Unification in Description Logics
Part IV: Related work in Modal Logics

Oliver Fernández Gil

Chair of Automata Theory

ESSLLI'19
Riga, August 2019
Basic modal systems
Basic modal systems

Let x_1, x_2, \ldots be propositional variables and p_1, \ldots, p_m modal parameters.
Basic modal systems

Let x_1, x_2, \ldots be propositional variables and p_1, \ldots, p_m modal parameters.

Basic modal propositional formulas

$$A, B ::= x \mid \top \mid \neg A \mid A \land B \mid \Box p A,$$

where x is a propositional variable and p a modal parameter.
Basic modal systems

Let x_1, x_2, \ldots be propositional variables and p_1, \ldots, p_m modal parameters.

Basic modal propositional formulas

\[A, B ::= x \mid \top \mid \neg A \mid A \land B \mid \Box_p A, \]

where x is a propositional variable and p a modal parameter.

Axiom system L

A set of formulas closed under substitutions such that it contains:
Basic modal systems

Let x_1, x_2, \ldots be propositional variables and p_1, \ldots, p_m modal parameters.

Basic modal propositional formulas

$$ A, B ::= x \mid \top \mid \neg A \mid A \land B \mid \square p A, $$

where x is a propositional variable and p a modal parameter.

Axiom system L

A set of formulas closed under substitutions such that it contains:

- all classical tautologies (e.g. $\neg(x \land \neg x)$).
Basic modal systems

Let x_1, x_2, \ldots be propositional variables and p_1, \ldots, p_m modal parameters.

Basic modal propositional formulas

$$A, B ::= x \mid \top \mid \neg A \mid A \land B \mid \Box_p A,$$

where x is a propositional variable and p a modal parameter.

Axiom system L

A set of formulas closed under substitutions such that it contains:

- all classical tautologies (e.g. $\neg(x \land \neg x)$).
- the Aristotle axiom $\Box (x \rightarrow y) \rightarrow (\Box x \rightarrow \Box y)$.
Modal Logic (ML)

A formula A is derivable in L ($\vdash L A$) iff there is a sequence of formulas $B_1, ..., B_n = A$ such that:

- $B_i \in L$, or
- it can be obtained from previous elements in the sequence by applying the rules:
 - $x \rightarrow y$ (MP) or
 - $\Box x$ (necessitation).

The set of formulas which are derivable from the axiom system L.

Examples of modal logics:

- The minimum modal logic called K (with only one modal parameter).
- The logic K4: includes the axiom $\Box x \rightarrow \Box \Box x$.
- The logic S4: consists of K4 plus the axiom $\Box x \rightarrow x$.
- ...
Modal Logic (ML)

Derivable formulas in L

A formula A is derivable in L ($\vdash_L A$) iff there is a seq. of formulas $B_1, \ldots, B_n = A$ s.t.:

• $B_i \in L$, or
• it can be obtained from previous elements in the sequence by applying the rules:
 - $x, x \rightarrow y$ (MP)
 - $x \Box x$ (necessitation).
Modal Logic (ML)

Derivable formulas in L

A formula A is derivable in L ($\vdash_L A$) iff there is a seq. of formulas $B_1, \ldots, B_n = A$ s.t.:

- $B_i \in L$, or

...
Modal Logic (ML)

Derivable formulas in \(L \)

A formula \(A \) is derivable in \(L \) (\(\vdash_L A \)) iff there is a seq. of formulas \(B_1, \ldots, B_n = A \) s.t.:

- \(B_i \in L \), or
- it can be obtained from previous elements in the sequence by applying the rules:
 \[
 \frac{x, x \rightarrow y}{y} \quad \text{(MP)} \quad \text{or} \quad \frac{x}{\Box x} \quad \text{(necessitation)}.
 \]
Modal Logic (ML)

Derivable formulas in L

A formula A is derivable in L ($\vdash_L A$) iff there is a seq. of formulas $B_1, \ldots, B_n = A$ s.t.:

- $B_i \in L$, or
- it can be obtained from previous elements in the sequence by applying the rules:
 \[\frac{x, x \rightarrow y}{y} \] (MP) or \[\frac{x}{\Box x} \] (necessitation).

