) = {t | A has a successful run on t}.

8/25

Detour to finite tree automata

Definition 12 (Root-to-frontier tree automata)

A root-to-frontier tree automaton (RFA) on Σ-trees is a tuple A = (Σ,Q, I ,∆,F) where:

• Q is a finite set of states.

• I ⊆ Q is the set of initial states.

• ∆ is a transition function s.t.:

∀f ∈ Σ, rk(f) = n > 0: ∆(f) ⊆ Q × Qn.

• F : Σ0 → 2Q (the acceptance condition).

A run ρ of A on a Σ-tree t is a mapping ρ : dom(t)→ Q such that:

(ρ(u), ρ(u.1), . . . , ρ(u.n)) ∈ ∆, for all u with rk(u) = n > 0.

This run is successful if,

• ρ(ε) ∈ I

• ρ(u) ∈ F (t(u)), for all leaves u of t.

Tree language accepted by A:

L(A) = {t | A has a successful run on t}.

8/25

Detour to finite tree automata

Definition 12 (Root-to-frontier tree automata)

A root-to-frontier tree automaton (RFA) on Σ-trees is a tuple A = (Σ,Q, I ,∆,F) where:

• Q is a finite set of states.

• I ⊆ Q is the set of initial states.

• ∆ is a transition function s.t.:

∀f ∈ Σ, rk(f) = n > 0: ∆(f) ⊆ Q × Qn.

• F : Σ0 → 2Q (the acceptance condition).

A run ρ of A on a Σ-tree t is a mapping ρ : dom(t)→ Q such that:

(ρ(u), ρ(u.1), . . . , ρ(u.n)) ∈ ∆, for all u with rk(u) = n > 0.

This run is successful if,

• ρ(ε) ∈ I

• ρ(u) ∈ F (t(u)), for all leaves u of t.

Tree language accepted by A:

L(A) = {t | A has a successful run on t}.
8/25

Detour to finite tree automata - Example

Let Σ = {f (2)
0 , f

(2)
1 , c

(0)
0 , c

(0)
1 }. Construct an automaton A that accepts

L = {t | ∃u ∈ dom(t) s.t. u.rs is a c1 leaf}.

Idea.

• At every moment, A will guess whether u is in the current subtree:
• state qN → “not in this subtree”.

• states qs0, qs1 → “it is in the subtree”, “it is actually the root of the subtree”.

• Guessing (use non-determinism):
• (qs0, f0/f1, qN, qs0/qs1) and (qs0, f0/f1, qs0/qs1, qN).

• (qN, f0/f1, qN, qN)

• Checking the suffix once in qs1 (use two additional states qs , qε):
• (qs1, f0/f1, qs , qN) and (qs , f0/f1, qN, qε).

• Acceptance condition:
• F (c0) = {qN} and F (c1) = {qN, qε}.

9/25

Detour to finite tree automata - Example

Let Σ = {f (2)
0 , f

(2)
1 , c

(0)
0 , c

(0)
1 }. Construct an automaton A that accepts

L = {t | ∃u ∈ dom(t) s.t. u.rs is a c1 leaf}.

Idea.

• At every moment, A will guess whether u is in the current subtree:
• state qN → “not in this subtree”.

• states qs0, qs1 → “it is in the subtree”, “it is actually the root of the subtree”.

• Guessing (use non-determinism):
• (qs0, f0/f1, qN, qs0/qs1) and (qs0, f0/f1, qs0/qs1, qN).

• (qN, f0/f1, qN, qN)

• Checking the suffix once in qs1 (use two additional states qs , qε):
• (qs1, f0/f1, qs , qN) and (qs , f0/f1, qN, qε).

• Acceptance condition:
• F (c0) = {qN} and F (c1) = {qN, qε}.

9/25

Detour to finite tree automata - Example

Let Σ = {f (2)
0 , f

(2)
1 , c

(0)
0 , c

(0)
1 }. Construct an automaton A that accepts

L = {t | ∃u ∈ dom(t) s.t. u.rs is a c1 leaf}.

Idea.

• At every moment, A will guess whether u is in the current subtree:

• state qN → “not in this subtree”.

• states qs0, qs1 → “it is in the subtree”, “it is actually the root of the subtree”.

• Guessing (use non-determinism):
• (qs0, f0/f1, qN, qs0/qs1) and (qs0, f0/f1, qs0/qs1, qN).

• (qN, f0/f1, qN, qN)

• Checking the suffix once in qs1 (use two additional states qs , qε):
• (qs1, f0/f1, qs , qN) and (qs , f0/f1, qN, qε).

• Acceptance condition:
• F (c0) = {qN} and F (c1) = {qN, qε}.

9/25

Detour to finite tree automata - Example

Let Σ = {f (2)
0 , f

(2)
1 , c

(0)
0 , c

(0)
1 }. Construct an automaton A that accepts

L = {t | ∃u ∈ dom(t) s.t. u.rs is a c1 leaf}.

Idea.

• At every moment, A will guess whether u is in the current subtree:
• state qN → “not in this subtree”.

• states qs0, qs1 → “it is in the subtree”, “it is actually the root of the subtree”.

• Guessing (use non-determinism):
• (qs0, f0/f1, qN, qs0/qs1) and (qs0, f0/f1, qs0/qs1, qN).

• (qN, f0/f1, qN, qN)

• Checking the suffix once in qs1 (use two additional states qs , qε):
• (qs1, f0/f1, qs , qN) and (qs , f0/f1, qN, qε).

• Acceptance condition:
• F (c0) = {qN} and F (c1) = {qN, qε}.

9/25

Detour to finite tree automata - Example

Let Σ = {f (2)
0 , f

(2)
1 , c

(0)
0 , c

(0)
1 }. Construct an automaton A that accepts

L = {t | ∃u ∈ dom(t) s.t. u.rs is a c1 leaf}.

Idea.

• At every moment, A will guess whether u is in the current subtree:
• state qN → “not in this subtree”.

• states qs0, qs1 → “it is in the subtree”, “it is actually the root of the subtree”.

• Guessing (use non-determinism):
• (qs0, f0/f1, qN, qs0/qs1) and (qs0, f0/f1, qs0/qs1, qN).

• (qN, f0/f1, qN, qN)

• Checking the suffix once in qs1 (use two additional states qs , qε):
• (qs1, f0/f1, qs , qN) and (qs , f0/f1, qN, qε).

• Acceptance condition:
• F (c0) = {qN} and F (c1) = {qN, qε}.

9/25

Detour to finite tree automata - Example

Let Σ = {f (2)
0 , f

(2)
1 , c

(0)
0 , c

(0)
1 }. Construct an automaton A that accepts

L = {t | ∃u ∈ dom(t) s.t. u.rs is a c1 leaf}.

Idea.

• At every moment, A will guess whether u is in the current subtree:
• state qN → “not in this subtree”.

• states qs0, qs1 → “it is in the subtree”, “it is actually the root of the subtree”.

• Guessing (use non-determinism):

• (qs0, f0/f1, qN, qs0/qs1) and (qs0, f0/f1, qs0/qs1, qN).

• (qN, f0/f1, qN, qN)

• Checking the suffix once in qs1 (use two additional states qs , qε):
• (qs1, f0/f1, qs , qN) and (qs , f0/f1, qN, qε).

• Acceptance condition:
• F (c0) = {qN} and F (c1) = {qN, qε}.

9/25

Detour to finite tree automata - Example

Let Σ = {f (2)
0 , f

(2)
1 , c

(0)
0 , c

(0)
1 }. Construct an automaton A that accepts

L = {t | ∃u ∈ dom(t) s.t. u.rs is a c1 leaf}.

Idea.

• At every moment, A will guess whether u is in the current subtree:
• state qN → “not in this subtree”.

• states qs0, qs1 → “it is in the subtree”, “it is actually the root of the subtree”.

• Guessing (use non-determinism):
• (qs0, f0/f1, qN, qs0/qs1) and (qs0, f0/f1, qs0/qs1, qN).

• (qN, f0/f1, qN, qN)

• Checking the suffix once in qs1 (use two additional states qs , qε):
• (qs1, f0/f1, qs , qN) and (qs , f0/f1, qN, qε).

• Acceptance condition:
• F (c0) = {qN} and F (c1) = {qN, qε}.

9/25

Detour to finite tree automata - Example

Let Σ = {f (2)
0 , f

(2)
1 , c

(0)
0 , c

(0)
1 }. Construct an automaton A that accepts

L = {t | ∃u ∈ dom(t) s.t. u.rs is a c1 leaf}.

Idea.

• At every moment, A will guess whether u is in the current subtree:
• state qN → “not in this subtree”.

• states qs0, qs1 → “it is in the subtree”, “it is actually the root of the subtree”.

• Guessing (use non-determinism):
• (qs0, f0/f1, qN, qs0/qs1) and (qs0, f0/f1, qs0/qs1, qN).

• (qN, f0/f1, qN, qN)

• Checking the suffix once in qs1 (use two additional states qs , qε):
• (qs1, f0/f1, qs , qN) and (qs , f0/f1, qN, qε).

• Acceptance condition:
• F (c0) = {qN} and F (c1) = {qN, qε}.

9/25

Detour to finite tree automata - Example

Let Σ = {f (2)
0 , f

(2)
1 , c

(0)
0 , c

(0)
1 }. Construct an automaton A that accepts

L = {t | ∃u ∈ dom(t) s.t. u.rs is a c1 leaf}.

