Unification in Description Logics
Part Ill: Unification in the DL FLq

Oliver Ferndndez Gil

Chair of Automata Theory

TECHNISCHE
@ UNIVERSITAT
DRESDEN

ESSLLI'19
Riga, August 2019

1/25

The DL FLg

e Fragment of ALC:

Cx=T|]A|CncC|vrC

2/25

The DL FLg

e Fragment of ALC:

Cx=T|]A|CncC|vrC

e Received much attention in the early days of DL research, but

2/25

The DL FLg

e Fragment of ALC:

Cx=T|]A|CncC|vrC

e Received much attention in the early days of DL research, but

e it was later shown that subsumption w.r.t. acyclic TBoxes is not tractable,

2/25

The DL FLg

e Fragment of ALC:

Cx=T|]A|CncC|vrC

e Received much attention in the early days of DL research, but
e it was later shown that subsumption w.r.t. acyclic TBoxes is not tractable,

e and in the presence of GCls ExpTime-complete. Same complexity as the more
expressive DL ALC.

2/25

The DL FLg

e Fragment of ALC:

Cx=T|]A|CncC|vrC

e Received much attention in the early days of DL research, but
e it was later shown that subsumption w.r.t. acyclic TBoxes is not tractable,

e and in the presence of GCls ExpTime-complete. Same complexity as the more
expressive DL ALC.

e However,

2/25

The DL FLg

e Fragment of ALC:

Cx=T|]A|CncC|vrC

e Received much attention in the early days of DL research, but
e it was later shown that subsumption w.r.t. acyclic TBoxes is not tractable,

e and in the presence of GCls ExpTime-complete. Same complexity as the more
expressive DL ALC.

e However,

e Reasoning in FLg has an interesting connection to formal language problems.

2/25

The DL FLg

e Fragment of ALC:

Cx=T|]A|CncC|vrC

e Received much attention in the early days of DL research, but
e it was later shown that subsumption w.r.t. acyclic TBoxes is not tractable,

e and in the presence of GCls ExpTime-complete. Same complexity as the more
expressive DL ALC.

e However,
e Reasoning in FLg has an interesting connection to formal language problems.

e The unification problem corresponds to unification in ACUIh.

2/25

Connection to formal languages - Subsumption

3/25

Connection to formal languages - Subsumption
Normal form

e Apply Vr.(CM D) =Vr.CMVr.D as rewrite rule (from left to right):
Vr.(Vs.ANVYr.B)MVYr. AN B

3/25

Connection to formal languages - Subsumption
Normal form

e Apply Vr.(CM D) =Vr.CMVr.D as rewrite rule (from left to right):
Vr.(Vs.AMVr.B)MVr. AMB ——— Vr.Vs.ANVYrNr.BMVYr.AN B

3/25

Connection to formal languages - Subsumption
Normal form

e Apply Vr.(CM D) =Vr.CMVr.D as rewrite rule (from left to right):
Vr.(Vs.AMVr.B)MVr. AMB ——— Vr.Vs.ANVYrNr.BMVYr.AN B

o Abbreviate using languages over Ng:

3/25

Connection to formal languages - Subsumption
Normal form

e Apply Vr.(CM D) =Vr.CMVr.D as rewrite rule (from left to right):
Vr.(Vs.AMVr.B)MVr. AMB ——— Vr.Vs.ANVYrNr.BMVYr.AN B

o Abbreviate using languages over Ng:

Vrs. ACYrr.BMYr. AN B

3/25

Connection to formal languages - Subsumption
Normal form

e Apply Vr.(CM D) =Vr.CMVr.D as rewrite rule (from left to right):
Vr.(Vs.AMVr.B)MVr. AMB ——— Vr.Vs.ANVYrNr.BMVYr.AN B

o Abbreviate using languages over Ng:

Vrs.AMVrr.BOVr. AN B —— Y{rs,r}.An1V¥{rr,e}.B

3/25

Connection to formal languages - Subsumption
Normal form

e Apply Vr.(CM D) =Vr.CMVr.D as rewrite rule (from left to right):
Vr.(Vs.AMVr.B)MVr. AMB ——— Vr.Vs.ANVYrNr.BMVYr.AN B

o Abbreviate using languages over Ng:

Vrs.AMVrr.BOVr. AN B —— Y{rs,r}.An1V¥{rr,e}.B

e Let Nc = {Ay,...,Ax}. Then, every pair of concepts C, D can be represented as:

C=VLLAM.. NYLA,
D =VR;. A1 ... MVRk. Ak,

where L;, R; are finite languages over Ng.

3/25

Connection to formal languages - Subsumption
Normal form

e Apply Vr.(CM D) =Vr.CMVr.D as rewrite rule (from left to right):
Vr(Vs.AMVr.B)MVr. AN B ——— VrVs. ANVr.Yr.BNYr.ANB

o Abbreviate using languages over Ng:

Vrs.AMVrr.BOVr. AN B —— Y{rs,r}.An1V¥{rr,e}.B

e Let Nc = {Ay,...,Ax}. Then, every pair of concepts C, D can be represented as:

C=VLLAM.. NYLA,
D =VR;. A1 ... MVRk. Ak,

where L;, R; are finite languages over Ng.

Characterization of subsumption [BNO1]

CC Diff R CLiforalli,1 <i<k.

3/25

Connection to formal languages - Subsumption
Normal form

e Apply Vr.(CM D) =Vr.CMVr.D as rewrite rule (from left to right):
Vr(Vs.AMVr.B)MVr. AN B ——— VrVs. ANVr.Yr.BNYr.ANB

o Abbreviate using languages over Ng:

Vrs.AMVrr.BOVr. AN B —— Y{rs,r}.An1V¥{rr,e}.B

e Let Nc = {Ay,...,Ax}. Then, every pair of concepts C, D can be represented as:

C=VLLAM.. NYLA,
D =VR;. A1 ... MVRk. Ak,

where L;, R; are finite languages over Ng.

Characterization of subsumption [BNO1]

CLC Diff Ry C L; forall i,1 < i< k. — Subsumption is polynomial w.r.t. T = 0.

3/25

Connection to formal languages - Unification

Let T = {C =’ D}.

4/25

Connection to formal languages - Unification

Let T = {C =’ D}.

Considering variables as concept names, I' can be seen as:

VL. Ay M. .. OVLE Ax erLT.Xl ... erL:;.Xm

?

YRLAL M ... MVYRCAOIVYRE X M. .. VYRS X

4/25

Connection to formal languages - Unification
Let T = {C =’ D}.

Considering variables as concept names, [can be seen as:

VL. Ay M. .. OVLE Ax erLT.Xl ... erL:;.Xm
_7

YRLAL M ... MVYRCAOIVYRE X M. .. VYRS X

Example

Vr.(AL Vr.A2) MVrVs. Xy = Vr.Vs.(Vs. AL MVr.A)) MYr. Xy MYr.Yr.Ay

4/25

Connection to formal languages - Unification
Let T = {C =’ D}.