Modal Logic L

The set of formulas which are derivable from the axiom system L.
Modal Logic (ML)

Derivable formulas in \(L \)

A formula \(A \) is derivable in \(L \) (\(\vdash_L A \)) iff there is a seq. of formulas \(B_1, \ldots, B_n = A \) s.t.:

- \(B_i \in L \), or
- it can be obtained from previous elements in the sequence by applying the rules:

\[
\frac{x, x \rightarrow y}{y} \quad \text{(MP)} \quad \text{or} \quad \frac{x}{\Box x} \quad \text{(necessitation)}.
\]

Modal Logic \(L \)

The set of formulas which are derivable from the axiom system \(L \).

Examples of modal logics
Modal Logic (ML)

Derivable formulas in L

A formula A is derivable in L ($\vdash_L A$) iff there is a seq. of formulas $B_1, \ldots, B_n = A$ s.t.:

- $B_i \in L$, or
- it can be obtained from previous elements in the sequence by applying the rules:

\[
\frac{x, x \rightarrow y}{y} \quad (\text{MP}) \quad \text{or} \quad \frac{x}{\Box x} \quad (\text{necessitation}).
\]

Modal Logic L

The set of formulas which are derivable from the axiom system L.

Examples of modal logics

- The minimum modal logic called K (with only one modal parameter).
Modal Logic (ML)

Derivable formulas in L

A formula A is derivable in L ($\vdash_L A$) iff there is a seq. of formulas $B_1, \ldots, B_n = A$ s.t.:

- $B_i \in L$, or

- it can be obtained from previous elements in the sequence by applying the rules:
 \[
 \frac{x, x \rightarrow y}{y} \text{(MP)} \quad \text{or} \quad \frac{x}{\Box x} \text{ (necessitation)}.
 \]

Modal Logic L

The set of formulas which are derivable from the axiom system L.

Examples of modal logics

- The minimum modal logic called K (with only one modal parameter).
- The logic K4: includes the axiom $\Box x \rightarrow \Box \Box x$.
Modal Logic (ML)

Derivable formulas in L

A formula A is derivable in L ($\vdash_L A$) iff there is a seq. of formulas $B_1, \ldots, B_n = A$ s.t.:

- $B_i \in L$, or
- it can be obtained from previous elements in the sequence by applying the rules:
 \[
 \frac{x, x \to y}{y} \quad \text{(MP)} \quad \text{or} \quad \frac{x}{\Box x} \quad \text{(necessitation)}.
 \]

Modal Logic L

The set of formulas which are derivable from the axiom system L.

Examples of modal logics

- The minimum modal logic called K (with only one modal parameter).
- The logic K4: includes the axiom $\Box x \to \Box \Box x$.
- The logic S4: consists of K4 plus the axiom $\Box x \to x$.
Modal Logic (ML)

Derivable formulas in L

A formula A is derivable in L ($\vdash_L A$) iff there is a seq. of formulas $B_1, \ldots, B_n = A$ s.t.:

- $B_i \in L$, or

- it can be obtained from previous elements in the sequence by applying the rules:

 \[
 \frac{x, x \rightarrow y}{y} \quad \text{(MP)} \quad \text{or} \quad \frac{x}{\Box x} \quad \text{(necessitation)}.
 \]

Modal Logic L

The set of formulas which are derivable from the axiom system L.

Examples of modal logics

- The minimum modal logic called K (with only one modal parameter).
- The logic K4: includes the axiom $\Box x \rightarrow \Box \Box x$.
- The logic S4: consists of K4 plus the axiom $\Box x \rightarrow x$.
- ...
Modal Logic. Semantics

Kripke structures

- A Kripke frame is a pair \(F = (W, (R_{p1}, \ldots, R_{pn})) \) where:
 - \(W \) is a non-empty set of states (or possible worlds).
 - \((R_{p1}, \ldots, R_{pn}) \) is a tuple of binary relations over \(W \) (accessibility relations).

- A Kripke model is a pair \(M = (F, V) \) where \(V \) is a valuation of the propositional variables:
 \[V : \text{Vars} \rightarrow 2^{W} \]
Modal Logic. Semantics

Kripke structures
Kripke structures

- Kripke frame. A pair $F = (W, (R_{p_1}, \ldots, R_{p_n}))$ where:
 - W is a non-empty set of states (or possible worlds).
 - $(R_{p_1}, \ldots, R_{p_n})$ is a tuple of binary relations over W (accessibility relations).
Kripke structures

- Kripke frame. A pair $F = (W, (R_{p_1}, \ldots, R_{p_n}))$ where:
 - W is a non-empty set of states (or possible worlds).
 - $(R_{p_1}, \ldots, R_{p_n})$ is a tuple of binary relations over W (accessibility relations).