Idea.

• At every moment, A will guess whether u is in the current subtree:
• state qN → “not in this subtree”.

• states qs0, qs1 → “it is in the subtree”, “it is actually the root of the subtree”.

• Guessing (use non-determinism):
• (qs0, f0/f1, qN, qs0/qs1) and (qs0, f0/f1, qs0/qs1, qN).

• (qN, f0/f1, qN, qN)

• Checking the suffix once in qs1 (use two additional states qs , qε):
• (qs1, f0/f1, qs , qN) and (qs , f0/f1, qN, qε).

• Acceptance condition:
• F (c0) = {qN} and F (c1) = {qN, qε}.

9/25

Detour to finite tree automata - Example

Let Σ = {f (2)
0 , f

(2)
1 , c

(0)
0 , c

(0)
1 }. Construct an automaton A that accepts

L = {t | ∃u ∈ dom(t) s.t. u.rs is a c1 leaf}.

Idea.

• At every moment, A will guess whether u is in the current subtree:
• state qN → “not in this subtree”.

• states qs0, qs1 → “it is in the subtree”, “it is actually the root of the subtree”.

• Guessing (use non-determinism):
• (qs0, f0/f1, qN, qs0/qs1) and (qs0, f0/f1, qs0/qs1, qN).

• (qN, f0/f1, qN, qN)

• Checking the suffix once in qs1 (use two additional states qs , qε):
• (qs1, f0/f1, qs , qN) and (qs , f0/f1, qN, qε).

• Acceptance condition:
• F (c0) = {qN} and F (c1) = {qN, qε}.

9/25

Solving linear equations

Recall: we want to construct an RFA AE accepting exactly the “trees” solving

Li ∪ L∗1 .X1,i ∪ . . . ∪ L∗m.X1,m

=?

Ri ∪ R∗1 .X1,i ∪ . . . ∪ R∗m.X1,m.

Actually, we will instead build one accepting the solutions of

Li ∪ Y1,i .L∗1 ∪ . . . ∪ Y1,m.L∗m

=?

Ri ∪ Y1,i .R∗1 ∪ . . . ∪ Y1,m.R∗m,

where w = um . . . u1, for w = u1 . . . um ∈ NR
∗; and L = {w | w ∈ L}.

Property

X1,i , . . . ,X1,m solves E
iff

Y1,i = X1,i , . . . ,Y1,m = X1,m solves E .

10/25

Solving linear equations

Recall: we want to construct an RFA AE accepting exactly the “trees” solving

Li ∪ L∗1 .X1,i ∪ . . . ∪ L∗m.X1,m

=?

Ri ∪ R∗1 .X1,i ∪ . . . ∪ R∗m.X1,m.

Actually, we will instead build one accepting the solutions of

Li ∪ Y1,i .L∗1 ∪ . . . ∪ Y1,m.L∗m

=?

Ri ∪ Y1,i .R∗1 ∪ . . . ∪ Y1,m.R∗m,

where w = um . . . u1, for w = u1 . . . um ∈ NR
∗; and L = {w | w ∈ L}.

Property

X1,i , . . . ,X1,m solves E
iff

Y1,i = X1,i , . . . ,Y1,m = X1,m solves E .

10/25

Solving linear equations

Recall: we want to construct an RFA AE accepting exactly the “trees” solving

Li ∪ L∗1 .X1,i ∪ . . . ∪ L∗m.X1,m

=?

Ri ∪ R∗1 .X1,i ∪ . . . ∪ R∗m.X1,m.

Actually, we will instead build one accepting the solutions of

Li ∪ Y1,i .L∗1 ∪ . . . ∪ Y1,m.L∗m

=?

Ri ∪ Y1,i .R∗1 ∪ . . . ∪ Y1,m.R∗m,

where w = um . . . u1, for w = u1 . . . um ∈ NR
∗; and L = {w | w ∈ L}.

Property

X1,i , . . . ,X1,m solves E
iff

Y1,i = X1,i , . . . ,Y1,m = X1,m solves E .

10/25

Solving linear equations

Recall: we want to construct an RFA AE accepting exactly the “trees” solving

Li ∪ L∗1 .X1,i ∪ . . . ∪ L∗m.X1,m

=?

Ri ∪ R∗1 .X1,i ∪ . . . ∪ R∗m.X1,m.

Actually, we will instead build one accepting the solutions of

Li ∪ Y1,i .L∗1 ∪ . . . ∪ Y1,m.L∗m

=?

Ri ∪ Y1,i .R∗1 ∪ . . . ∪ Y1,m.R∗m,

where w = um . . . u1, for w = u1 . . . um ∈ NR
∗; and L = {w | w ∈ L}.

Property

X1,i , . . . ,X1,m solves E
iff

Y1,i = X1,i , . . . ,Y1,m = X1,m solves E .

10/25

Construction of the automaton - Example

Original equation and solution:

E : {r} ∪ {rs}.X1,A1
=? {rss} ∪ {r}.X1,A1

X1,A1
7→ {ε, s} and L1 = {r , rs, rss}

Reverse equation and solution:

E : {r} ∪ Y1,A1
.{sr} =? {ssr} ∪ Y1,A1

.{r}
Y1,A1

7→ {ε, s} and L1 = {r , sr , ssr}

The automaton must accept the tree:

t : f0

c1

r

f0

c1

r

f0

c1

r

c0

s

s

s

11/25

Construction of the automaton - Example

Original equation and solution:

E : {r} ∪ {rs}.X1,A1
=? {rss} ∪ {r}.X1,A1

X1,A1
7→ {ε, s} and L1 = {r , rs, rss}

Reverse equation and solution:

E : {r} ∪ Y1,A1
.{sr} =? {ssr} ∪ Y1,A1

.{r}
Y1,A1

7→ {ε, s} and L1 = {r , sr , ssr}

The automaton must accept the tree:

t : f0

c1

r

f0

c1

r

f0

c1

r

c0

s

s

s

11/25

Construction of the automaton - Example

Original equation and solution:

E : {r} ∪ {rs}.X1,A1
=? {rss} ∪ {r}.X1,A1

X1,A1
7→ {ε, s} and L1 = {r , rs, rss}

Reverse equation and solution:

E : {r} ∪ Y1,A1
.{sr} =? {ssr} ∪ Y1,A1

.{r}
Y1,A1

7→ {ε, s} and L1 = {r , sr , ssr}

The automaton must accept the tree:

t : f0

c1

r

f0

c1

r

f0

c1

r

c0

s

s

s

11/25

Construction of the automaton - Example

Original equation and solution:

E : {r} ∪ {rs}.X1,A1
=? {rss} ∪ {r}.X1,A1

X1,A1
7→ {ε, s} and L1 = {r , rs, rss}

Reverse equation and solution:

E : {r} ∪ Y1,A1
.{sr} =? {ssr} ∪ Y1,A1

.{r}
Y1,A1

7→ {ε, s} and L1 = {r , sr , ssr}

The automaton must accept the tree:

t : f0

c1

r

f0

c1

r

f0

c1

r

c0

s

s

s

11/25

Construction of the automaton - Example

Original equation and solution:

E : {r} ∪ {rs}.X1,A1
=? {rss} ∪ {r}.X1,A1

X1,A1
7→ {ε, s} and L1 = {r , rs, rss}

Reverse equation and solution:

E : {r} ∪ Y1,A1
.{sr} =? {ssr} ∪ Y1,A1

.{r}
Y1,A1

7→ {ε, s} and L1 = {r , sr , ssr}

The automaton must accept the tree:

t : f0

c1

r

f0

c1

r

f0

c1

r

c0

s

s

s

11/25

Construction of the automaton - Example

Original equation and solution:

E : {r} ∪ {rs}.X1,A1
=? {rss} ∪ {r}.X1,A1

X1,A1
7→ {ε, s} and L1 = {r , rs, rss}

Reverse equation and solution:

E : {r} ∪ Y1,A1
.{sr} =? {ssr} ∪ Y1,A1

.{r}
Y1,A1

7→ {ε, s} and L1 = {r , sr , ssr}

The automaton must accept the tree:

t : f0

c1

r

f0

c1

r

f0

c1

r

c0

s

s

s

11/25

Construction of the automaton - Example

Original equation and solution:

E : {r} ∪ {rs}.X1,A1
=? {rss} ∪ {r}.X1,A1

X1,A1
7→ {ε, s} and L1 = {r , rs, rss}

Reverse equation and solution:

E : {r} ∪ Y1,A1
.{sr} =? {ssr} ∪ Y1,A1

.{r}
Y1,A1

7→ {ε, s} and L1 = {r , sr , ssr}

The automaton must accept the tree:

t : f0

c1

r

f0

c1

r

f0

c1

r

c0

s

s

s

11/25

Construction of the automaton - Example

Original equation and solution:

E : {r} ∪ {rs}.X1,A1
=? {rss} ∪ {r}.X1,A1

X1,A1
7→ {ε, s} and L1 = {r , rs, rss}

Reverse equation and solution:

E : {r} ∪ Y1,A1
.{sr} =? {ssr} ∪ Y1,A1

.{r}
Y1,A1

7→ {ε, s} and L1 = {r , sr , ssr}

The automaton must accept the tree:

t : f0

c1

r

f0

c1

r

f0

c1

r

c0

s

s

s

11/25

Construction of the automaton - Example

Reverse equation and solution:

E : {r} ∪ Y1,A1
.{sr} =? {ssr} ∪ Y1,A1

.{r}
Y1,A1

7→ {ε, s} and L1 = {r , sr , ssr}

Let us decorate the tree as follows:

t : f0

c1

r

f0

c1

r

f0

c1

r

c0

s

s

s

({Y1,A1
},)

(∅,) ({Y1,A1
},)

(∅,) (∅,)

(∅,) (∅,)

({Y1,A1
}, {r, sr},)

(∅, {ε},) ({Y1,A1
}, {r, sr},)

(∅, {ε},) (∅, {r},)

(∅, {ε},) (∅, ∅,)

({Y1,A1
}, {r, sr}, {ssr, r})

(∅, {ε}, {ε}) ({Y1,A1
}, {r, sr}, {sr, r})

(∅, {ε}, {ε}) (∅, {r}, {r})

(∅, {ε}, {ε}) (∅, ∅, ∅)

- variables

- suffixes left-hand side
- suffixes right-hand side

Third and second sets are sets of suffixes occurring in E .