Considering variables as concept names, [can be seen as:

VL. Ay M. .. OVLE Ax erLT.Xl ... erL:;.Xm
_7

YRLAL M ... MVYRCAOIVYRE X M. .. VYRS X

Example

Vr.(AL Vr.A2) MVrVs. Xy = Vr.Vs.(Vs. AL MVr.A)) MYr. Xy MYr.Yr.Ay

|

V{r}.Ar OV {rr}. Ay MV{rs}. X1 =7 V{rss}.Ay IV {rsr, rr}. Ay M V{r}.Xq

4/25

Connection to formal languages - Unification
Let T = {C =’ D}.

Considering variables as concept names, I' can be seen as:

VL. Ay M. .. OVLE Ax erLT.Xl ... erLf,,.Xm
_7

VR AL M. .. OVRCACTVYRE . X M. . MVYRY. X

Example

Vr.(AL Vr.A2) MVrVs. Xy = Vr.Vs.(Vs. AL MVr.A)) MYr. Xy MYr.Yr.Ay

|

V{r}. AL OV {rr}. A MIV{rs}. X1 =7 V{rss}. Ay 1V{rsr,rr}. Ay IV{r}. X

What to replace Xi for to make the resulting forms “equal”?

4/25

Connection to formal languages - Unification

Let T = {C =’ D}.

Considering variables as concept names, I' can be seen as:

VL. Ay M. .. OVLE Ax erLT.Xl ... erLf,,.Xm

?

VR A1 M. . .MVRCAMVR Xi M. .. MIVRy Xim
Example

Vr.(AL Vr.A2) MVrVs. Xy = Vr.Vs.(Vs. AL MVr.A)) MYr. Xy MYr.Yr.Ay

|

V{r}. AL OV {rr}. A MIV{rs}. X1 =7 V{rss}. Ay 1V{rsr,rr}. Ay IV{r}. X

What to replace Xi for to make the resulting forms “equal”?

X1 — A1 MVs.A; MVr.A;

4/25

Connection to formal languages - Unification

Let T = {C =’ D}.

Considering variables as concept names, I' can be seen as:

VL. Ay M. .. OVLE Ax erLT.Xl ... erLf,,.Xm

?

VR A1 M. . .MVRCAMVR Xi M. .. MIVRy Xim
Example

Vr.(AL Vr.A2) MVrVs. Xy = Vr.Vs.(Vs. AL MVr.A)) MYr. Xy MYr.Yr.Ay

|

V{r}. AL OV {rr}. A MIV{rs}. X1 =7 V{rss}. Ay 1V{rsr,rr}. Ay IV{r}. X

What to replace Xi for to make the resulting forms “equal”?

Xy — A1 MVs.A; MVr. Az Ai: {r} U {rs.e, rs.s}

{rss} J{r.s7 r.s}

4/25

Connection to formal languages - Unification

Let T = {C =’ D}.

Considering variables as concept names, I' can be seen as:

VL. Ay M. .. OVLE Ax erLT.Xl ... erLf,,.Xm

?

VR A1 M. . .MVRCAMVR Xi M. .. MIVRy Xim
Example

Vr.(AL Vr.A2) MVrVs. Xy = Vr.Vs.(Vs. AL MVr.A)) MYr. Xy MYr.Yr.Ay

|

V{r}. AL OV {rr}. A MIV{rs}. X1 =7 V{rss}. Ay 1V{rsr,rr}. Ay IV{r}. X

What to replace Xi for to make the resulting forms “equal”?

X1 — A1 MVs.A; Mvr.Az Ar: {r} U {rs.e, rs.s} Az: {rr} U {rs.r}

{rss} J{r.s7 r.s} {rsr, r:} U{r.r}

4/25

Connection to formal languages - Unification
Let T = {C =’ D}.

Considering variables as concept names, I' can be seen as:

VL. Ay M. .. OVLE Ax erLT.Xl ... erLj;,.Xm

_7
VR AL M. .. OVRCACTVYRE . X M. . MVYRY. X

Example

Vr.(AL Vr.A2) MVrVs. Xy = Vr.Vs.(Vs. AL MVr.A)) MYr. Xy MYr.Yr.Ay

|

V{r}. AL OV {rr}. A MIV{rs}. X1 =7 V{rss}. Ay 1V{rsr,rr}. Ay IV{r}. X

What to replace Xi for to make the resulting forms “equal”?

X1 — A1 MVs.A; Mvr.Az Ar: {r} U {rs.e, rs.s} Az: {rr} U {rs.r}
{rss} U{r.e,r.s} {rsr,rr} U{r.r}

Fixing A; is idependent of fixing Az, and vice versal

4/25

Unification in FLy — Solving linear equations

5/25

Unification in FLy — Solving linear equations

Example (continuation)

5/25

Unification in FLy — Solving linear equations

Example (continuation)

{ryu{rs}. Xy a =7 {rss} U{r}.Xy s

5/25

Unification in FLy — Solving linear equations

Example (continuation)

{ryu{rs}. Xy a =7 {rss} U{r}.Xy s

{rr} U{rs}. X1 a4, =" {rsr,rr} U {r}.Xi,a,

5/25

Unification in FLy — Solving linear equations

Example (continuation)

{r}u{rs}. X1 4 =" {rss}uU {r}.X1,4,
{rr} U{rs}. X1 a4, =" {rsr,rr} U {r}.Xi,a,

Formally,

5/25

Unification in FLy — Solving linear equations

Example (continuation)

{r}u{rs}. X1 4 =" {rss}uU {r}.X1,4,
{rr} U{rs}. X1 a4, =" {rsr,rr} U {r}.Xi,a,

Formally,
V0L At M. . MVLc Ag F|7VLI.X1 M...nVLy, Xm
VRi.A1 M. .. MVRk.Ax iVRl*.Xl M...NVRyXm
has a solution iff for all 1 </ < k the equation:

LU LI-XI,I U...U L:,.XL,,,
?

R; U R{‘.XL,' U...uU R;,.Xl,m

has a finite solution.

5/25

Unification in FLy — Solving linear equations

Example (continuation)

{r}u{rs}. X1 4 =" {rss}uU {r}.X1,4,
{rr} U{rs}. X1 a4, =" {rsr,rr} U {r}.Xi,a,

Formally,
VL. A M. VLA N VLTX1 ... VL;Xm
_7?

VR A1 ... MVR. AT VRl*Xl ... 1 VR;,X,T,
has a solution iff for all 1 </ < k the equation:

LU LI-XI,I U...U L:,.XL,,,
?

R; U R{‘.XL,' U...uU R;,.Xl,m

has a finite solution.
Why finite?

5/25

How to solve these linear equations?

6/25

How to solve these linear equations?

e A solution of a single equation can be seen as a finite language:

in our example, £1 = {r,rs,rss} and L, = {rr,rsr} for A1 and A, resp.