- Kripke model. A pair $M = (F, V)$ where V is a valuation of the propositional variables:
 $$V : Vars \rightarrow 2^W.$$
Modal Logic. Semantics

Validity

A is valid in a world w of a model M ($M, w \models A$) iff $M, w \models \top$.

$A \iff M, w \not\models A$.

$A \land B$ iff $M, w \models A$ and $M, w \models B$.

$\Box p A$ iff for all w': $R_p(w, w') \Rightarrow M, w' \models A$.

A is valid in a model M ($M \models A$) iff it is valid in all its worlds.

A is valid in a frame F ($F \models A$) iff it is valid in all the models based on F.

A is valid in a class of Kripke frames K ($K \models A$) iff it is valid in all $F \in K$.

$L(K)$ is called the modal logic induced by the class of frames K.
Modal Logic. Semantics

Validity

- A is valid in a world w of a model M (M, w \models A) iff

\[
M, w \models \top
\]

\[
M, w \models \neg A \text{ iff } M, w \not\models A
\]

\[
M, w \models A \land B \text{ iff } M, w \models A \text{ and } M, w \models B
\]

\[
M, w \models \Box p A \text{ iff for all } w' : R_p(w, w') \implies M, w' \models B.
\]
Modal Logic. Semantics

Validity

• A is valid in a world w of a model M ($M, w \models A$) iff

 $M, w \models \top$

 $M, w \models \neg A$ iff $M, w \not\models A$

 $M, w \models A \land B$ iff $M, w \models A$ and $M, w \models B$

 $M, w \models \square_p A$ iff for all w': $R_p(w, w') \implies M, w' \models B$.

• A is valid in a model M ($M \models A$) iff it is valid in all its worlds.
Modal Logic. Semantics

Validity

- A is valid in a world w of a model M ($M, w \models A$) iff

 $$M, w \models \top$$
 $$M, w \models \neg A \text{ iff } M, w \not\models A$$
 $$M, w \models A \land B \text{ iff } M, w \models A \text{ and } M, w \models B$$
 $$M, w \models \Box_p A \text{ iff for all } w' : R_p(w, w') \implies M, w' \models B.$$

- A is valid in a model M ($M \models A$) iff it is valid in all its worlds.

- A is valid in a frame F ($F \models A$) iff it is valid in all the models based on F.

Modal Logic. Semantics

Validity

- A is valid in a world w of a model M ($M, w \models A$) iff

 \[
 M, w \models \top
 \]

 \[
 M, w \models \neg A \text{ iff } M, w \not\models A
 \]

 \[
 M, w \models A \land B \text{ iff } M, w \models A \text{ and } M, w \models B
 \]

 \[
 M, w \models \Box_p A \text{ iff for all } w' : R_p(w, w') \implies M, w' \models B.
 \]

- A is valid in a model M ($M \models A$) iff it is valid in all its worlds.

- A is valid in a frame F ($F \models A$) iff it is valid in all the models based on F.

- A is valid in a class of Kripke frames K ($K \models A$) iff it is valid in all $F \in K$.

$L(K)$ is called the modal logic induced by the class of frames K.

Modal Logic. Semantics

Validity

• A is valid in a world \(w \) of a model \(M (M, w \models A) \) iff

\[
M, w \models \top
\]
\[
M, w \models \neg A \text{ iff } M, w \not\models A
\]
\[
M, w \models A \land B \text{ iff } M, w \models A \text{ and } M, w \models B
\]
\[
M, w \models \Box_p A \text{ iff for all } w' : R_p (w, w') \rightarrow M, w' \models B.
\]

• A is valid in a model \(M (M \models A) \) iff it is valid in all its worlds.

• A is valid in a frame \(F (F \models A) \) iff it is valid in all the models based on \(F \).

• A is valid in a class of Kripke frames \(K (K \models A) \) iff it is valid in all \(F \in K \).

• \(L(K) \) is called the modal logic induced by the class of frames \(K \).
Derivability vs Semantics (or \vdash_L vs. validity)

In many cases $\vdash L$ corresponds to validity in a class of frames K.

- Minimum modal logic K: $\vdash K A$ iff $K \models A$ (K is the class of all frames).
- Modal logic $K4$ ($\Box x \rightarrow \Box \Box x$): $\vdash K4 A$ iff $T \models A$ (T is the class of all transitive frames).

There are modal logics that cannot be obtained from a class of Kripke frames [VB84].
Derivability vs Semantics (or \vdash_L vs. validity)

In many cases \vdash_L corresponds to validity in a class of frames K.