12/25

Construction of the automaton - Example

Reverse equation and solution:

E : {r} ∪ Y1,A1
.{sr} =? {ssr} ∪ Y1,A1

.{r}
Y1,A1

7→ {ε, s} and L1 = {r , sr , ssr}

Let us decorate the tree as follows:

t : f0

c1

r

f0

c1

r

f0

c1

r

c0

s

s

s

({Y1,A1
},)

(∅,) ({Y1,A1
},)

(∅,) (∅,)

(∅,) (∅,)

({Y1,A1
}, {r, sr},)

(∅, {ε},) ({Y1,A1
}, {r, sr},)

(∅, {ε},) (∅, {r},)

(∅, {ε},) (∅, ∅,)

({Y1,A1
}, {r, sr}, {ssr, r})

(∅, {ε}, {ε}) ({Y1,A1
}, {r, sr}, {sr, r})

(∅, {ε}, {ε}) (∅, {r}, {r})

(∅, {ε}, {ε}) (∅, ∅, ∅)

- variables

- suffixes left-hand side
- suffixes right-hand side

Third and second sets are sets of suffixes occurring in E .

12/25

Construction of the automaton - Example

Reverse equation and solution:

E : {r} ∪ Y1,A1
.{sr} =? {ssr} ∪ Y1,A1

.{r}
Y1,A1

7→ {ε, s} and L1 = {r , sr , ssr}

Let us decorate the tree as follows:

t : f0

c1

r

f0

c1

r

f0

c1

r

c0

s

s

s

({Y1,A1
},)

(∅,) ({Y1,A1
},)

(∅,) (∅,)

(∅,) (∅,)

({Y1,A1
}, {r, sr},)

(∅, {ε},) ({Y1,A1
}, {r, sr},)

(∅, {ε},) (∅, {r},)

(∅, {ε},) (∅, ∅,)

({Y1,A1
}, {r, sr}, {ssr, r})

(∅, {ε}, {ε}) ({Y1,A1
}, {r, sr}, {sr, r})

(∅, {ε}, {ε}) (∅, {r}, {r})

(∅, {ε}, {ε}) (∅, ∅, ∅)

- variables

- suffixes left-hand side
- suffixes right-hand side

Third and second sets are sets of suffixes occurring in E .

12/25

Construction of the automaton - Example

Reverse equation and solution:

E : {r} ∪ Y1,A1
.{sr} =? {ssr} ∪ Y1,A1

.{r}
Y1,A1

7→ {ε, s} and L1 = {r , sr , ssr}

Let us decorate the tree as follows:

t : f0

c1

r

f0

c1

r

f0

c1

r

c0

s

s

s

({Y1,A1
},)

(∅,) ({Y1,A1
},)

(∅,) (∅,)

(∅,) (∅,)

({Y1,A1
}, {r, sr},)

(∅, {ε},) ({Y1,A1
}, {r, sr},)

(∅, {ε},) (∅, {r},)

(∅, {ε},) (∅, ∅,)

({Y1,A1
}, {r, sr}, {ssr, r})

(∅, {ε}, {ε}) ({Y1,A1
}, {r, sr}, {sr, r})

(∅, {ε}, {ε}) (∅, {r}, {r})

(∅, {ε}, {ε}) (∅, ∅, ∅)

- variables
- suffixes left-hand side

- suffixes right-hand side

Third and second sets are sets of suffixes occurring in E .

12/25

Construction of the automaton - Example

Reverse equation and solution:

E : {r} ∪ Y1,A1
.{sr} =? {ssr} ∪ Y1,A1

.{r}
Y1,A1

7→ {ε, s} and L1 = {r , sr , ssr}

Let us decorate the tree as follows:

t : f0

c1

r

f0

c1

r

f0

c1

r

c0

s

s

s

({Y1,A1
},)

(∅,) ({Y1,A1
},)

(∅,) (∅,)

(∅,) (∅,)

({Y1,A1
}, {r, sr},)

(∅, {ε},) ({Y1,A1
}, {r, sr},)

(∅, {ε},) (∅, {r},)

(∅, {ε},) (∅, ∅,)

({Y1,A1
}, {r, sr}, {ssr, r})

(∅, {ε}, {ε}) ({Y1,A1
}, {r, sr}, {sr, r})

(∅, {ε}, {ε}) (∅, {r}, {r})

(∅, {ε}, {ε}) (∅, ∅, ∅)

- variables
- suffixes left-hand side
- suffixes right-hand side

Third and second sets are sets of suffixes occurring in E .

12/25

Construction of the automaton - Example

Reverse equation and solution:

E : {r} ∪ Y1,A1
.{sr} =? {ssr} ∪ Y1,A1

.{r}
Y1,A1

7→ {ε, s} and L1 = {r , sr , ssr}

Let us decorate the tree as follows:

t : f0

c1

r

f0

c1

r

f0

c1

r

c0

s

s

s

({Y1,A1
},)

(∅,) ({Y1,A1
},)

(∅,) (∅,)

(∅,) (∅,)

({Y1,A1
}, {r, sr},)

(∅, {ε},) ({Y1,A1
}, {r, sr},)

(∅, {ε},) (∅, {r},)

(∅, {ε},) (∅, ∅,)

({Y1,A1
}, {r, sr}, {ssr, r})

(∅, {ε}, {ε}) ({Y1,A1
}, {r, sr}, {sr, r})

(∅, {ε}, {ε}) (∅, {r}, {r})

(∅, {ε}, {ε}) (∅, ∅, ∅)

- variables
- suffixes left-hand side
- suffixes right-hand side

Third and second sets are sets of suffixes occurring in E .

12/25

The automaton

Idea: when traversing a tree, AE guesses the words assigned to variables and keeps track
of the suffixes that show up.

• Set of states: Q := 2M × 2SL × 2SR .
• M = {1, . . . ,m}, where m is the number of variables.

• SL suffixes occurring in the left hand-side of E (symmetrically for SR)

• Initial states:

I := {(V , L,R) | G ⊆ M, L = Li ∪
⋃
j∈V

L∗j ,R = . . . }

• Transition function:

((G0, L0,R0), f`, (G1, L1,R1), . . . , (Gk , Lk ,Rk)) ∈ Q × Qk iff

• Suffixes are properly propagated.

• The resulting left and right languages are the same:

ε ∈ L0 iff ε ∈ R0 iff ` = f1,

• Final states:

F (c0) = {(G , L,R) | L = R = ∅} and F (c1) = {(G , L,R) | L = R = {ε}}.

13/25

The automaton

Idea: when traversing a tree, AE guesses the words assigned to variables and keeps track
of the suffixes that show up.

• Set of states: Q := 2M × 2SL × 2SR .
• M = {1, . . . ,m}, where m is the number of variables.

• SL suffixes occurring in the left hand-side of E (symmetrically for SR)

• Initial states:

I := {(V , L,R) | G ⊆ M, L = Li ∪
⋃
j∈V

L∗j ,R = . . . }

• Transition function:

((G0, L0,R0), f`, (G1, L1,R1), . . . , (Gk , Lk ,Rk)) ∈ Q × Qk iff

• Suffixes are properly propagated.

• The resulting left and right languages are the same:

ε ∈ L0 iff ε ∈ R0 iff ` = f1,

• Final states:

F (c0) = {(G , L,R) | L = R = ∅} and F (c1) = {(G , L,R) | L = R = {ε}}.

13/25

The automaton

Idea: when traversing a tree, AE guesses the words assigned to variables and keeps track
of the suffixes that show up.

• Set of states: Q := 2M × 2SL × 2SR .

• M = {1, . . . ,m}, where m is the number of variables.

• SL suffixes occurring in the left hand-side of E (symmetrically for SR)

• Initial states:

I := {(V , L,R) | G ⊆ M, L = Li ∪
⋃
j∈V

L∗j ,R = . . . }

• Transition function:

((G0, L0,R0), f`, (G1, L1,R1), . . . , (Gk , Lk ,Rk)) ∈ Q × Qk iff

• Suffixes are properly propagated.

