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e Received much attention in the early days of DL research, but
e it was later shown that subsumption w.r.t. acyclic TBoxes is not tractable,

e and in the presence of GCls ExpTime-complete. Same complexity as the more
expressive DL ALC.

e However,
e Reasoning in FLg has an interesting connection to formal language problems.

e The unification problem corresponds to unification in ACUIh.
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How to solve these linear equations?

e A solution of a single equation can be seen as a finite language:

in our example, £1 = {r,rs,rss} and L, = {rr,rsr} for A1 and A, resp.

e A Ianguage over a finite alphabet can be represented as a tree:
ty : o

e Construct a finite tree automata Ag such that
L(Ag) # 0 iff € has a solution.

o

o Ag accepts exactly the trees representing solutions of an equation.
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This run is successful if,
e ple) el
o p(u) € F(t(u)), for all leaves u of t.
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e state gy — “not in this subtree”.

e states gsp, gs1 — ‘it is in the subtree”, “it is actually the root of the subtree”.

e Guessing (use non-determinism):
* (g0, fo/f1, an, gs0/as1) and (gso, fo/fi, Gs0/ds1, Gn)-

e (an,fo/fi, an, an)

o Checking the suffix once in gs1 (use two additional states gs, g:):
° (gs1,fo/f1,qs,qn) and (gs, fo/fi, N, Ge)-

e Acceptance condition:
* F(co) ={an} and F(c1) = {an, g }-
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Solving linear equations

Recall: we want to construct an RFA A¢ accepting exactly the “trees” solving

LU LI.Xl,,' U...uU L:.,.Xl’m

_?

R U Rl*‘Xl,,' U...uU R;,.Xl’m.
Actually, we will instead build one accepting the solutions of

Z,’ U Yl’,'.f{ U...uU Yl,m~E

_?

RUYL.RFU...UYimRE,

where W = tpm ... u1, for w=uy...un €ENg*;and L= {w | w € L}.

Xi,iy- -, X1,m solves €
iff
Y1’; =S le,', 500y Yl,m = Xl,m solves £.

10/25
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Construction of the automaton - Example
Original equation and solution:

E: {ryu{rs}.Xya =" {rss}U{r}.Xya
X1,4, = {&,s} and Ly = {r,rs, rss}

Reverse equation and solution:

E: {r}uYya {sr} =7 {ssr} U Y1,4,-{r}
Y1,4, — {¢,s} and Ly = {r,sr,ssr}

The automaton must accept the tree:

/\
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Construction of the automaton - Example
Reverse equation and solution:
E: {r}u Y1,4,-{sr} =’ {ssr} U Y1,4,-{r}
Y1,4, — {€,s} and L1 = {r,sr, ssr}
Let us decorate the tree as follows:

\ ) - variables
o (171 ALt {rosr}, {ssr,r}) - suffixes left-hand side

/ \ - suffixes right-hand side

(0, (=}, {e}) o (Vi) {rsr), {srr})

fo (0, {r},{r})

/N
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Construction of the automaton - Example

Reverse equation and solution:

E: {r}UYia {sr} =" {ssr} U Y {r}
Y1,4, = {€,s} and L1 = {r,sr,ssr}

Let us decorate the tree as follows:

- variables
t: fo (173 A1 by drosr, {ssr, r}) - suffixes left-hand side
/ \ - suffixes right-hand side
r s
(0, {h{e}) a fo ({Via by {rosry, {sr,r})
/N
0, 4=k {eh) a fo (0, {r},{r})

/N

Third and second sets are sets of suffixes occurring in &.