6/25

How to solve these linear equations?

e A solution of a single equation can be seen as a finite language:

in our example, £1 = {r,rs,rss} and L, = {rr,rsr} for A1 and A, resp.

o A language over a finite alphabet can be represented as a tree:
re o
7N\
o o
/N
o v o

6/25

How to solve these linear equations?

e A solution of a single equation can be seen as a finite language:

in our example, £1 = {r,rs,rss} and L, = {rr,rsr} for A1 and A, resp.

e A Ianguage over a finite alphabet can be represented as a tree:

NN
ATREA
/N

6/25

How to solve these linear equations?

e A solution of a single equation can be seen as a finite language:

in our example, £1 = {r,rs,rss} and L, = {rr,rsr} for A1 and A, resp.

e A Ianguage over a finite aIphabet can be represented as a tree:

N AN /\
/N7 /N 7\
7\ 7\

6/25

How to solve these linear equations?

e A solution of a single equation can be seen as a finite language:

in our example, £1 = {r,rs,rss} and L, = {rr,rsr} for A1 and A, resp.

e A Ianguage over a finite alphabet can be represented as a tree:

N AN /\
/N7 /N 7\
7\ 7\

L(Ag) # 0 iff € has a solution.

6/25

How to solve these linear equations?

e A solution of a single equation can be seen as a finite language:

in our example, £1 = {r,rs,rss} and L, = {rr,rsr} for A1 and A, resp.

e A Ianguage over a finite alphabet can be represented as a tree:
ty : o

e Construct a finite tree automata Ag such that
L(Ag) # 0 iff € has a solution.

o

o Ag accepts exactly the trees representing solutions of an equation.

6/25

Detour to finite tree automata

7/25

Detour to finite tree automata

Definition 11 (X-tree)

Let X be a finite alphabet such that each f € X has a rank rk(f) > 0. A finite X-tree is a
mapping t : dom(t) — X such that:

7/25

Detour to finite tree automata

Definition 11 (X-tree)

Let X be a finite alphabet such that each f € X has a rank rk(f) > 0. A finite X-tree is a
mapping t : dom(t) — X such that:

e dom(t) is a finite subset of {1,..., max(rk(f))}*,

7/25

Detour to finite tree automata

Definition 11 (X-tree)

Let X be a finite alphabet such that each f € X has a rank rk(f) > 0. A finite X-tree is a
mapping t : dom(t) — X such that:

e dom(t) is a finite subset of {1,..., max(rk(f))}*,
e ¢ € dom(t),

7/25

Detour to finite tree automata

Definition 11 (X-tree)
Let X be a finite alphabet such that each f € X has a rank rk(f) > 0. A finite X-tree is a
mapping t : dom(t) — X such that:

e dom(t) is a finite subset of {1,..., max(rk(f))}*,

e ¢ € dom(t),

e u.j € dom(t) iff u € dom(t) and i < rk(t(u)).

7/25

Detour to finite tree automata

Definition 11 (X-tree)
Let X be a finite alphabet such that each f € X has a rank rk(f) > 0. A finite X-tree is a
mapping t : dom(t) — X such that:

e dom(t) is a finite subset of {1,..., max(rk(f))}*,

e ¢ € dom(t),

e u.j € dom(t) iff u € dom(t) and i < rk(t(u)).

Leaves of t must be mapped to constants, i.e., arity 0.

7/25

Detour to finite tree automata

Definition 11 (X-tree)
Let X be a finite alphabet such that each f € X has a rank rk(f) > 0. A finite X-tree is a
mapping t : dom(t) — X such that:

e dom(t) is a finite subset of {1,..., max(rk(f))}*,

e ¢ € dom(t),

e u.j € dom(t) iff u € dom(t) and i < rk(t(u)).

Leaves of t must be mapped to constants, i.e., arity 0.

Example
Let X = {fO(Z), f1(2), C(()0)7 c{o)}

not a tree

fo
fi e

7/25

Detour to finite tree automata

Definition 11 (X-tree)
Let X be a finite alphabet such that each f € X has a rank rk(f) > 0. A finite X-tree is a
mapping t : dom(t) — X such that:

e dom(t) is a finite subset of {1,..., max(rk(f))}*,

e ¢ € dom(t),

e u.j € dom(t) iff u € dom(t) and i < rk(t(u)).

Leaves of t must be mapped to constants, i.e., arity 0.

Example
Let ¥ = {£? £, 9, 0}
not a tree a tree

/\ /\
/\
/\

7/25

Detour to finite tree automata

Definition 11 (X-tree)
Let X be a finite alphabet such that each f € X has a rank rk(f) > 0. A finite X-tree is a
mapping t : dom(t) — X such that:

e dom(t) is a finite subset of {1,..., max(rk(f))}*,

e ¢ € dom(t),

e u.j € dom(t) iff u € dom(t) and i < rk(t(u)).

Leaves of t must be mapped to constants, i.e., arity 0.

Example
LetZ_{f2) £ 0 on
/ \ AN
VAN
AN

7/25

Detour to finite tree automata

8/25

Detour to finite tree automata

Definition 12 (Root-to-frontier tree automata)

A root-to-frontier tree automaton (RFA) on X-trees is a tuple A = (X, Q, /, A, F) where:

e @ is a finite set of states.
e | C @ is the set of initial states.
e A is a transition function s.t.:
VFeX, rk(f)=n>0: A(f) CQ x Q"
e F: Yy — 29 (the acceptance condition).

8/25

Detour to finite tree automata

Definition 12 (Root-to-frontier tree automata)

A root-to-frontier tree automaton (RFA) on X-trees is a tuple A = (X, Q, /, A, F) where:

e @ is a finite set of states.
e | C @ is the set of initial states.
e A is a transition function s.t.:
VieX, rk(f)=n>0: A(f) C Q x Q".
e F: Yy — 29 (the acceptance condition).

A run p of A on a X-tree t is a mapping p : dom(t) — Q such that:
(p(u), p(u.l),...,p(u.n)) € A, for all u with rk(u) =n > 0.

8/25

Detour to finite tree automata

Definition 12 (Root-to-frontier tree automata)

A root-to-frontier tree automaton (RFA) on X-trees is a tuple A = (X, Q, /, A, F) where:

e @ is a finite set of states.
e | C @ is the set of initial states.
e A is a transition function s.t.:
VieX, rk(f)=n>0: A(f) C Q x Q".
e F: Yy — 29 (the acceptance condition).

A run p of A on a X-tree t is a mapping p : dom(t) — Q such that:

(p(u), p(u.l),...,p(u.n)) € A, for all u with rk(u) =n > 0.

This run is successful if,

e ple) el
o p(u) € F(t(u)), for all leaves u of t.

8/25

Detour to finite tree automata

Definition 12 (Root-to-frontier tree automata)

A root-to-frontier tree automaton (RFA) on X-trees is a tuple A = (X, Q, /, A, F) where:

e @ is a finite set of states.
e | C @ is the set of initial states.
e A is a transition function s.t.:
VieX, rk(f)=n>0: A(f) C Q x Q".
e F: Yy — 29 (the acceptance condition).