• The resulting left and right languages are the same:

ε ∈ L0 iff ε ∈ R0 iff ` = f1,

• Final states:

F (c0) = {(G , L,R) | L = R = ∅} and F (c1) = {(G , L,R) | L = R = {ε}}.

13/25

The automaton

Idea: when traversing a tree, AE guesses the words assigned to variables and keeps track
of the suffixes that show up.

• Set of states: Q := 2M × 2SL × 2SR .
• M = {1, . . . ,m}, where m is the number of variables.

• SL suffixes occurring in the left hand-side of E (symmetrically for SR)

• Initial states:

I := {(V , L,R) | G ⊆ M, L = Li ∪
⋃
j∈V

L∗j ,R = . . . }

• Transition function:

((G0, L0,R0), f`, (G1, L1,R1), . . . , (Gk , Lk ,Rk)) ∈ Q × Qk iff

• Suffixes are properly propagated.

• The resulting left and right languages are the same:

ε ∈ L0 iff ε ∈ R0 iff ` = f1,

• Final states:

F (c0) = {(G , L,R) | L = R = ∅} and F (c1) = {(G , L,R) | L = R = {ε}}.

13/25

The automaton

Idea: when traversing a tree, AE guesses the words assigned to variables and keeps track
of the suffixes that show up.

• Set of states: Q := 2M × 2SL × 2SR .
• M = {1, . . . ,m}, where m is the number of variables.

• SL suffixes occurring in the left hand-side of E (symmetrically for SR)

• Initial states:

I := {(V , L,R) | G ⊆ M, L = Li ∪
⋃
j∈V

L∗j ,R = . . . }

• Transition function:

((G0, L0,R0), f`, (G1, L1,R1), . . . , (Gk , Lk ,Rk)) ∈ Q × Qk iff

• Suffixes are properly propagated.

• The resulting left and right languages are the same:

ε ∈ L0 iff ε ∈ R0 iff ` = f1,

• Final states:

F (c0) = {(G , L,R) | L = R = ∅} and F (c1) = {(G , L,R) | L = R = {ε}}.

13/25

The automaton

Idea: when traversing a tree, AE guesses the words assigned to variables and keeps track
of the suffixes that show up.

• Set of states: Q := 2M × 2SL × 2SR .
• M = {1, . . . ,m}, where m is the number of variables.

• SL suffixes occurring in the left hand-side of E (symmetrically for SR)

• Initial states:

I := {(V , L,R) | G ⊆ M, L = Li ∪
⋃
j∈V

L∗j ,R = . . . }

• Transition function:

((G0, L0,R0), f`, (G1, L1,R1), . . . , (Gk , Lk ,Rk)) ∈ Q × Qk iff

• Suffixes are properly propagated.

• The resulting left and right languages are the same:

ε ∈ L0 iff ε ∈ R0 iff ` = f1,

• Final states:

F (c0) = {(G , L,R) | L = R = ∅} and F (c1) = {(G , L,R) | L = R = {ε}}.

13/25

The automaton

Idea: when traversing a tree, AE guesses the words assigned to variables and keeps track
of the suffixes that show up.

• Set of states: Q := 2M × 2SL × 2SR .
• M = {1, . . . ,m}, where m is the number of variables.

• SL suffixes occurring in the left hand-side of E (symmetrically for SR)

• Initial states:

I := {(V , L,R) | G ⊆ M, L = Li ∪
⋃
j∈V

L∗j ,R = . . . }

• Transition function:

((G0, L0,R0), f`, (G1, L1,R1), . . . , (Gk , Lk ,Rk)) ∈ Q × Qk iff

• Suffixes are properly propagated.

• The resulting left and right languages are the same:

ε ∈ L0 iff ε ∈ R0 iff ` = f1,

• Final states:

F (c0) = {(G , L,R) | L = R = ∅} and F (c1) = {(G , L,R) | L = R = {ε}}.

13/25

The automaton

Idea: when traversing a tree, AE guesses the words assigned to variables and keeps track
of the suffixes that show up.

• Set of states: Q := 2M × 2SL × 2SR .
• M = {1, . . . ,m}, where m is the number of variables.

• SL suffixes occurring in the left hand-side of E (symmetrically for SR)

• Initial states:

I := {(V , L,R) | G ⊆ M, L = Li ∪
⋃
j∈V

L∗j ,R = . . . }

• Transition function:

((G0, L0,R0), f`, (G1, L1,R1), . . . , (Gk , Lk ,Rk)) ∈ Q × Qk iff

• Suffixes are properly propagated.

• The resulting left and right languages are the same:

ε ∈ L0 iff ε ∈ R0 iff ` = f1,

• Final states:

F (c0) = {(G , L,R) | L = R = ∅} and F (c1) = {(G , L,R) | L = R = {ε}}.

13/25

The automaton

Idea: when traversing a tree, AE guesses the words assigned to variables and keeps track
of the suffixes that show up.

• Set of states: Q := 2M × 2SL × 2SR .
• M = {1, . . . ,m}, where m is the number of variables.

• SL suffixes occurring in the left hand-side of E (symmetrically for SR)

• Initial states:

I := {(V , L,R) | G ⊆ M, L = Li ∪
⋃
j∈V

L∗j ,R = . . . }

• Transition function:

((G0, L0,R0), f`, (G1, L1,R1), . . . , (Gk , Lk ,Rk)) ∈ Q × Qk iff

• Suffixes are properly propagated.

• The resulting left and right languages are the same:

ε ∈ L0 iff ε ∈ R0 iff ` = f1,

• Final states:

F (c0) = {(G , L,R) | L = R = ∅} and F (c1) = {(G , L,R) | L = R = {ε}}.

13/25

The automaton

Idea: when traversing a tree, AE guesses the words assigned to variables and keeps track
of the suffixes that show up.

• Set of states: Q := 2M × 2SL × 2SR .
• M = {1, . . . ,m}, where m is the number of variables.

• SL suffixes occurring in the left hand-side of E (symmetrically for SR)

• Initial states:

I := {(V , L,R) | G ⊆ M, L = Li ∪
⋃
j∈V

L∗j ,R = . . . }

• Transition function:

((G0, L0,R0), f`, (G1, L1,R1), . . . , (Gk , Lk ,Rk)) ∈ Q × Qk iff

• Suffixes are properly propagated.

• The resulting left and right languages are the same:

ε ∈ L0 iff ε ∈ R0 iff ` = f1,

• Final states:

F (c0) = {(G , L,R) | L = R = ∅} and F (c1) = {(G , L,R) | L = R = {ε}}.

13/25

Complexity of solving linear equations

Lemma 13

The following are equivalent

1 L(AE) 6= ∅.
2 there are finite sets Y1,i , . . . ,Y1,m such that:

Li ∪ Y1,i .L∗1 ∪ . . . ∪ Y1,m.L∗m
=

Ri ∪ Y1,i .R∗1 ∪ . . . ∪ Y1,m.R∗m,

Algorithm

1 Γ is translated into k linear equations of size polynomial.

2 Build an automaton AE for each equation. The size is exponential w.r.t. Γ!

3 Check emptiness of each AE . In polynomial time in the size of AE .

Lemma 14 [BN01]

Unification in FL0, ACUIh and solving linear equations are in ExpTime.

14/25

Complexity of solving linear equations

Lemma 13

The following are equivalent

1 L(AE) 6= ∅.
2 there are finite sets Y1,i , . . . ,Y1,m such that:

Li ∪ Y1,i .L∗1 ∪ . . . ∪ Y1,m.L∗m
=

Ri ∪ Y1,i .R∗1 ∪ . . . ∪ Y1,m.R∗m,

Algorithm

1 Γ is translated into k linear equations of size polynomial.

2 Build an automaton AE for each equation. The size is exponential w.r.t. Γ!

3 Check emptiness of each AE . In polynomial time in the size of AE .

Lemma 14 [BN01]

Unification in FL0, ACUIh and solving linear equations are in ExpTime.

14/25

Complexity of solving linear equations

Lemma 13

The following are equivalent

1 L(AE) 6= ∅.
2 there are finite sets Y1,i , . . . ,Y1,m such that:

Li ∪ Y1,i .L∗1 ∪ . . . ∪ Y1,m.L∗m
=

Ri ∪ Y1,i .R∗1 ∪ . . . ∪ Y1,m.R∗m,

Algorithm

1 Γ is translated into k linear equations of size polynomial.

2 Build an automaton AE for each equation. The size is exponential w.r.t. Γ!

3 Check emptiness of each AE . In polynomial time in the size of AE .

Lemma 14 [BN01]

Unification in FL0, ACUIh and solving linear equations are in ExpTime.

14/25

Complexity of solving linear equations - hardness

A very nice, but complicated reduction. Only very general details:

• Reduction from the intersection emptiness problem for deterministic RTF automata.

Instance: A sequence A1, . . . ,An of DRTF over a ranked alphabet Σ.

Question: Is there a tree t ∈ L(A1) ∩ . . . ∩ L(An)?

The problem is ExpTime-complete [Sei94].

• Given A1, . . . ,An, construct a system of n linear equations {E1, . . . , En} such that:

L(A1) ∩ . . . ∩ L(An) 6= ∅

iff

{E1, . . . , En} has a solution.

Theorem 15 [BN01]

Unification in FL0, ACUIh and solving linear equations are ExpTime-complete.

15/25

Complexity of solving linear equations - hardness

A very nice, but complicated reduction. Only very general details:

• Reduction from the intersection emptiness problem for deterministic RTF automata.