(0,{c},{e}) «a 0,0, 0)
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The automaton

Idea: when traversing a tree, Ag guesses the words assigned to variables and keeps track
of the suffixes that show up.

e Set of states: Q := 2™ x 250 x 2°F,
e M={1,...,m}, where m is the number of variables.

e SL suffixes occurring in the left hand-side of £ (symmetrically for SR)
e Initial states:
I={(V,LLR)| G C I\/I7L=L,-UlU J’-‘,R:...}
JjeV
e Transition function:
((Go, Lo, Ro), fe, (G, L1, Rt), ..., (Gi, Lk, Rk)) € Q x Q" ifF
e Suffixes are properly propagated.

e The resulting left and right languages are the same:
c€lyiffe € Ry iff £ = fq,
o Final states:

F(a)={(G,L,R)|L=R =0} and F(c1) = {(G,L,R) | L= R = {e}}.
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Complexity of solving linear equations

Lemma 13
The following are equivalent
® L(As) £ 0.
@® there are finite sets Yi,;,..., Y1,m such that:
LuYyiLiu...UYymly

ﬁiU Yl,i.RifU ..U Yl,m.Rirt,,
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Complexity of solving linear equations

The following are equivalent

0 L(Ag) #0.
@® there are finite sets Yi,;,..., Y1,m such that:
Z,’ @] Yl,i~EU .U Yl,m-ﬁ
ﬁiU Yl,i.RifU ..U Yl,m.Rirt,,
Algorithm

@ [ is translated into k linear equations of size polynomial.
@® Build an automaton Ag for each equation. The size is exponential w.r.t. I'!

® Check emptiness of each Ag. In polynomial time in the size of Ag.

Lemma 14 [BNO1]

Unification in F Lo, ACUlh and solving linear equations are in ExpTime.
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Complexity of solving linear equations - hardness

A very nice, but complicated reduction. Only very general details:

e Reduction from the intersection emptiness problem for deterministic RTF automata.

Instance: A sequence Aj,...,.A, of DRTF over a ranked alphabet ¥.
Question: s there a tree t € L(A1) N...NL(A,)?

The problem is ExpTime-complete [Sei94].

e Given Ay, ..., A, construct a system of n linear equations {&1,...,E,} such that:

L(A)N...NL(A,) #D
iff

{&1,...,&n} has a solution.

Theorem 15 [BNO1]

Unification in F Lo, ACUlh and solving linear equations are ExpTime-complete.
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Unification in F L eg

FLeg extends F Ly with complex roles:
Ve, V0, V(RUS), V(R o S) and VR*.

Semantics of complex roles:
el :={(d,d) | d € AT}
0F =0
(RUS)T :=R'UST
(RoS)" :={(d,e) | 3f: (d,f) € RE A(f,e) € R"}
(R*)I — U(RI)n
n>0
Example

{r}o({spuU{r})o{s}* — pairs (d, e) such that d reaches e through a word in r.(s|r).s*.

A complex role can be seen as a regular expression/language!

16/25
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Unification in FL,ez - Complexity

e in ExpTime: similar as for F Lo, but
e We need to deal with linear equations that can have infinite languages as coefficients.

e Use automata on infinite trees: looping tree automata.

e Exptime-hard?
e Exptime-hardness from F Ly cannot be directly inherited!

o Adapt the same reduction, but using a sequence of looping tree automata.

Theorem 16 [BKO1]

Unification in F L is ExpTime-complete.
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Deciding matching w.r.t. the empty TBox
Matching is a unification problem of the form:

VL. A M. .. OVL Ak HVLI.Xl ... HVLT,,.X,,,

?

VRi. A1 ... MVRL.Ax.

Example

matching problem: V{r,s}. ANVY{s}.B =" V{rr}. AN V{r,s}. Xy MV{s}. Xz
equation for A: {r,s} =7 {rr} U {r,s}.X1 U {s}. X2
has no solution: a) rr & {r,s} b) s € Xj yields a suffix ss & {r, s}

How to decide matching?

Lemma 17 [BNO1]

An FLo-matching problem has a solution iff the following is a solution:

o(Xi) = q u™t.Ry, where u™t Ry := {v | uv € Ro}.
uelLy

Decidable in PTime.
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Characterization of subsumption in FLq - TBox

In the presence of a non-empty TBox, a new characterization is needed:

L7(C) == {(w,A) € Ng* x N¢ | C C7 Vw.A}

Characterization of subsumption w.r.t. a TBox

Let 7 be an FLy TBox and C, D FLg concepts. Then, C T D iff L7(D) C L7(C).