A run p of A on a X-tree t is a mapping p : dom(t) — Q such that:

(p(u), p(u.l),...,p(u.n)) € A, for all u with rk(u) =n > 0.
This run is successful if,
e ple) el
o p(u) € F(t(u)), for all leaves u of t.
Tree language accepted by A:
L(A) = {t | A has a successful run on t}.

8/25

Detour to finite tree automata - Example
Let X = {fo(z), f1(2)7 céo), cl(o)}. Construct an automaton A that accepts

L ={t]|3Ju e dom(t) s.t. u.rsis a ¢ leaf}.

9/25

Detour to finite tree automata - Example
Let X = {fo(z), f1(2)7 céo), cl(o)}. Construct an automaton A that accepts
L ={t]|3Ju e dom(t) s.t. u.rsis a ¢ leaf}.

Idea.

9/25

Detour to finite tree automata - Example
Let X = {fo(2), f1(2)7 céo), cl(o)}. Construct an automaton A that accepts
L ={t]|3Ju e dom(t) s.t. u.rsis a ¢ leaf}.

Idea.

e At every moment, A will guess whether u is in the current subtree:

9/25

Detour to finite tree automata - Example
Let X = {fo(z), f1(2)7 céo), cl(o)}. Construct an automaton A that accepts
L ={t]|3Ju e dom(t) s.t. u.rsis a ¢ leaf}.

Idea.

e At every moment, A will guess whether u is in the current subtree:
e state gy — “not in this subtree”.

9/25

Detour to finite tree automata - Example
Let X = {fo(z), f1(2)7 céo), cl(o)}. Construct an automaton A that accepts
L ={t]|3Ju e dom(t) s.t. u.rsis a ¢ leaf}.

Idea.

e At every moment, A will guess whether u is in the current subtree:
e state gy — “not in this subtree”.

e states gsp, gs1 — ‘it is in the subtree”, “it is actually the root of the subtree”.

9/25

Detour to finite tree automata - Example
Let X = {fo(z), f1(2)7 céo), cl(o)}. Construct an automaton A that accepts
L ={t]|3Ju e dom(t) s.t. u.rsis a ¢ leaf}.

Idea.

e At every moment, A will guess whether u is in the current subtree:
e state gy — “not in this subtree”.

e states gsp, gs1 — ‘it is in the subtree”, “it is actually the root of the subtree”.

e Guessing (use non-determinism):

9/25

Detour to finite tree automata - Example
Let X = {fo(z), f1(2)7 céo), cl(o)}. Construct an automaton A that accepts
L ={t]|3Ju e dom(t) s.t. u.rsis a ¢ leaf}.

Idea.

e At every moment, A will guess whether u is in the current subtree:
e state gy — “not in this subtree”.

e states gsp, gs1 — ‘it is in the subtree”, “it is actually the root of the subtree”.

e Guessing (use non-determinism):
* (g0, fo/f1, an, gs0/as1) and (gso, fo/fi, Gs0/ds1, Gn)-

9/25

Detour to finite tree automata - Example
Let X = {fo(z), f1(2)7 céo), cl(o)}. Construct an automaton A that accepts
L ={t]|3Ju e dom(t) s.t. u.rsis a ¢ leaf}.

Idea.

e At every moment, A will guess whether u is in the current subtree:
e state gy — “not in this subtree”.

e states gsp, gs1 — ‘it is in the subtree”, “it is actually the root of the subtree”.
e Guessing (use non-determinism):

* (gs0,fo/f1,an, 9s0/qs1) and (gso, fo/f1, gs0/Gs1, an)-
e (an,fo/fi, an, an)

9/25

Detour to finite tree automata - Example
Let X = {fo(z), f1(2)7 céo), cl(o)}. Construct an automaton A that accepts
L ={t]|3Ju e dom(t) s.t. u.rsis a ¢ leaf}.

Idea.

e At every moment, A will guess whether u is in the current subtree:
e state gy — “not in this subtree”.

e states gsp, gs1 — ‘it is in the subtree”, “it is actually the root of the subtree”.
e Guessing (use non-determinism):
* (gs0,fo/f1,an, gs0/qs1) and (gso, fo/fi, 9s0/qs1, Gn)-

e (an,fo/fi, an, an)

o Checking the suffix once in gs1 (use two additional states gs, g:):
° (gs1,fo/f1,qs,qn) and (gs, fo/fi, N, Ge)-

9/25

Detour to finite tree automata - Example

Let X = {fo(z), f1(2)7 céo), cl(o)}. Construct an automaton A that accepts

L ={t]|3Ju e dom(t) s.t. u.rsis a ¢ leaf}.

Idea.

e At every moment, A will guess whether u is in the current subtree:
e state gy — “not in this subtree”.

e states gsp, gs1 — ‘it is in the subtree”, “it is actually the root of the subtree”.

e Guessing (use non-determinism):
* (g0, fo/f1, an, gs0/as1) and (gso, fo/fi, Gs0/ds1, Gn)-

e (an,fo/fi, an, an)

o Checking the suffix once in gs1 (use two additional states gs, g:):
° (gs1,fo/f1,qs,qn) and (gs, fo/fi, N, Ge)-

e Acceptance condition:
* F(co) ={an} and F(c1) = {an, g }-

9/25

Solving linear equations

Recall: we want to construct an RFA A¢ accepting exactly the “trees” solving

LU LI,XL,' Uu...u L;.,.Xl’m

_?

R U R1*~X1,i U...uU R,):,.lem.

10/25

Solving linear equations

Recall: we want to construct an RFA A¢ accepting exactly the “trees” solving

LU LI,Xl,,' Uu...u L;.,.XL,,,

_?

R U R1*~X1,i U...uU R,):,.lem.
Actually, we will instead build one accepting the solutions of

Z,’ U YL'"E Uu...u Yl,rn~E

_?

RUYL.RFU...UYimRE,

10/25

Solving linear equations

Recall: we want to construct an RFA A¢ accepting exactly the “trees” solving

LU LI,Xl,,' Uu...u L;.,.XL,,,

_?

R U R1*~X1,i U...uU R,):,.lem.
Actually, we will instead build one accepting the solutions of

Z,’ U YL'"E Uu...u Yl,rn~E

_?

RUYL.RFU...UYimRE,

where W = tpm ... u1, for w=uy...un €ENg*;and L= {w | w € L}.

10/25

Solving linear equations

Recall: we want to construct an RFA A¢ accepting exactly the “trees” solving

LU LI.Xl,,' U...uU L:.,.Xl’m

_?

R U Rl*‘Xl,,' U...uU R;,.Xl’m.
Actually, we will instead build one accepting the solutions of

Z,’ U Yl’,'.f{ U...uU Yl,m~E

_?

RUYL.RFU...UYimRE,

where W = tpm ... u1, for w=uy...un €ENg*;and L= {w | w € L}.

Xi,iy- -, X1,m solves €
iff
Y1’; =S le,', 500y Yl,m = Xl,m solves £.