Instance: A sequence A1, . . . ,An of DRTF over a ranked alphabet Σ.

Question: Is there a tree t ∈ L(A1) ∩ . . . ∩ L(An)?

The problem is ExpTime-complete [Sei94].

• Given A1, . . . ,An, construct a system of n linear equations {E1, . . . , En} such that:

L(A1) ∩ . . . ∩ L(An) 6= ∅

iff

{E1, . . . , En} has a solution.

Theorem 15 [BN01]

Unification in FL0, ACUIh and solving linear equations are ExpTime-complete.

15/25

Complexity of solving linear equations - hardness

A very nice, but complicated reduction. Only very general details:

• Reduction from the intersection emptiness problem for deterministic RTF automata.

Instance: A sequence A1, . . . ,An of DRTF over a ranked alphabet Σ.

Question: Is there a tree t ∈ L(A1) ∩ . . . ∩ L(An)?

The problem is ExpTime-complete [Sei94].

• Given A1, . . . ,An, construct a system of n linear equations {E1, . . . , En} such that:

L(A1) ∩ . . . ∩ L(An) 6= ∅

iff

{E1, . . . , En} has a solution.

Theorem 15 [BN01]

Unification in FL0, ACUIh and solving linear equations are ExpTime-complete.

15/25

Complexity of solving linear equations - hardness

A very nice, but complicated reduction. Only very general details:

• Reduction from the intersection emptiness problem for deterministic RTF automata.

Instance: A sequence A1, . . . ,An of DRTF over a ranked alphabet Σ.

Question: Is there a tree t ∈ L(A1) ∩ . . . ∩ L(An)?

The problem is ExpTime-complete [Sei94].

• Given A1, . . . ,An, construct a system of n linear equations {E1, . . . , En} such that:

L(A1) ∩ . . . ∩ L(An) 6= ∅

iff

{E1, . . . , En} has a solution.

Theorem 15 [BN01]

Unification in FL0, ACUIh and solving linear equations are ExpTime-complete.

15/25

Complexity of solving linear equations - hardness

A very nice, but complicated reduction. Only very general details:

• Reduction from the intersection emptiness problem for deterministic RTF automata.

Instance: A sequence A1, . . . ,An of DRTF over a ranked alphabet Σ.

Question: Is there a tree t ∈ L(A1) ∩ . . . ∩ L(An)?

The problem is ExpTime-complete [Sei94].

• Given A1, . . . ,An, construct a system of n linear equations {E1, . . . , En} such that:

L(A1) ∩ . . . ∩ L(An) 6= ∅

iff

{E1, . . . , En} has a solution.

Theorem 15 [BN01]

Unification in FL0, ACUIh and solving linear equations are ExpTime-complete.

15/25

Complexity of solving linear equations - hardness

A very nice, but complicated reduction. Only very general details:

• Reduction from the intersection emptiness problem for deterministic RTF automata.

Instance: A sequence A1, . . . ,An of DRTF over a ranked alphabet Σ.

Question: Is there a tree t ∈ L(A1) ∩ . . . ∩ L(An)?

The problem is ExpTime-complete [Sei94].

• Given A1, . . . ,An, construct a system of n linear equations {E1, . . . , En} such that:

L(A1) ∩ . . . ∩ L(An) 6= ∅

iff

{E1, . . . , En} has a solution.

Theorem 15 [BN01]

Unification in FL0, ACUIh and solving linear equations are ExpTime-complete.

15/25

Complexity of solving linear equations - hardness

A very nice, but complicated reduction. Only very general details:

• Reduction from the intersection emptiness problem for deterministic RTF automata.

Instance: A sequence A1, . . . ,An of DRTF over a ranked alphabet Σ.

Question: Is there a tree t ∈ L(A1) ∩ . . . ∩ L(An)?

The problem is ExpTime-complete [Sei94].

• Given A1, . . . ,An, construct a system of n linear equations {E1, . . . , En} such that:

L(A1) ∩ . . . ∩ L(An) 6= ∅

iff

{E1, . . . , En} has a solution.

Theorem 15 [BN01]

Unification in FL0, ACUIh and solving linear equations are ExpTime-complete.

15/25

Unification in FLreg

FLreg extends FL0 with complex roles:

∀ε, ∀∅, ∀(R ∪ S), ∀(R ◦ S) and ∀R∗.

Semantics of complex roles:

εI := {(d , d) | d ∈ ∆I}

∅I := ∅

(R ∪ S)I := RI ∪ SI

(R ◦ S)I := {(d , e) | ∃f : (d , f) ∈ RI ∧ (f , e) ∈ RI}

(R∗)I :=
⋃
n≥0

(RI)n.

Example

{r} ◦ ({s}∪ {r}) ◦ {s}∗ → pairs (d , e) such that d reaches e through a word in r .(s|r).s∗.

A complex role can be seen as a regular expression/language!

16/25

Unification in FLreg

FLreg extends FL0 with complex roles:

∀ε, ∀∅, ∀(R ∪ S), ∀(R ◦ S) and ∀R∗.

Semantics of complex roles:

εI := {(d , d) | d ∈ ∆I}

∅I := ∅

(R ∪ S)I := RI ∪ SI

(R ◦ S)I := {(d , e) | ∃f : (d , f) ∈ RI ∧ (f , e) ∈ RI}

(R∗)I :=
⋃
n≥0

(RI)n.

Example

{r} ◦ ({s}∪ {r}) ◦ {s}∗ → pairs (d , e) such that d reaches e through a word in r .(s|r).s∗.

A complex role can be seen as a regular expression/language!

16/25

Unification in FLreg

FLreg extends FL0 with complex roles:

∀ε, ∀∅, ∀(R ∪ S), ∀(R ◦ S) and ∀R∗.

Semantics of complex roles:

εI := {(d , d) | d ∈ ∆I}

∅I := ∅

(R ∪ S)I := RI ∪ SI

(R ◦ S)I := {(d , e) | ∃f : (d , f) ∈ RI ∧ (f , e) ∈ RI}

(R∗)I :=
⋃
n≥0

(RI)n.

Example

{r} ◦ ({s}∪ {r}) ◦ {s}∗ → pairs (d , e) such that d reaches e through a word in r .(s|r).s∗.

A complex role can be seen as a regular expression/language!

16/25

Unification in FLreg

FLreg extends FL0 with complex roles:

∀ε, ∀∅, ∀(R ∪ S), ∀(R ◦ S) and ∀R∗.

Semantics of complex roles:

εI := {(d , d) | d ∈ ∆I}

∅I := ∅

(R ∪ S)I := RI ∪ SI

(R ◦ S)I := {(d , e) | ∃f : (d , f) ∈ RI ∧ (f , e) ∈ RI}

(R∗)I :=
⋃
n≥0

(RI)n.

Example

{r} ◦ ({s}∪ {r}) ◦ {s}∗ → pairs (d , e) such that d reaches e through a word in r .(s|r).s∗.

A complex role can be seen as a regular expression/language!

16/25

Unification in FLreg

FLreg extends FL0 with complex roles:

∀ε, ∀∅, ∀(R ∪ S), ∀(R ◦ S) and ∀R∗.

Semantics of complex roles:

εI := {(d , d) | d ∈ ∆I}

∅I := ∅

(R ∪ S)I := RI ∪ SI

(R ◦ S)I := {(d , e) | ∃f : (d , f) ∈ RI ∧ (f , e) ∈ RI}

(R∗)I :=
⋃
n≥0

(RI)n.

Example

{r} ◦ ({s}∪ {r}) ◦ {s}∗ → pairs (d , e) such that d reaches e through a word in r .(s|r).s∗.

A complex role can be seen as a regular expression/language!

16/25

Unification in FLreg - Complexity

• in ExpTime: similar as for FL0, but

• We need to deal with linear equations that can have infinite languages as coefficients.

• Use automata on infinite trees: looping tree automata.

• Exptime-hard?

• Exptime-hardness from FL0 cannot be directly inherited!

• Adapt the same reduction, but using a sequence of looping tree automata.

Theorem 16 [BK01]

Unification in FLreg is ExpTime-complete.

17/25

Unification in FLreg - Complexity

• in ExpTime: similar as for FL0, but

• We need to deal with linear equations that can have infinite languages as coefficients.

• Use automata on infinite trees: looping tree automata.

• Exptime-hard?

• Exptime-hardness from FL0 cannot be directly inherited!

• Adapt the same reduction, but using a sequence of looping tree automata.

Theorem 16 [BK01]

Unification in FLreg is ExpTime-complete.

17/25

Unification in FLreg - Complexity

• in ExpTime: similar as for FL0, but

• We need to deal with linear equations that can have infinite languages as coefficients.

• Use automata on infinite trees: looping tree automata.

• Exptime-hard?

• Exptime-hardness from FL0 cannot be directly inherited!

• Adapt the same reduction, but using a sequence of looping tree automata.

Theorem 16 [BK01]

Unification in FLreg is ExpTime-complete.

17/25

Unification in FLreg - Complexity

• in ExpTime: similar as for FL0, but

• We need to deal with linear equations that can have infinite languages as coefficients.

• Use automata on infinite trees: looping tree automata.

• Exptime-hard?

• Exptime-hardness from FL0 cannot be directly inherited!