- **Minimum modal logic K:**

 $$\vdash_K A \iff K \models A \quad (K \text{ is the class of all frames}).$$

There are modal logics that cannot be obtained from a class of Kripke frames [VB84].
Derivability vs Semantics (or \vdash_L vs. validity)

In many cases \vdash_L corresponds to validity in a class of frames K.

- **Minimum modal logic K:**

 $$\vdash_K A \text{ iff } K \models A \quad (K \text{ is the class of all frames}).$$

- **Modal logic K4 ($\Box x \to \Box \Box x$)**

 $$\vdash_{K4} A \text{ iff } T \models A \quad (T \text{ is the class of all transitive frames}).$$
Derivability vs Semantics (or \vdash_L vs. validity)

In many cases \vdash_L corresponds to validity in a class of frames K.

- Minimum modal logic K:
 $$\vdash_K A \text{ iff } K \models A \quad (K \text{ is the class of all frames}).$$

- Modal logic $K4$ ($\square x \rightarrow \square \square x$)
 $$\vdash_{K4} A \text{ iff } T \models A \quad (T \text{ is the class of all transitive frames}).$$

There are modal logics that cannot be obtained from a class of Kripke frames [VB84].
Correspondence with DLs [Sch91]

The DL \mathcal{ALC} is a notational variant of K_m (K plus m modal parameters).

- Bijective translation between \mathcal{ALC} concepts C and K_m formulas A.

 $A \rightarrow x \rightarrow$ modal parameter $p_i \forall r_i \rightarrow \Box p_i$

- Bijective translation between interpretations and Kripke models $I \rightarrow M I$ s.t:

 $A I = V M I (x A)$ and $(r_i) I = R p_i$.

- Inference problems \mathcal{ALC} is valid in K_m iff $C \equiv \top$ $C \equiv D$ iff $A \mathcal{ALC} \leftrightarrow A D$ is valid in K_m.

Correspondence with DLs [Sch91]

The DL ALC is a notational variant of K_m (K plus m modal parameters).

- Bijective translation between ALC concepts C and K_m formulas A_C.
Correspondence with DLs [Sch91]

The DL \mathcal{ALC} is a notational variant of K_m (K plus m modal parameters).

- Bijective translation between \mathcal{ALC} concepts C and K_m formulas A_C.

 $A \rightarrow x_A \quad r_i \rightarrow \text{modal parameter } p_i \quad \forall r_i \rightarrow \Box p_i$
Correspondence with DLs [Sch91]

The DL \mathcal{ALC} is a notational variant of K_m (K plus m modal parameters).

- Bijective translation between \mathcal{ALC} concepts C and K_m formulas A_C.

\[
A \rightarrow x_A \quad r_i \rightarrow \text{modal parameter } p_i \quad \forall r_i \rightarrow \Box p_i
\]

- Bijective translation between interpretations and Kripke models:

\[
\mathcal{I} \rightarrow M_{\mathcal{I}} \text{ s.t: } A^\mathcal{I} = V_{M_{\mathcal{I}}}(x_A) \quad \text{and} \quad (r_i)^\mathcal{I} = R_{p_i}.
\]
Correspondence with DLs [Sch91]

The DL \mathcal{ALC} is a notational variant of K_m (K plus m modal parameters).

- Bijective translation between \mathcal{ALC} concepts C and K_m formulas A_C.

 \[
 \begin{align*}
 A \rightarrow & x_A \\
 r_i \rightarrow & \text{modal parameter } p_i \\
 \forall r_i \rightarrow & \Box p_i
 \end{align*}
 \]

- Bijective translation between interpretations and Kripke models:

 \[
 \mathcal{I} \rightarrow M_\mathcal{I} \text{ s.t: } A^\mathcal{I} = V_{M_\mathcal{I}}(x_A) \text{ and } (r_i)^\mathcal{I} = R_{p_i}.
 \]

- Inference problems

 \[
 A_C \text{ is valid in } K_m \iff C \equiv \top
 \]

 \[
 C \equiv D \iff A_C \leftrightarrow A_D \text{ is valid in } K_m.
 \]
Let L be a modal logic. The unification problem in L is defined as follows.

Instance: A formula A in L.

Question: Is there a substitution σ such that $\vdash_L \sigma(A)$?
Unification in Modal Logics

- Let L be a modal logic. The unification problem in L is defined as follows.