Back to the example

C:=V{r,s}.ANV{s}.B
=’ T ={ALCVr.AVs.BC A}
D :=V{rr}.AnIV{r,s}. X1 NV{s}.X>

solution: o(X1) := A and o(X2) :=B L7(C,A)={s}Ur* =Ly(c(D),A)
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Matching w.r.t. general TBoxes

Matching problem (after applying normalization)

C=r ENVLyXaM...MVLyX,.

Can we extend the idea for the empty TBox to the sets L1(C, A)?
o for each variable X; and concept name A;:

Z,'yj =N U_ll:T(C,Aj).
u€el;

o define o(X;) as follows?
O’(X,') = Z,',l.Al M...n /L\,',k.Ak.

~

L;;j can be infinite — o(X;) is not an F Ly concept!

Workaround: consider F L, concept descriptions.
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Deciding the existence of an F L eg-matcher

What do we know about the sets /L\,"j = N u LT (C,A)
uel;

e They can be infinite, but they are always regular languages.
e Then, o(X;) := /L\,-,l.A1 m...mn Z,;,k.Ak is an F L concept.

The following is true
C =% ENVL.XiN...MVL,.X, has an FL,e matcher
iff

o(Xi):= L1 An...m Z,-yk.Ak is a matcher.

Checking that & is a matcher
1. CCr E 2. ENVYL.G(X:)N...NVL,.5(X,) Cr C.

This can be done in exponential time using automata on infinite trees [BGM18].
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iff
®©CCE
® There are finite languages L;; C Zj’j such that:
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Applying the Compactness Theorem
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Deciding the existence of an FLp-matcher

By construction of Zi,j

C =% ENVYLi.XiM...MVLy.X, has an FLo matcher

iff
®©CCE
® There are finite languages L;; C Zj’j such that:

ENVLii.o(X1)M...MVYLy.o(X,) Cr C
Applying the Compactness Theorem

ENVLL.G(X:) M. .. NVYL.5(X,) T C
i
there are finite languages L;;j C Lij s.t. EMNVLi.o(X1)M ... MVL,o(X,) E7 C.

Consequences

e There exists an FLo-matcher iff there is an F L z-matcher.

e Deciding the existing of an FLo-matcher is ExpTime-complete.
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Summary - Unification in the DL FLg

The problem is ExpTime-complete w.r.t. the empty TBox.

This result carries over to F L eg.

e Unification in F Ly corresponds to unification in the equational theory ACUlh and to
solving linear equations over finite languages.

In the presence of a general TBox.
o Decidability is an open problem.

e It is only known that it is ExpTime-complete for the special case of matching
(non-constructive proof).

24/25



References |

@ Franz Baader, Oliver Fernandez Gil, and Pavlos Marantidis.
Matching in the description logic FLO with respect to general tboxes.
In LPAR-22. 22nd International Conference on Logic for Programming, Artificial
Intelligence and Reasoning, Awassa, Ethiopia, 16-21 November 2018, volume 57 of
EPIiC Series in Computing, pages 76—-94. EasyChair, 2018.

@ Franz Baader and Ralf Kisters.
Unification in a description logic with transitive closure of roles.
In Logic for Programming, Artificial Intelligence, and Reasoning, 8th International
Conference, LPAR 2001, Havana, Cuba, December 3-7, 2001, Proceedings, volume
2250 of Lecture Notes in Computer Science, pages 217-232. Springer, 2001.

@ Franz Baader and Paliath Narendran.
Unification of Concept Terms in Description Logics.
J. Symb. Comput., 31(3):277-305, 2001.

[3 Helmut Seidl.
Haskell overloading is dexptime-complete.
Inf. Process. Lett., 52(2):57-60, 1994.

25/25