• Adapt the same reduction, but using a sequence of looping tree automata.

Theorem 16 [BK01]

Unification in FLreg is ExpTime-complete.

17/25

Unification in FLreg - Complexity

• in ExpTime: similar as for FL0, but

• We need to deal with linear equations that can have infinite languages as coefficients.

• Use automata on infinite trees: looping tree automata.

• Exptime-hard?

• Exptime-hardness from FL0 cannot be directly inherited!

• Adapt the same reduction, but using a sequence of looping tree automata.

Theorem 16 [BK01]

Unification in FLreg is ExpTime-complete.

17/25

Unification in FLreg - Complexity

• in ExpTime: similar as for FL0, but

• We need to deal with linear equations that can have infinite languages as coefficients.

• Use automata on infinite trees: looping tree automata.

• Exptime-hard?

• Exptime-hardness from FL0 cannot be directly inherited!

• Adapt the same reduction, but using a sequence of looping tree automata.

Theorem 16 [BK01]

Unification in FLreg is ExpTime-complete.

17/25

Unification in FLreg - Complexity

• in ExpTime: similar as for FL0, but

• We need to deal with linear equations that can have infinite languages as coefficients.

• Use automata on infinite trees: looping tree automata.

• Exptime-hard?

• Exptime-hardness from FL0 cannot be directly inherited!

• Adapt the same reduction, but using a sequence of looping tree automata.

Theorem 16 [BK01]

Unification in FLreg is ExpTime-complete.

17/25

Unification in FLreg - Complexity

• in ExpTime: similar as for FL0, but

• We need to deal with linear equations that can have infinite languages as coefficients.

• Use automata on infinite trees: looping tree automata.

• Exptime-hard?

• Exptime-hardness from FL0 cannot be directly inherited!

• Adapt the same reduction, but using a sequence of looping tree automata.

Theorem 16 [BK01]

Unification in FLreg is ExpTime-complete.

17/25

Matching with respect to general FL0 TBoxes

18/25

Deciding matching w.r.t. the empty TBox

Matching is a unification problem of the form:

∀L1.A1 u . . . u ∀Lk .Ak u ∀L∗1 .X1 u . . . u ∀L∗m.Xm

≡?

∀R1.A1 u . . . u ∀Rk .Ak .

Example

matching problem: ∀{r , s}.A u ∀{s}.B ≡? ∀{rr}.A u ∀{r , s}.X1 u ∀{s}.X2

equation for A: {r , s} =? {rr} ∪ {r , s}.X1 ∪ {s}.X2

has no solution: a) rr 6∈ {r , s} b) s ∈ X1 yields a suffix ss 6∈ {r , s}

How to decide matching?

Lemma 17 [BN01]

An FL0-matching problem has a solution iff the following is a solution:

σ(Xi) =
⋂

u∈L∗i

u−1.R0, where u−1.R0 := {v | uv ∈ R0}.

Decidable in PTime.

19/25

Deciding matching w.r.t. the empty TBox

Matching is a unification problem of the form:

∀L1.A1 u . . . u ∀Lk .Ak u ∀L∗1 .X1 u . . . u ∀L∗m.Xm

≡?

∀R1.A1 u . . . u ∀Rk .Ak .

Example

matching problem: ∀{r , s}.A u ∀{s}.B ≡? ∀{rr}.A u ∀{r , s}.X1 u ∀{s}.X2

equation for A: {r , s} =? {rr} ∪ {r , s}.X1 ∪ {s}.X2

has no solution: a) rr 6∈ {r , s} b) s ∈ X1 yields a suffix ss 6∈ {r , s}

How to decide matching?

Lemma 17 [BN01]

An FL0-matching problem has a solution iff the following is a solution:

σ(Xi) =
⋂

u∈L∗i

u−1.R0, where u−1.R0 := {v | uv ∈ R0}.

Decidable in PTime.

19/25

Deciding matching w.r.t. the empty TBox

Matching is a unification problem of the form:

∀L1.A1 u . . . u ∀Lk .Ak u ∀L∗1 .X1 u . . . u ∀L∗m.Xm

≡?

∀R1.A1 u . . . u ∀Rk .Ak .

Example

matching problem: ∀{r , s}.A u ∀{s}.B ≡? ∀{rr}.A u ∀{r , s}.X1 u ∀{s}.X2

equation for A: {r , s} =? {rr} ∪ {r , s}.X1 ∪ {s}.X2

has no solution: a) rr 6∈ {r , s} b) s ∈ X1 yields a suffix ss 6∈ {r , s}

How to decide matching?

Lemma 17 [BN01]

An FL0-matching problem has a solution iff the following is a solution:

σ(Xi) =
⋂

u∈L∗i

u−1.R0, where u−1.R0 := {v | uv ∈ R0}.

Decidable in PTime.

19/25

Deciding matching w.r.t. the empty TBox

Matching is a unification problem of the form:

∀L1.A1 u . . . u ∀Lk .Ak u ∀L∗1 .X1 u . . . u ∀L∗m.Xm

≡?

∀R1.A1 u . . . u ∀Rk .Ak .

Example

matching problem: ∀{r , s}.A u ∀{s}.B ≡? ∀{rr}.A u ∀{r , s}.X1 u ∀{s}.X2

equation for A: {r , s} =? {rr} ∪ {r , s}.X1 ∪ {s}.X2

has no solution: a) rr 6∈ {r , s} b) s ∈ X1 yields a suffix ss 6∈ {r , s}

How to decide matching?

Lemma 17 [BN01]

An FL0-matching problem has a solution iff the following is a solution:

σ(Xi) =
⋂

u∈L∗i

u−1.R0, where u−1.R0 := {v | uv ∈ R0}.

Decidable in PTime.

19/25

Deciding matching w.r.t. the empty TBox

Matching is a unification problem of the form:

∀L1.A1 u . . . u ∀Lk .Ak u ∀L∗1 .X1 u . . . u ∀L∗m.Xm

≡?

∀R1.A1 u . . . u ∀Rk .Ak .

Example

matching problem: ∀{r , s}.A u ∀{s}.B ≡? ∀{rr}.A u ∀{r , s}.X1 u ∀{s}.X2

equation for A: {r , s} =? {rr} ∪ {r , s}.X1 ∪ {s}.X2

has no solution: a) rr 6∈ {r , s} b) s ∈ X1 yields a suffix ss 6∈ {r , s}

How to decide matching?

Lemma 17 [BN01]

An FL0-matching problem has a solution iff the following is a solution:

σ(Xi) =
⋂

u∈L∗i

u−1.R0, where u−1.R0 := {v | uv ∈ R0}.

Decidable in PTime.

19/25

Deciding matching w.r.t. the empty TBox

Matching is a unification problem of the form:

∀L1.A1 u . . . u ∀Lk .Ak u ∀L∗1 .X1 u . . . u ∀L∗m.Xm

≡?

∀R1.A1 u . . . u ∀Rk .Ak .

Example

matching problem: ∀{r , s}.A u ∀{s}.B ≡? ∀{rr}.A u ∀{r , s}.X1 u ∀{s}.X2

equation for A: {r , s} =? {rr} ∪ {r , s}.X1 ∪ {s}.X2

has no solution: a) rr 6∈ {r , s} b) s ∈ X1 yields a suffix ss 6∈ {r , s}

How to decide matching?

Lemma 17 [BN01]

An FL0-matching problem has a solution iff the following is a solution:

σ(Xi) =
⋂

u∈L∗i

u−1.R0, where u−1.R0 := {v | uv ∈ R0}.

Decidable in PTime.

19/25

Deciding matching w.r.t. the empty TBox

Matching is a unification problem of the form:

∀L1.A1 u . . . u ∀Lk .Ak u ∀L∗1 .X1 u . . . u ∀L∗m.Xm

≡?

∀R1.A1 u . . . u ∀Rk .Ak .

Example

matching problem: ∀{r , s}.A u ∀{s}.B ≡? ∀{rr}.A u ∀{r , s}.X1 u ∀{s}.X2

equation for A: {r , s} =? {rr} ∪ {r , s}.X1 ∪ {s}.X2

has no solution: a) rr 6∈ {r , s} b) s ∈ X1 yields a suffix ss 6∈ {r , s}

How to decide matching?

Lemma 17 [BN01]

An FL0-matching problem has a solution iff the following is a solution:

σ(Xi) =
⋂

u∈L∗i

u−1.R0, where u−1.R0 := {v | uv ∈ R0}.

Decidable in PTime.

19/25

Characterization of subsumption in FL0 - TBox

In the presence of a non-empty TBox, a new characterization is needed:

LT (C) := {(w ,A) ∈ NR
∗ × NC | C vT ∀w .A}

Characterization of subsumption w.r.t. a TBox

Let T be an FL0 TBox and C ,D FL0 concepts. Then, C vT D iff LT (D) ⊆ LT (C).

Back to the example

C := ∀{r , s}.A u ∀{s}.B
≡?

D := ∀{rr}.A u ∀{r , s}.X1 u ∀{s}.X2

T = {A v ∀r .A, ∀s.B v A}

solution: σ(X1) := A and σ(X2) := B LT (C ,A) = {s} ∪ r∗ = LT (σ(D),A)

20/25

Characterization of subsumption in FL0 - TBox

In the presence of a non-empty TBox, a new characterization is needed:

LT (C) := {(w ,A) ∈ NR
∗ × NC | C vT ∀w .A}

Characterization of subsumption w.r.t. a TBox

Let T be an FL0 TBox and C ,D FL0 concepts. Then, C vT D iff LT (D) ⊆ LT (C).