10/25

Construction of the automaton - Example

11/25

Construction of the automaton - Example

Original equation and solution:

11/25

Construction of the automaton - Example
Original equation and solution:

E: {r} @] {rS}.XLAl =7 {rss} U {r}-Xl,Al

11/25

Construction of the automaton - Example
Original equation and solution:

E: {ryu{rs}.Xya =" {rss}U{r}.Xya
X1,4, = {&,s} and Ly = {r,rs, rss}

11/25

Construction of the automaton - Example
Original equation and solution:

E: {ryu{rs}.Xya =" {rss}U{r}.Xya
X1,4, = {&,s} and Ly = {r,rs, rss}

Reverse equation and solution:

11/25

Construction of the automaton - Example
Original equation and solution:

E: {ryu{rs}.Xya =" {rss}U{r}.Xya
X1,4, = {&,s} and Ly = {r,rs, rss}

Reverse equation and solution:

E: {r}u Y1,4,-{sr} =? {ssr} U Yy a, {r}

11/25

Construction of the automaton - Example
Original equation and solution:

E: {ryu{rs}.Xya =" {rss}U{r}.Xya
X1,4, = {&,s} and Ly = {r,rs, rss}

Reverse equation and solution:

E: {r}uYya {sr} =7 {ssr} U Y1,4,-{r}
Y1,4, — {¢,s} and Ly = {r,sr,ssr}

11/25

Construction of the automaton - Example
Original equation and solution:

E: {ryu{rs}.Xya =" {rss}U{r}.Xya
X1,4, = {&,s} and Ly = {r,rs, rss}

Reverse equation and solution:

E: {r}uYya {sr} =7 {ssr} U Y1,4,-{r}
Y1,4, — {¢,s} and Ly = {r,sr,ssr}

The automaton must accept the tree:

/\
/\
/\

11/25

Construction of the automaton - Example

Reverse equation and solution:

E: {r}UYia {sr} =" {ssr} U Y {r}
Y1,4, = {€,s} and L1 = {r,sr,ssr}

12/25

Construction of the automaton - Example

Reverse equation and solution:

E: {r}UYia {sr} =" {ssr} U Y {r}
Y1,4, = {€,s} and L1 = {r,sr,ssr}

Let us decorate the tree as follows:

/\
/\
/\

12/25

Construction of the automaton - Example

Reverse equation and solution:

E: {r}UYia {sr} =" {ssr} U Y {r}
Y1,4, = {€,s} and L1 = {r,sr,ssr}

Let us decorate the tree as follows:
o (
2

(2,) a ())

/\
/\

12/25

Construction of the automaton - Example

Reverse equation and solution:

E: {r}UYia {sr} =" {ssr} U Y {r}
Y1,4, = {€,s} and L1 = {r,sr,ssr}

Let us decorate the tree as follows:

fo ({rsrh) - suffixes left-hand side
7N
0,{<},) c ,{r.sr},)
(0,{<},) {r},)

/\

12/25

Construction of the automaton - Example
Reverse equation and solution:
E: {r}u Y1,4,-{sr} =’ {ssr} U Y1,4,-{r}
Y1,4, — {€,s} and L1 = {r,sr, ssr}
Let us decorate the tree as follows:

\) - variables
o (171 ALt {rosr}, {ssr,r}) - suffixes left-hand side

/ \ - suffixes right-hand side

(0, (=}, {e}) o (Vi) {rsr), {srr})

fo (0, {r},{r})

/N
/N

(0,4} {eh) a o (0,0,0)

12/25

Construction of the automaton - Example

Reverse equation and solution:

E: {r}UYia {sr} =" {ssr} U Y {r}
Y1,4, = {€,s} and L1 = {r,sr,ssr}

Let us decorate the tree as follows:

- variables
t: fo (173 A1 by drosr, {ssr, r}) - suffixes left-hand side
/ \ - suffixes right-hand side
r s
(0, {h{e}) a fo ({Via by {rosry, {sr,r})
/N
0, 4=k {eh) a fo (0, {r},{r})

/N

Third and second sets are sets of suffixes occurring in &.

(0,{c},{e}) «a 0,0, 0)

12/25

The automaton

13/25

The automaton

Idea: when traversing a tree, Ag guesses the words assigned to variables and keeps track
of the suffixes that show up.

13/25

The automaton

Idea: when traversing a tree, Ag guesses the words assigned to variables and keeps track
of the suffixes that show up.

o Set of states: Q :=2M x 25t x 2°F,

13/25

The automaton

Idea: when traversing a tree, Ag guesses the words assigned to variables and keeps track
of the suffixes that show up.

e Set of states: Q := 2™ x 250 x 2°F,
e M={1,...,m}, where m is the number of variables.

13/25

The automaton

Idea: when traversing a tree, Ag guesses the words assigned to variables and keeps track
of the suffixes that show up.

e Set of states: Q := 2™ x 250 x 2°F,
e M={1,...,m}, where m is the number of variables.

e SL suffixes occurring in the left hand-side of £ (symmetrically for SR)

13/25

The automaton

Idea: when traversing a tree, Ag guesses the words assigned to variables and keeps track
of the suffixes that show up.

e Set of states: Q := 2™ x 250 x 2°F,
e M={1,...,m}, where m is the number of variables.

e SL suffixes occurring in the left hand-side of £ (symmetrically for SR)

o |[nitial states:
I={(V,LLR)| G C M,L=1L;uU U 7,R:...}
jev

13/25

The automaton

Idea: when traversing a tree, Ag guesses the words assigned to variables and keeps track
of the suffixes that show up.

e Set of states: Q := 2™ x 250 x 2°F,
e M={1,...,m}, where m is the number of variables.

e SL suffixes occurring in the left hand-side of £ (symmetrically for SR)

o |[nitial states:
I={(V,LLR)| G C M,L=1L;uU U 7,R:...}
jev

e Transition function:
((G(),LO,RO), fg,(Gl,L]_, Rl)?"‘7(Gk7Lk7Rk)) € Q x Qk Iff

13/25

The automaton

Idea: when traversing a tree, Ag guesses the words assigned to variables and keeps track
of the suffixes that show up.

e Set of states: Q := 2™ x 250 x 2°F,
e M={1,...,m}, where m is the number of variables.

e SL suffixes occurring in the left hand-side of £ (symmetrically for SR)

o |[nitial states:
I={(V,LLR)| G C M,L=1L;uU U 7,R:...}
jev

e Transition function:
((G(),LO,RO), fg,(Gl,L]_, Rl)?"‘7(Gk7Lk7Rk)) € Q x Qk Iff

e Suffixes are properly propagated.