 Instance: A formula A in L.

 Question: Is there a substitution σ such that $\vdash_L \sigma(A)$?

The set of all unifiers of A in L is denoted as $U_L(A)$.
Unification in Modal Logics

- Let L be a modal logic. The unification problem in L is defined as follows.

 Instance: A formula A in L.

 Question: Is there a substitution σ such that $\vdash_L \sigma(A)$?

 The set of all unifiers of A in L is denoted as $U_L(A)$.

- Unifiers are ordered using the relation \leq^L_X.

 \leq^L_X
Unification in Modal Logics

• Let L be a modal logic. The unification problem in L is defined as follows.

 Instance: A formula A in L.
 Question: Is there a substitution σ such that $\vdash_L \sigma(A)$?

The set of all unifiers of A in L is denoted as $U_L(A)$.

• Unifiers are ordered using the relation \leq^X_L.

 σ is more general than τ w.r.t. the variables in X
 iff
 $\exists \theta$ such that $\vdash_L \tau(X) \leftrightarrow \theta(\sigma(X))$, for all $X \in X$.
Unification in Modal Logics

- Let L be a modal logic. The unification problem in L is defined as follows.

 Instance: A formula A in L.

 Question: Is there a substitution σ such that $\vdash_L \sigma(A)$?

 The set of all unifiers of A in L is denoted as $U_L(A)$.

- Unifiers are ordered using the relation \leq^X_L.

 σ is more general than τ w.r.t. the variables in X iff

 $\exists \theta$ such that $\vdash_L \tau(X) \Leftrightarrow \theta(\sigma(X))$, for all $X \in X$.

- Unification type of A: defined w.r.t. $(U_L(A), \leq^{\text{Vars}(A)}_L)$.
Unification - MLs vs DLs

Slightly different definitions:

ML: find σ such that $\vdash L\sigma (A)$.

DLs: find σ such that $\sigma (C) \equiv \sigma (D)$.

They "coincide" (if \iff is expressible in the logic):

From ALC to K_m:
$\sigma (C) \equiv \sigma (D)$ iff $\vdash K_m \sigma (A\wedge C) \iff \sigma (A\wedge D)$ iff $\vdash K_m \sigma (A\wedge C \iff A\wedge D)$.

From K_m to ALC:
$\vdash K_m \sigma (A)$ iff $\sigma (A) \equiv \top$.

Yet another subtle/significant difference

• For DLs, concept constants are allowed in the unification problem.
• For MLs, all variables are eligible to be substituted.
Unification - MLs vs DLs

Slightly different definitions:

ML: find σ such that $\vdash L_\sigma (A)$.

DLs: find σ such that $\sigma (C) \equiv \sigma (D)$.

They "coincide" (if \leftrightarrow is expressible in the logic):

From ALC to K_m:

$\sigma (C) \equiv \sigma (D)$ iff $\vdash K_m \sigma (A \land C) \leftrightarrow \sigma (A \land D)$ iff $\vdash K_m \sigma (A \land C \leftrightarrow A \land D)$.

From K_m to ALC:

$\vdash K_m \sigma (A)$ iff $\sigma (A) \equiv \top$.

Yet another subtle/significant difference

• For DLs, concept constants are allowed in the unification problem.
• For MLs, all variables are eligible to be substituted.
Unification - MLs vs DLs

Slightly different definitions:

ML: find σ such that $\vdash_L \sigma(A)$.

DLs: find σ such that $\sigma(C) \equiv \sigma(D)$.
Unification - MLs vs DLs

Slightly different definitions:

ML: find σ such that $\vdash_L \sigma(A)$.

DLs: find σ such that $\sigma(C) \equiv \sigma(D)$.
Unification - MLs vs DLs

Slightly different definitions:

ML: find σ such that $\vdash_L \sigma(A)$.

DLs: find σ such that $\sigma(C) \equiv \sigma(D)$.

They “coincide” (if \leftrightarrow is expressible in the logic):
Unification - MLs vs DLs

Slightly different definitions:

ML: find σ such that $\vdash_L \sigma(A)$.

DLs: find σ such that $\sigma(C) \equiv \sigma(D)$.

They “coincide” (if \leftrightarrow is expressible in the logic):

From \mathcal{ALC} to K_m: $\sigma(C) \equiv \sigma(D)$ iff $\vdash_{K_m} \sigma(A_C) \leftrightarrow \sigma(A_D)$ iff $\vdash_{K_m} \sigma(A_C \leftrightarrow A_D)$.
Unification - MLs vs DLs

Slightly different definitions:

ML: find σ such that $\vdash_L \sigma(A)$.