Back to the example

C := ∀{r , s}.A u ∀{s}.B
≡?

D := ∀{rr}.A u ∀{r , s}.X1 u ∀{s}.X2

T = {A v ∀r .A, ∀s.B v A}

solution: σ(X1) := A and σ(X2) := B LT (C ,A) = {s} ∪ r∗ = LT (σ(D),A)

20/25

Characterization of subsumption in FL0 - TBox

In the presence of a non-empty TBox, a new characterization is needed:

LT (C) := {(w ,A) ∈ NR
∗ × NC | C vT ∀w .A}

Characterization of subsumption w.r.t. a TBox

Let T be an FL0 TBox and C ,D FL0 concepts. Then, C vT D iff LT (D) ⊆ LT (C).

Back to the example

C := ∀{r , s}.A u ∀{s}.B
≡?

D := ∀{rr}.A u ∀{r , s}.X1 u ∀{s}.X2

T = {A v ∀r .A, ∀s.B v A}

solution: σ(X1) := A and σ(X2) := B LT (C ,A) = {s} ∪ r∗ = LT (σ(D),A)

20/25

Characterization of subsumption in FL0 - TBox

In the presence of a non-empty TBox, a new characterization is needed:

LT (C) := {(w ,A) ∈ NR
∗ × NC | C vT ∀w .A}

Characterization of subsumption w.r.t. a TBox

Let T be an FL0 TBox and C ,D FL0 concepts. Then, C vT D iff LT (D) ⊆ LT (C).

Back to the example

C := ∀{r , s}.A u ∀{s}.B
≡?

D := ∀{rr}.A u ∀{r , s}.X1 u ∀{s}.X2

T = {A v ∀r .A, ∀s.B v A}

solution: σ(X1) := A and σ(X2) := B LT (C ,A) = {s} ∪ r∗ = LT (σ(D),A)

20/25

Matching w.r.t. general TBoxes

Matching problem (after applying normalization)

C ≡?
T E u ∀L1.X1 u . . . u ∀Ln.Xn.

Can we extend the idea for the empty TBox to the sets LT (C ,A)?

• for each variable Xi and concept name Aj :

L̂i,j :=
⋂

u∈Li
u−1LT (C ,Aj).

• define σ(Xi) as follows?

σ(Xi) := L̂i,1.A1 u . . . u L̂i,k .Ak .

L̂i,j can be infinite → σ(Xi) is not an FL0 concept!

Workaround: consider FLreg concept descriptions.

21/25

Matching w.r.t. general TBoxes

Matching problem (after applying normalization)

C ≡?
T E u ∀L1.X1 u . . . u ∀Ln.Xn.

Can we extend the idea for the empty TBox to the sets LT (C ,A)?

• for each variable Xi and concept name Aj :

L̂i,j :=
⋂

u∈Li
u−1LT (C ,Aj).

• define σ(Xi) as follows?

σ(Xi) := L̂i,1.A1 u . . . u L̂i,k .Ak .

L̂i,j can be infinite → σ(Xi) is not an FL0 concept!

Workaround: consider FLreg concept descriptions.

21/25

Matching w.r.t. general TBoxes

Matching problem (after applying normalization)

C ≡?
T E u ∀L1.X1 u . . . u ∀Ln.Xn.

Can we extend the idea for the empty TBox to the sets LT (C ,A)?

• for each variable Xi and concept name Aj :

L̂i,j :=
⋂

u∈Li
u−1LT (C ,Aj).

• define σ(Xi) as follows?

σ(Xi) := L̂i,1.A1 u . . . u L̂i,k .Ak .

L̂i,j can be infinite → σ(Xi) is not an FL0 concept!

Workaround: consider FLreg concept descriptions.

21/25

Matching w.r.t. general TBoxes

Matching problem (after applying normalization)

C ≡?
T E u ∀L1.X1 u . . . u ∀Ln.Xn.

Can we extend the idea for the empty TBox to the sets LT (C ,A)?

• for each variable Xi and concept name Aj :

L̂i,j :=
⋂

u∈Li
u−1LT (C ,Aj).

• define σ(Xi) as follows?

σ(Xi) := L̂i,1.A1 u . . . u L̂i,k .Ak .

L̂i,j can be infinite → σ(Xi) is not an FL0 concept!

Workaround: consider FLreg concept descriptions.

21/25

Matching w.r.t. general TBoxes

Matching problem (after applying normalization)

C ≡?
T E u ∀L1.X1 u . . . u ∀Ln.Xn.

Can we extend the idea for the empty TBox to the sets LT (C ,A)?

• for each variable Xi and concept name Aj :

L̂i,j :=
⋂

u∈Li
u−1LT (C ,Aj).

• define σ(Xi) as follows?

σ(Xi) := L̂i,1.A1 u . . . u L̂i,k .Ak .

L̂i,j can be infinite → σ(Xi) is not an FL0 concept!

Workaround: consider FLreg concept descriptions.

21/25

Matching w.r.t. general TBoxes

Matching problem (after applying normalization)

C ≡?
T E u ∀L1.X1 u . . . u ∀Ln.Xn.

Can we extend the idea for the empty TBox to the sets LT (C ,A)?

• for each variable Xi and concept name Aj :

L̂i,j :=
⋂

u∈Li
u−1LT (C ,Aj).

• define σ(Xi) as follows?

σ(Xi) := L̂i,1.A1 u . . . u L̂i,k .Ak .

L̂i,j can be infinite → σ(Xi) is not an FL0 concept!

Workaround: consider FLreg concept descriptions.

21/25

Matching w.r.t. general TBoxes

Matching problem (after applying normalization)

C ≡?
T E u ∀L1.X1 u . . . u ∀Ln.Xn.

Can we extend the idea for the empty TBox to the sets LT (C ,A)?

• for each variable Xi and concept name Aj :

L̂i,j :=
⋂

u∈Li
u−1LT (C ,Aj).

• define σ(Xi) as follows?

σ(Xi) := L̂i,1.A1 u . . . u L̂i,k .Ak .

L̂i,j can be infinite → σ(Xi) is not an FL0 concept!

Workaround: consider FLreg concept descriptions.

21/25

Matching w.r.t. general TBoxes

Matching problem (after applying normalization)

C ≡?
T E u ∀L1.X1 u . . . u ∀Ln.Xn.

Can we extend the idea for the empty TBox to the sets LT (C ,A)?

• for each variable Xi and concept name Aj :

L̂i,j :=
⋂

u∈Li
u−1LT (C ,Aj).

• define σ(Xi) as follows?

σ(Xi) := L̂i,1.A1 u . . . u L̂i,k .Ak .

L̂i,j can be infinite → σ(Xi) is not an FL0 concept!

Workaround: consider FLreg concept descriptions.

21/25

Deciding the existence of an FLreg -matcher

What do we know about the sets L̂i,j :=
⋂

u∈Li
u−1LT (C ,Aj)

• They can be infinite, but they are always regular languages.

• Then, σ̂(Xi) := L̂i,1.A1 u . . . u L̂i,k .Ak is an FLreg concept.

The following is true

C ≡?
T E u ∀L1.X1 u . . . u ∀Ln.Xn has an FLreg matcher

iff

σ̂(Xi) := L̂i,1.A1 u . . . u L̂i,k .Ak is a matcher.

Checking that σ̂ is a matcher

1. C vT E 2. E u ∀L1.σ̂(X1) u . . . u ∀Ln.σ̂(Xn) vT C .

This can be done in exponential time using automata on infinite trees [BGM18].

22/25

Deciding the existence of an FLreg -matcher

What do we know about the sets L̂i,j :=
⋂

u∈Li
u−1LT (C ,Aj)

• They can be infinite, but they are always regular languages.

• Then, σ̂(Xi) := L̂i,1.A1 u . . . u L̂i,k .Ak is an FLreg concept.

The following is true

C ≡?
T E u ∀L1.X1 u . . . u ∀Ln.Xn has an FLreg matcher

iff

σ̂(Xi) := L̂i,1.A1 u . . . u L̂i,k .Ak is a matcher.

Checking that σ̂ is a matcher

1. C vT E 2. E u ∀L1.σ̂(X1) u . . . u ∀Ln.σ̂(Xn) vT C .

This can be done in exponential time using automata on infinite trees [BGM18].

22/25

Deciding the existence of an FLreg -matcher

What do we know about the sets L̂i,j :=
⋂

u∈Li
u−1LT (C ,Aj)

• They can be infinite, but they are always regular languages.

• Then, σ̂(Xi) := L̂i,1.A1 u . . . u L̂i,k .Ak is an FLreg concept.

The following is true

C ≡?
T E u ∀L1.X1 u . . . u ∀Ln.Xn has an FLreg matcher

iff

σ̂(Xi) := L̂i,1.A1 u . . . u L̂i,k .Ak is a matcher.

Checking that σ̂ is a matcher

1. C vT E 2. E u ∀L1.σ̂(X1) u . . . u ∀Ln.σ̂(Xn) vT C .

This can be done in exponential time using automata on infinite trees [BGM18].