13/25

The automaton

Idea: when traversing a tree, Ag guesses the words assigned to variables and keeps track
of the suffixes that show up.

e Set of states: Q := 2™ x 250 x 2°F,
e M={1,...,m}, where m is the number of variables.

e SL suffixes occurring in the left hand-side of £ (symmetrically for SR)

o |[nitial states:
I={(V,LLR)| G C M,L=1L;uU U 7,R:...}
jev

e Transition function:
((G(),LO,RO), fg,(Gl,L]_, Rl)?"‘7(Gk7Lk7Rk)) € Q x Qk Iff

e Suffixes are properly propagated.

e The resulting left and right languages are the same:
c€lyiffe € Ry iff £ = fq,

13/25

The automaton

Idea: when traversing a tree, Ag guesses the words assigned to variables and keeps track
of the suffixes that show up.

e Set of states: Q := 2™ x 250 x 2°F,
e M={1,...,m}, where m is the number of variables.

e SL suffixes occurring in the left hand-side of £ (symmetrically for SR)
e Initial states:
I={(V,LLR)| G C I\/I7L=L,-UlU J’-‘,R:...}
JjeV
e Transition function:
((Go, Lo, Ro), fe, (G, L1, Rt), ..., (Gi, Lk, Rk)) € Q x Q" ifF
e Suffixes are properly propagated.

e The resulting left and right languages are the same:
c€lyiffe € Ry iff £ = fq,
o Final states:

F(a)={(G,L,R)|L=R =0} and F(c1) = {(G,L,R) | L= R = {e}}.

13/25

Complexity of solving linear equations

Lemma 13
The following are equivalent
® L(As) £ 0.
@® there are finite sets Yi,;,..., Y1,m such that:
LuYyiLiu...UYymly

ﬁiU Yl,i.RifU ..U Yl,m.Rirt,,

14/25

Complexity of solving linear equations

The following are equivalent

0 L(Ag) #0.
@® there are finite sets Yi,;,..., Y1,m such that:
Z,’ @] Yl,i~EU .U Yl,m-ﬁ
ﬁ,-u Yl,i.RifU ..U Yl,m.Rirt,,
Algorithm

@ [is translated into k linear equations of size polynomial.
@® Build an automaton Ag for each equation. The size is exponential w.r.t. I'!

® Check emptiness of each Ag. In polynomial time in the size of Ag.

14/25

Complexity of solving linear equations

The following are equivalent

0 L(Ag) #0.
@® there are finite sets Yi,;,..., Y1,m such that:
Z,’ @] Yl,i~EU .U Yl,m-ﬁ
ﬁiU Yl,i.RifU ..U Yl,m.Rirt,,
Algorithm

@ [is translated into k linear equations of size polynomial.
@® Build an automaton Ag for each equation. The size is exponential w.r.t. I'!

® Check emptiness of each Ag. In polynomial time in the size of Ag.

Lemma 14 [BNO1]

Unification in F Lo, ACUlh and solving linear equations are in ExpTime.

14/25

Complexity of solving linear equations - hardness

15/25

Complexity of solving linear equations - hardness

A very nice, but complicated reduction. Only very general details:

15/25

Complexity of solving linear equations - hardness

A very nice, but complicated reduction. Only very general details:

e Reduction from the intersection emptiness problem for deterministic RTF automata.

15/25

Complexity of solving linear equations - hardness

A very nice, but complicated reduction. Only very general details:

e Reduction from the intersection emptiness problem for deterministic RTF automata.

Instance: A sequence Aj,...,.A, of DRTF over a ranked alphabet ¥.
Question: Is there a tree t € L(A1) N ... N L(A,)?

15/25

Complexity of solving linear equations - hardness

A very nice, but complicated reduction. Only very general details:

e Reduction from the intersection emptiness problem for deterministic RTF automata.

Instance: A sequence Aj,...,.A, of DRTF over a ranked alphabet ¥.
Question: Is there a tree t € L(A1) N ... N L(A,)?

The problem is ExpTime-complete [Sei94].

15/25

Complexity of solving linear equations - hardness

A very nice, but complicated reduction. Only very general details:

e Reduction from the intersection emptiness problem for deterministic RTF automata.

Instance: A sequence Aj,...,.A, of DRTF over a ranked alphabet ¥.
Question: Is there a tree t € L(A1) N ... N L(A,)?

The problem is ExpTime-complete [Sei94].

e Given Ay, ..., A, construct a system of n linear equations {&1,...,E,} such that:

L(A)N...NL(A,) #D
iff

{&1,...,&n} has a solution.

15/25

Complexity of solving linear equations - hardness

A very nice, but complicated reduction. Only very general details:

e Reduction from the intersection emptiness problem for deterministic RTF automata.

Instance: A sequence Aj,...,.A, of DRTF over a ranked alphabet ¥.
Question: s there a tree t € L(A1) N...NL(A,)?

The problem is ExpTime-complete [Sei94].

e Given Ay, ..., A, construct a system of n linear equations {&1,...,E,} such that:

L(A)N...NL(A,) #D
iff

{&1,...,&n} has a solution.

Theorem 15 [BNO1]

Unification in F Lo, ACUlh and solving linear equations are ExpTime-complete.

15/25

Unification in F L eg

16/25

Unification in F L eg

FLreg extends F Lo with complex roles:

Ve, V0, V(RUS), V(R o S) and VR*.

16/25

Unification in F L eg

FLeg extends F Ly with complex roles:
Ve, V0, V(RUS), V(R o S) and VR*.

Semantics of complex roles:
el :={(d,d) | d € AT}
pr =0
(RUS)T :=R'UST
(RoS)r :={(d,e) |3 : (d,f) € R* A(f,e) € R"}
(R*)I — U(RI)n.

n>0

16/25

Unification in F L eg

FLeg extends F Ly with complex roles:
Ve, V0, V(RUS), V(R o S) and VR*.

Semantics of complex roles:
el :={(d,d) | d € AT}
0F =0
(RUS)T :=R'UST
(RoS) :={(d,e) |3 : (d,f) e RT A(f,e) e R"}
(R*)I — U(RI)n
n>0
Example

{r}o({stu{r})o{s}* — pairs (d, e) such that d reaches e through a word in r.(s|r).s".

16/25

Unification in F L eg

FLeg extends F Ly with complex roles:
Ve, V0, V(RUS), V(R o S) and VR*.

Semantics of complex roles:
el :={(d,d) | d € AT}
0F =0
(RUS)T :=R'UST
(RoS)" :={(d,e) | 3f: (d,f) € RE A(f,e) € R"}
(R*)I — U(RI)n
n>0
Example

{r}o({spuU{r})o{s}* — pairs (d, e) such that d reaches e through a word in r.(s|r).s*.

A complex role can be seen as a regular expression/language!

16/25

Unification in FL,ez - Complexity

17/25

Unification in FL,ez - Complexity

e in ExpTime: similar as for F Lo, but

17/25

Unification in FL,ez - Complexity

e in ExpTime: similar as for F Lo, but

e We need to deal with linear equations that can have infinite languages as coefficients.

17/25

Unification in FL,ez - Complexity

e in ExpTime: similar as for F Lo, but
e We need to deal with linear equations that can have infinite languages as coefficients.

e Use automata on infinite trees: looping tree automata.

17/25

Unification in FL,ez - Complexity

e in ExpTime: similar as for F Lo, but
e We need to deal with linear equations that can have infinite languages as coefficients.

e Use automata on infinite trees: looping tree automata.

e Exptime-hard?

17/25

Unification in FL,ez - Complexity

e in ExpTime: similar as for F Lo, but
e We need to deal with linear equations that can have infinite languages as coefficients.

e Use automata on infinite trees: looping tree automata.

e Exptime-hard?

o Exptime-hardness from F Ly cannot be directly inherited!