DLs: find σ such that $\sigma(C) \equiv \sigma(D)$.

They “coincide” (if \leftrightarrow is expressible in the logic):

- From \mathcal{ALC} to K_m: $\sigma(C) \equiv \sigma(D)$ iff $\vdash_{K_m} \sigma(A_C) \leftrightarrow \sigma(A_D)$ iff $\vdash_{K_m} \sigma(A_C \leftrightarrow A_D)$.

- From K_m to \mathcal{ALC}: $\vdash_{K_m} \sigma(A)$ iff $\sigma(A) \equiv \top$.

Yet another subtle/significant difference

• For DLs, concept constants are allowed in the unification problem.

• For MLs, all variables are eligible to be substituted.
Unification - MLs vs DLs

Slightly different definitions:

ML: find σ such that $\vdash_L \sigma(A)$.

DLs: find σ such that $\sigma(C) \equiv \sigma(D)$.

They “coincide” (if \leftrightarrow is expressible in the logic):

From \mathcal{ALC} to K_m: $\sigma(C) \equiv \sigma(D)$ iff $\vdash_{K_m} \sigma(A_C) \leftrightarrow \sigma(A_D)$ iff $\vdash_{K_m} \sigma(A_C \leftrightarrow A_D)$.

From K_m to \mathcal{ALC}: $\vdash_{K_m} \sigma(A)$ iff $\sigma(A) \equiv \top$.

Yet another subtle/significant difference
Unification - MLs vs DLs

Slightly different definitions:

ML: find σ such that $\vdash_L \sigma(A)$.

DLs: find σ such that $\sigma(C) \equiv \sigma(D)$.

They “coincide” (if \leftrightarrow is expressible in the logic):

From \mathcal{ALC} to K_m: $\sigma(C) \equiv \sigma(D)$ iff $\vdash_{K_m} \sigma(A_C) \leftrightarrow \sigma(A_D)$ iff $\vdash_{K_m} \sigma(A_C \leftrightarrow A_D)$.

From K_m to \mathcal{ALC}: $\vdash_{K_m} \sigma(A)$ iff $\sigma(A) \equiv \top$.

Yet another subtle/significant difference

- For DLs, concept constants are allowed in the unification problem.
Unification - MLs vs DLs

Slightly different definitions:

ML: find σ such that $\Gamma_L \sigma(A)$.

DLs: find σ such that $\sigma(C) \equiv \sigma(D)$.

They “coincide” (if \leftrightarrow is expressible in the logic):

From \mathcal{ALC} to K_m: $\sigma(C) \equiv \sigma(D)$ iff $\Gamma_{K_m} \sigma(A_C) \leftrightarrow \sigma(A_D)$ iff $\Gamma_{K_m} \sigma(A_C \leftrightarrow A_D)$.

From K_m to \mathcal{ALC}: $\Gamma_{K_m} \sigma(A)$ iff $\sigma(A) \equiv \top$.

Yet another subtle/significant difference:

- For DLs, concept constants are allowed in the unification problem.
- For MLs, all variables are eligible to be substituted.
Unification - MLs vs DLs

Variables vs. Constants
Unification - MLs vs DLs

Variables vs. Constants

Unification in MLs can be seen as particular case of unification in DLs.
Unification - MLs vs DLs

Variables vs. Constants

Unification in MLs can be seen as particular case of unification in DLs.

- An algorithm to solve the problem in a DL, solves the problem in its ML variant.
Unification - MLs vs DLs

Variables vs. Constants

Unification in MLs can be seen as particular case of unification in DLs.

- An algorithm to solve the problem in a DL, solves the problem in its ML variant.
- A lower bound for the unification problem in a ML also applies to the corresponding DL (if any).
Unification - MLs vs DLs

Variables vs. Constants

Unification in MLs can be seen as particular case of unification in DLs.

- An algorithm to solve the problem in a DL, solves the problem in its ML variant.
- A lower bound for the unification problem in a ML also applies to the corresponding DL (if any).

Single equation vs. a system of equations
Unification - MLs vs DLs

Variables vs. Constants

Unification in MLs can be seen as particular case of unification in DLs.

• An algorithm to solve the problem in a DL, solves the problem in its ML variant.

• A lower bound for the unification problem in a ML also applies to the corresponding DL (if any).