22/25

Deciding the existence of an FLreg -matcher

What do we know about the sets L̂i,j :=
⋂

u∈Li
u−1LT (C ,Aj)

• They can be infinite, but they are always regular languages.

• Then, σ̂(Xi) := L̂i,1.A1 u . . . u L̂i,k .Ak is an FLreg concept.

The following is true

C ≡?
T E u ∀L1.X1 u . . . u ∀Ln.Xn has an FLreg matcher

iff

σ̂(Xi) := L̂i,1.A1 u . . . u L̂i,k .Ak is a matcher.

Checking that σ̂ is a matcher

1. C vT E 2. E u ∀L1.σ̂(X1) u . . . u ∀Ln.σ̂(Xn) vT C .

This can be done in exponential time using automata on infinite trees [BGM18].

22/25

Deciding the existence of an FLreg -matcher

What do we know about the sets L̂i,j :=
⋂

u∈Li
u−1LT (C ,Aj)

• They can be infinite, but they are always regular languages.

• Then, σ̂(Xi) := L̂i,1.A1 u . . . u L̂i,k .Ak is an FLreg concept.

The following is true

C ≡?
T E u ∀L1.X1 u . . . u ∀Ln.Xn has an FLreg matcher

iff

σ̂(Xi) := L̂i,1.A1 u . . . u L̂i,k .Ak is a matcher.

Checking that σ̂ is a matcher

1. C vT E 2. E u ∀L1.σ̂(X1) u . . . u ∀Ln.σ̂(Xn) vT C .

This can be done in exponential time using automata on infinite trees [BGM18].

22/25

Deciding the existence of an FLreg -matcher

What do we know about the sets L̂i,j :=
⋂

u∈Li
u−1LT (C ,Aj)

• They can be infinite, but they are always regular languages.

• Then, σ̂(Xi) := L̂i,1.A1 u . . . u L̂i,k .Ak is an FLreg concept.

The following is true

C ≡?
T E u ∀L1.X1 u . . . u ∀Ln.Xn has an FLreg matcher

iff

σ̂(Xi) := L̂i,1.A1 u . . . u L̂i,k .Ak is a matcher.

Checking that σ̂ is a matcher

1. C vT E 2. E u ∀L1.σ̂(X1) u . . . u ∀Ln.σ̂(Xn) vT C .

This can be done in exponential time using automata on infinite trees [BGM18].

22/25

Deciding the existence of an FLreg -matcher

What do we know about the sets L̂i,j :=
⋂

u∈Li
u−1LT (C ,Aj)

• They can be infinite, but they are always regular languages.

• Then, σ̂(Xi) := L̂i,1.A1 u . . . u L̂i,k .Ak is an FLreg concept.

The following is true

C ≡?
T E u ∀L1.X1 u . . . u ∀Ln.Xn has an FLreg matcher

iff

σ̂(Xi) := L̂i,1.A1 u . . . u L̂i,k .Ak is a matcher.

Checking that σ̂ is a matcher

1. C vT E 2. E u ∀L1.σ̂(X1) u . . . u ∀Ln.σ̂(Xn) vT C .

This can be done in exponential time using automata on infinite trees [BGM18].

22/25

Deciding the existence of an FLreg -matcher

What do we know about the sets L̂i,j :=
⋂

u∈Li
u−1LT (C ,Aj)

• They can be infinite, but they are always regular languages.

• Then, σ̂(Xi) := L̂i,1.A1 u . . . u L̂i,k .Ak is an FLreg concept.

The following is true

C ≡?
T E u ∀L1.X1 u . . . u ∀Ln.Xn has an FLreg matcher

iff

σ̂(Xi) := L̂i,1.A1 u . . . u L̂i,k .Ak is a matcher.

Checking that σ̂ is a matcher

1. C vT E 2. E u ∀L1.σ̂(X1) u . . . u ∀Ln.σ̂(Xn) vT C .

This can be done in exponential time using automata on infinite trees [BGM18].

22/25

Deciding the existence of an FL0-matcher

By construction of L̂i,j

C ≡?
T E u ∀L1.X1 u . . . u ∀Ln.Xn has an FL0 matcher

iff

1 C v E

2 There are finite languages Li,j ⊆ L̂i,j such that:

E u ∀L1.σ(X1) u . . . u ∀Ln.σ(Xn) vT C

Applying the Compactness Theorem

E u ∀L1.σ̂(X1) u . . . u ∀Ln.σ̂(Xn) vT C

iff
there are finite languages Li,j ⊆ L̂i,j s.t. E u ∀L1.σ(X1) u . . . u ∀Ln.σ(Xn) vT C .

Consequences

• There exists an FL0-matcher iff there is an FLreg -matcher.

• Deciding the existing of an FL0-matcher is ExpTime-complete.

23/25

Deciding the existence of an FL0-matcher

By construction of L̂i,j

C ≡?
T E u ∀L1.X1 u . . . u ∀Ln.Xn has an FL0 matcher

iff

1 C v E

2 There are finite languages Li,j ⊆ L̂i,j such that:

E u ∀L1.σ(X1) u . . . u ∀Ln.σ(Xn) vT C

Applying the Compactness Theorem

E u ∀L1.σ̂(X1) u . . . u ∀Ln.σ̂(Xn) vT C

iff
there are finite languages Li,j ⊆ L̂i,j s.t. E u ∀L1.σ(X1) u . . . u ∀Ln.σ(Xn) vT C .

Consequences

• There exists an FL0-matcher iff there is an FLreg -matcher.

• Deciding the existing of an FL0-matcher is ExpTime-complete.

23/25

Deciding the existence of an FL0-matcher

By construction of L̂i,j

C ≡?
T E u ∀L1.X1 u . . . u ∀Ln.Xn has an FL0 matcher

iff

1 C v E

2 There are finite languages Li,j ⊆ L̂i,j such that:

E u ∀L1.σ(X1) u . . . u ∀Ln.σ(Xn) vT C

Applying the Compactness Theorem

E u ∀L1.σ̂(X1) u . . . u ∀Ln.σ̂(Xn) vT C

iff
there are finite languages Li,j ⊆ L̂i,j s.t. E u ∀L1.σ(X1) u . . . u ∀Ln.σ(Xn) vT C .

Consequences

• There exists an FL0-matcher iff there is an FLreg -matcher.

• Deciding the existing of an FL0-matcher is ExpTime-complete.

23/25

Summary - Unification in the DL FL0

• The problem is ExpTime-complete w.r.t. the empty TBox.

• This result carries over to FLreg .

• Unification in FL0 corresponds to unification in the equational theory ACUIh and to
solving linear equations over finite languages.

• In the presence of a general TBox.

• Decidability is an open problem.

• It is only known that it is ExpTime-complete for the special case of matching
(non-constructive proof).

24/25

Summary - Unification in the DL FL0

• The problem is ExpTime-complete w.r.t. the empty TBox.

• This result carries over to FLreg .

• Unification in FL0 corresponds to unification in the equational theory ACUIh and to
solving linear equations over finite languages.

• In the presence of a general TBox.

• Decidability is an open problem.

• It is only known that it is ExpTime-complete for the special case of matching
(non-constructive proof).

24/25

Summary - Unification in the DL FL0

• The problem is ExpTime-complete w.r.t. the empty TBox.

• This result carries over to FLreg .

• Unification in FL0 corresponds to unification in the equational theory ACUIh and to
solving linear equations over finite languages.

• In the presence of a general TBox.

• Decidability is an open problem.

• It is only known that it is ExpTime-complete for the special case of matching
(non-constructive proof).

24/25

Summary - Unification in the DL FL0

• The problem is ExpTime-complete w.r.t. the empty TBox.

• This result carries over to FLreg .

• Unification in FL0 corresponds to unification in the equational theory ACUIh and to
solving linear equations over finite languages.

• In the presence of a general TBox.

• Decidability is an open problem.

• It is only known that it is ExpTime-complete for the special case of matching
(non-constructive proof).

24/25

Summary - Unification in the DL FL0

• The problem is ExpTime-complete w.r.t. the empty TBox.

• This result carries over to FLreg .

• Unification in FL0 corresponds to unification in the equational theory ACUIh and to
solving linear equations over finite languages.

• In the presence of a general TBox.

• Decidability is an open problem.

• It is only known that it is ExpTime-complete for the special case of matching
(non-constructive proof).

24/25

References I

Franz Baader, Oliver Fernandez Gil, and Pavlos Marantidis.
Matching in the description logic FL0 with respect to general tboxes.
In LPAR-22. 22nd International Conference on Logic for Programming, Artificial
Intelligence and Reasoning, Awassa, Ethiopia, 16-21 November 2018, volume 57 of
EPiC Series in Computing, pages 76–94. EasyChair, 2018.

Franz Baader and Ralf Küsters.
Unification in a description logic with transitive closure of roles.
In Logic for Programming, Artificial Intelligence, and Reasoning, 8th International
Conference, LPAR 2001, Havana, Cuba, December 3-7, 2001, Proceedings, volume
2250 of Lecture Notes in Computer Science, pages 217–232. Springer, 2001.

Franz Baader and Paliath Narendran.
Unification of Concept Terms in Description Logics.
J. Symb. Comput., 31(3):277–305, 2001.

Helmut Seidl.
Haskell overloading is dexptime-complete.
Inf. Process. Lett., 52(2):57–60, 1994.

25/25