17/25

Unification in FL,ez - Complexity

e in ExpTime: similar as for F Lo, but
e We need to deal with linear equations that can have infinite languages as coefficients.

e Use automata on infinite trees: looping tree automata.

e Exptime-hard?
e Exptime-hardness from F Ly cannot be directly inherited!

o Adapt the same reduction, but using a sequence of looping tree automata.

17/25

Unification in FL,ez - Complexity

e in ExpTime: similar as for F Lo, but
e We need to deal with linear equations that can have infinite languages as coefficients.

e Use automata on infinite trees: looping tree automata.

e Exptime-hard?
e Exptime-hardness from F Ly cannot be directly inherited!

o Adapt the same reduction, but using a sequence of looping tree automata.

Theorem 16 [BKO1]

Unification in F L is ExpTime-complete.

17/25

Matching with respect to general F Ly TBoxes

18/25

Deciding matching w.r.t. the empty TBox

19/25

Deciding matching w.r.t. the empty TBox

Matching is a unification problem of the form:

VLA O OVLC AL X M. YL X

?

VRi. A1 ... MVRL.Ax.

19/25

Deciding matching w.r.t. the empty TBox

Matching is a unification problem of the form:

VLA O OVLC AL X M. YL X

?

VRi. A1 ... MVRL.Ax.

Example

matching problem: V{r,s}. ANVY{s}.B =" V{rr}. AN V{r,s}. Xy MV{s}. Xz

19/25

Deciding matching w.r.t. the empty TBox
Matching is a unification problem of the form:

VLA O OVLC AL X M. YL X

?

VRi. A1 ... MVRL.Ax.

Example

matching problem: V{r,s}. ANVY{s}.B =" V{rr}. AN V{r,s}. Xy MV{s}. Xz
equation for A: {r,s} =7 {rr} U {r,s}.X1 U {s}. X2

19/25

Deciding matching w.r.t. the empty TBox
Matching is a unification problem of the form:

VLA O OVLC AL X M. YL X

?

VRi. A1 ... MVRL.Ax.

Example

matching problem: V{r,s}. ANVY{s}.B =" V{rr}. AN V{r,s}. Xy MV{s}. Xz
equation for A: {r,s} =7 {rr} U {r,s}.X1 U {s}. X2

has no solution: a) rr & {r,s} b) s € Xj yields a suffix ss & {r, s}

19/25

Deciding matching w.r.t. the empty TBox
Matching is a unification problem of the form:

VLA O OVLC AL X M. YL X

?

VRi. A1 ... MVRL.Ax.

Example

matching problem: V{r,s}. ANVY{s}.B =" V{rr}. AN V{r,s}. Xy MV{s}. Xz
equation for A: {r,s} =7 {rr} U {r,s}.X1 U {s}. X2
has no solution: a) rr & {r,s} b) s € Xj yields a suffix ss & {r, s}

How to decide matching?

19/25

Deciding matching w.r.t. the empty TBox
Matching is a unification problem of the form:

VL. A M. .. OVL Ak HVLI.Xl ... HVLT,,.X,,,

?

VRi. A1 ... MVRL.Ax.

Example

matching problem: V{r,s}. ANVY{s}.B =" V{rr}. AN V{r,s}. Xy MV{s}. Xz
equation for A: {r,s} =7 {rr} U {r,s}.X1 U {s}. X2
has no solution: a) rr & {r,s} b) s € Xj yields a suffix ss & {r, s}

How to decide matching?

Lemma 17 [BNO1]

An FLo-matching problem has a solution iff the following is a solution:

o(Xi) = q u™t.Ry, where u™t Ry := {v | uv € Ro}.
uelLy

Decidable in PTime.

19/25

Characterization of subsumption in FLq - TBox

In the presence of a non-empty TBox, a new characterization is needed:

L7(C) == {(w,A) € Ng* x N¢ | C C7 Vw.A}

20/25

Characterization of subsumption in FLq - TBox

In the presence of a non-empty TBox, a new characterization is needed:

L7(C) == {(w,A) € Ng* x N¢ | C C7 Vw.A}

Characterization of subsumption w.r.t. a TBox

Let 7 be an FLy TBox and C, D FLg concepts. Then, C T D iff L7(D) C L7(C).

20/25

Characterization of subsumption in FLq - TBox

In the presence of a non-empty TBox, a new characterization is needed:
L7(C) :={(w,A) € NR* X N¢c | C Ty Vw.A}

Characterization of subsumption w.r.t. a TBox

Let 7 be an FLy TBox and C, D FLg concepts. Then, C T D iff L7(D) C L7(C).

Back to the example

C:=V{r,s}.ANV{s}.B
=’ T ={ALCVr.AVs.BC A}
D :=V{rr}.AnIV{r,s}. X1 NV{s}.X>

20/25

Characterization of subsumption in FLq - TBox

In the presence of a non-empty TBox, a new characterization is needed:

L7(C) == {(w,A) € Ng* x N¢ | C C7 Vw.A}

Characterization of subsumption w.r.t. a TBox

Let 7 be an FLy TBox and C, D FLg concepts. Then, C T D iff L7(D) C L7(C).

Back to the example

C:=V{r,s}.ANV{s}.B
=’ T ={ALCVr.AVs.BC A}
D :=V{rr}.AnIV{r,s}. X1 NV{s}.X>

solution: o(X1) := A and o(X2) :=B L7(C,A)={s}Ur* =Ly(c(D),A)

20/25

Matching w.r.t. general TBoxes

21/25

Matching w.r.t. general TBoxes

Matching problem (after applying normalization)

21/25

Matching w.r.t. general TBoxes

Matching problem (after applying normalization)

C=r ENVLyXaM...MVLyX,.

21/25

Matching w.r.t. general TBoxes

Matching problem (after applying normalization)

C=r ENVLyXaM...MVLyX,.

Can we extend the idea for the empty TBox to the sets L1(C, A)?

21/25

Matching w.r.t. general TBoxes

Matching problem (after applying normalization)

C=r ENVLyXaM...MVLyX,.

Can we extend the idea for the empty TBox to the sets L1(C, A)?
o for each variable X; and concept name A;:

Z,'yj = ﬂ U_ll:T(C,Aj).
u€el;

21/25

Matching w.r.t. general TBoxes

Matching problem (after applying normalization)

C=r ENVLyXaM...MVLyX,.

Can we extend the idea for the empty TBox to the sets L1(C, A)?
e for each variable X; and concept name A;:

Z,'yj = ﬂ U_ll:T(C,Aj).
u€el;

o define o(X;) as follows?
O’(X,') = Z,',l.Al M...n /L\,',k.Ak.

21/25

Matching w.r.t. general TBoxes

Matching problem (after applying normalization)

C=r ENVLyXaM...MVLyX,.