Single equation vs. a system of equations

• In DLs, \(\{C_1 \equiv ? D_1, \ldots, C_n \equiv ? D_n\} \) can be transformed into:
 \[\{\forall r_1. C_1 \sqcap \ldots \sqcap \forall r_n. C_n \equiv ? \forall r_1. D_1 \sqcap \ldots \sqcap \forall r_n. D_n\} \].
Unification - MLs vs DLs

Variables vs. Constants

Unification in MLs can be seen as particular case of unification in DLs.

- An algorithm to solve the problem in a DL, solves the problem in its ML variant.
- A lower bound for the unification problem in a ML also applies to the corresponding DL (if any).

Single equation vs. a system of equations

- In DLs, \(\{C_1 \equiv? D_1, \ldots, C_n \equiv? D_n\} \) can be transformed into:
 \[
 \{\forall r_1. C_1 \sqcap \ldots \sqcap \forall r_n. C_n \equiv? \forall r_1. D_1 \sqcap \ldots \sqcap \forall r_n. D_n\}.
 \]
- In uni-modal logics, like K, the previous trick is not possible. However,
 \(\sigma \) solves \(\{A_1, \ldots, A_n\} \) iff it solves \(\{A_1 \land \ldots \land A_n\} \).
Motivation for unification in MLs

Unification in MLs is a special case of the recognizability of admissible rules problem.
Motivation for unification in MLs

Unification in MLs is a special case of the recognizability of admissible rules problem.

Recognizability of admissible rules

Instance: A modal logic L and a rule $\frac{A}{B}$.

Question: Does $\vdash_L \sigma(A)$ implies $\vdash_L \sigma(B)$ for every substitution σ?

A positive answer means that $\frac{A}{B}$ can be added to L without changing the logic.
Motivation for unification in MLs

Unification in MLs is a special case of the recognizability of admissible rules problem.

Recognizability of admissible rules

Instance: A modal logic L and a rule $\frac{A}{B}$.

Question: Does $\vdash_L \sigma(A)$ implies $\vdash_L \sigma(B)$ for every substitution σ?

A positive answer means that $\frac{A}{B}$ can be added to L without changing the logic.

How can unification help?
Motivation for unification in MLs

Unification in MLs is a special case of the recognizability of admissible rules problem.

Recognizability of admissible rules

- **Instance:** A modal logic L and a rule $\frac{A}{B}$.
- **Question:** Does $\vdash_L \sigma(A)$ implies $\vdash_L \sigma(B)$ for every substitution σ?

A positive answer means that $\frac{A}{B}$ can be added to L without changing the logic.

How can unification help?

- It is a particular instance of the admissibility problem:
Motivation for unification in MLs

Unification in MLs is a special case of the recognizability of admissible rules problem.

Recognizability of admissible rules

- **Instance:** A modal logic L and a rule $\frac{A}{B}$.
- **Question:** Does $\vdash_L \sigma(A)$ implies $\vdash_L \sigma(B)$ for every substitution σ?

A positive answer means that $\frac{A}{B}$ can be added to L without changing the logic.

How can unification help?

- It is a particular instance of the admissibility problem:

 $\exists \sigma \text{ s.t. } \vdash_L \sigma(A) \text{ iff the rule } \frac{A}{\bot} \text{ is not admissible.}$
Motivation for unification in MLs

Unification in MLs is a special case of the recognizability of admissible rules problem.

Recognizability of admissible rules

Instance: A modal logic L and a rule $\frac{A}{B}$.

Question: Does $\vdash_L \sigma(A)$ implies $\vdash_L \sigma(B)$ for every substitution σ?

A positive answer means that $\frac{A}{B}$ can be added to L without changing the logic.

How can unification help?

- It is a particular instance of the admissibility problem:

 $\exists \sigma$ s.t. $\vdash_L \sigma(A)$ iff the rule $\frac{A}{\bot}$ is not admissible.

 lower bounds/undecidability of unification transfer to the admissibility problem.
Motivation for unification in MLs

Recognizability of admissible rules

Instance: A modal logic L and a rule $\frac{A}{B}$.

Question: Does $\vdash_L \sigma(A)$ implies $\vdash_L \sigma(B)$ for every substitution σ?
Motivation for unification in MLs

Recognizability of admissible rules

Instance: A modal logic L and a rule $\frac{A}{B}$.

Question: Does $\vdash_L \sigma(A)$ implies $\vdash_L \sigma(B)$ for every substitution σ?