Can we extend the idea for the empty TBox to the sets L1(C, A)?

o for each variable X; and concept name A;:
Z,'yj =N U_ll:T(C,Aj).
u€el;
o define o(X;) as follows?
O’(X,') = Z,',l.Al M...n /L\,',k.Ak.

~

L;;j can be infinite — o(X;) is not an F Ly concept!

21/25

Matching w.r.t. general TBoxes

Matching problem (after applying normalization)

C=r ENVLyXaM...MVLyX,.

Can we extend the idea for the empty TBox to the sets L1(C, A)?
o for each variable X; and concept name A;:

Z,'yj =N U_ll:T(C,Aj).
u€el;

o define o(X;) as follows?
O’(X,') = Z,',l.Al M...n /L\,',k.Ak.

~

L;;j can be infinite — o(X;) is not an F Ly concept!

Workaround: consider F L, concept descriptions.

21/25

Deciding the existence of an F L eg-matcher

22/25

Deciding the existence of an F L eg-matcher

What do we know about the sets /L\,"j = N u LT (C,A)
uel;

22/25

Deciding the existence of an F L eg-matcher

What do we know about the sets /L\,"j = N u LT (C,A)
uel;

e They can be infinite, but they are always regular languages.

22/25

Deciding the existence of an F L eg-matcher

What do we know about the sets /L\,"j = N u LT (C,A)
uel;

e They can be infinite, but they are always regular languages.
e Then, o(X;) := /L\,-,l.A1 m...n Z,;;(.Ak is an F L concept.

22/25

Deciding the existence of an F L eg-matcher
What do we know about the sets /L\,"j = N u LT (C,A)
uel;
e They can be infinite, but they are always regular languages.
e Then, o(X;) := /L\,-,l.A1 m...mn Z,;;(.Ak is an F L concept.

The following is true

C =% ENVYL.XiM...MVYL,.X, has an FL,e, matcher
iff

~

o(Xi):= L1 An...m Z,-yk.Ak is a matcher.

22/25

Deciding the existence of an F L eg-matcher

What do we know about the sets /L\,"j = N u LT (C,A)
uel;

e They can be infinite, but they are always regular languages.
e Then, o(X;) := /L\,-,l.A1 m...n Z,;;(.Ak is an F L concept.

The following is true
C =% ENVL.XiN...MVL,.X, has an FL,e matcher
iff

~

o(Xi):= L1 An...m Z,-yk.Ak is a matcher.

Checking that & is a matcher

22/25

Deciding the existence of an F L eg-matcher

What do we know about the sets /L\,"j = N u LT (C,A)
uel;

e They can be infinite, but they are always regular languages.
e Then, o(X;) := /L\,-,l.A1 m...mn Z,;;(.Ak is an F L concept.

The following is true
C =% ENVL.XiN...MVL,.X, has an FL,e matcher
iff

~

o(Xi):= L1 An...m Z,-yk.Ak is a matcher.

Checking that & is a matcher

1. CCr E 2 ENVL.G(X)N...NYL.5(X,) Cr C.

22/25

Deciding the existence of an F L eg-matcher

What do we know about the sets /L\,"j = N u LT (C,A)
uel;

e They can be infinite, but they are always regular languages.
e Then, o(X;) := /L\,-,l.A1 m...mn Z,;,k.Ak is an F L concept.

The following is true
C =% ENVL.XiN...MVL,.X, has an FL,e matcher
iff

o(Xi):= L1 An...m Z,-yk.Ak is a matcher.

Checking that & is a matcher
1. CCr E 2. ENVYL.G(X:)N...NVL,.5(X,) Cr C.

This can be done in exponential time using automata on infinite trees [BGM18].

22/25

Deciding the existence of an FLp-matcher

By construction of Zi,j

C =% ENVYLi.XiM...MVLy.X, has an FLo matcher
iff
®©CCE
® There are finite languages L;; C Zj’j such that:

ENVYLy.o(X:)M...NYLy.o(X,) C7 C

23/25

Deciding the existence of an FLp-matcher

By construction of Zi,j

C = ENVYL.XiM...MVYL,. X, has an FLo matcher

iff
®©CCE
® There are finite languages L;; C Zj’j such that:

ENVLii.o(X1)M...MVYLy.o(X,) Cr C
Applying the Compactness Theorem

ENVL.5(X)M...NVYL..5(Xs) Cr C
iff

there are finite languages L;j C L;j s.t. EMNVYLy.o(X1) ... MVLyo(Xs) 7 C.

23/25

Deciding the existence of an FLp-matcher

By construction of Zi,j

C =% ENVYLi.XiM...MVLy.X, has an FLo matcher

iff
®©CCE
® There are finite languages L;; C Zj’j such that:

ENVLii.o(X1)M...MVYLy.o(X,) Cr C
Applying the Compactness Theorem

ENVLL.G(X:) M. .. NVYL.5(X,) T C
i
there are finite languages L;;j C Lij s.t. EMNVLi.o(X1)M ... MVL,o(X,) E7 C.

Consequences

e There exists an FLo-matcher iff there is an F L z-matcher.

e Deciding the existing of an FLo-matcher is ExpTime-complete.

23/25

Summary - Unification in the DL FLg

24/25

Summary - Unification in the DL FLg

e The problem is ExpTime-complete w.r.t. the empty TBox.

24/25

Summary - Unification in the DL FLg

e The problem is ExpTime-complete w.r.t. the empty TBox.

e This result carries over to F L eq.

24/25

Summary - Unification in the DL FLg

e The problem is ExpTime-complete w.r.t. the empty TBox.

e This result carries over to F L eq.

e Unification in F Ly corresponds to unification in the equational theory ACUlh and to
solving linear equations over finite languages.

24/25

Summary - Unification in the DL FLg

The problem is ExpTime-complete w.r.t. the empty TBox.

This result carries over to F L eg.

e Unification in F Ly corresponds to unification in the equational theory ACUlh and to
solving linear equations over finite languages.

In the presence of a general TBox.
o Decidability is an open problem.

e It is only known that it is ExpTime-complete for the special case of matching
(non-constructive proof).

24/25

References |

@ Franz Baader, Oliver Fernandez Gil, and Pavlos Marantidis.
Matching in the description logic FLO with respect to general tboxes.
In LPAR-22. 22nd International Conference on Logic for Programming, Artificial
Intelligence and Reasoning, Awassa, Ethiopia, 16-21 November 2018, volume 57 of
EPIiC Series in Computing, pages 76—-94. EasyChair, 2018.

@ Franz Baader and Ralf Kisters.
Unification in a description logic with transitive closure of roles.
In Logic for Programming, Artificial Intelligence, and Reasoning, 8th International
Conference, LPAR 2001, Havana, Cuba, December 3-7, 2001, Proceedings, volume
2250 of Lecture Notes in Computer Science, pages 217-232. Springer, 2001.

@ Franz Baader and Paliath Narendran.
Unification of Concept Terms in Description Logics.
J. Symb. Comput., 31(3):277-305, 2001.

[3 Helmut Seidl.
Haskell overloading is dexptime-complete.
Inf. Process. Lett., 52(2):57-60, 1994.

25/25