How can unification help?
Motivation for unification in MLs

Recognizability of admissible rules

Instance: A modal logic L and a rule $\frac{A}{B}$.

Question: Does $\vdash_L \sigma(A)$ implies $\vdash_L \sigma(B)$ for every substitution σ?

How can unification help?

- In certain cases unification can be used to solve the admissibility problem.
Motivation for unification in MLs

Recognizability of admissible rules

Instance: A modal logic L and a rule $\frac{A}{B}$.

Question: Does $\vdash_L \sigma(A)$ implies $\vdash_L \sigma(B)$ for every substitution σ?

How can unification help?

- In certain cases unification can be used to solve the admissibility problem.

 Suppose a modal logic L has:

 - finitary unification type.
 - there is an effective algorithm computing a complete set of unifiers for a unification problem A.

Motivation for unification in MLs

Recognizability of admissible rules

Instance: A modal logic L and a rule $\frac{A}{B}$.

Question: Does $\vdash_L \sigma(A)$ implies $\vdash_L \sigma(B)$ for every substitution σ?

How can unification help?

- In certain cases unification can be used to solve the admissibility problem.

 Suppose a modal logic L has:
 - finitary unification type.
 - there is an effective algorithm computing a complete set of unifiers for a unification problem A.

 Then,

\[
\frac{A}{B}
\]

is admissible

iff

\[
\vdash_L \sigma(B) \text{ for all } \sigma \in U_L(A).
\]
Some results

Positive results

• For K4, S₄ and other modal systems:
 • Unification is finitary and finite complete sets of unifiers can be computed.
 • Recognizability of admissible rules is decidable.

Negative results [WZ08]

• Undecidable for any modal logic L with universal modality between Kₜ₊ and K₄ₜ₊.
• Implies undecidability of unification in expressive and relevant DLs, like SHIQ.

Main open problem

• Unification and admissibility in K. K has unification type zero [Jer15]!
Some results

Positive results

- For K4, S4 and other modal systems:
Some results

Positive results

- For K4, S4 and other modal systems:
 - Unification is finitary and finite complete sets of unifiers can be computed.

Negative results [WZ08]

- Undecidable for any modal logic L with universal modality between K and K4.
- Implies undecidability of unification in expressive and relevant DLs, like SHIQ.

Main open problem

- Unification and admissibility in K. K has unification type zero [Jer15]!
Some results

Positive results

- For K4, S4 and other modal systems:
 - Unification is finitary and finite complete sets of unifiers can be computed.
 - Recognizability of admissible rules is decidable.
Some results

Positive results

- For K4, S4 and other modal systems:
 - Unification is finitary and finite complete sets of unifiers can be computed.
 - Recognizability of admissible rules is decidable.

Negative results [WZ08]
Some results

Positive results

- For K4, S4 and other modal systems:
 - Unification is finitary and finite complete sets of unifiers can be computed.
 - Recognizability of admissible rules is decidable.

Negative results [WZ08]

- Undecidable for any modal logic L with universal modality between K_U and $K4_U$.

}\]
Some results

Positive results

- For K4, S4 and other modal systems:
 - Unification is finitary and finite complete sets of unifiers can be computed.
 - Recognizability of admissible rules is decidable.

Negative results [WZ08]

- Undecidable for any modal logic L with universal modality between K_U and $K4_U$.
- Implies undecidability of unification in expressive and relevant DLs, like $SHIQ$.
Some results

Positive results

- For K4, S4 and other modal systems:
 - Unification is finitary and finite complete sets of unifiers can be computed.
 - Recognizability of admissible rules is decidable.

Negative results [WZ08]

- Undecidable for any modal logic L with universal modality between K_U and $K4_U$.
- Implies undecidability of unification in expressive and relevant DLs, like $SHIQ$.

Main open problem

- Unification and admissibility in K. K has unification type zero [Jer15]!
Unification Theory

Detect redundancies in ontologies

Sub-Boolean DLs

NP-c, ExpTime-c

arbitrary TBoxes

open problem

Restricted cases

same complexity

Modal Logic

Admissibility problem

Open problem for K - ALC

Undecidability

U-modality

SHIQ
General summary

Unification Theory

Automated reasoning
- Term rewriting systems
 ...

Detect redundancies in ontologies

Sub-Boolean DLs
- NP-c, ExpTime-c
- arbitrary TBoxes
- open problem

Restricted cases
- same complexity

Modal Logic
- Admissibility problem
- Open problem for K - ALC

Undecidability
- U-modality
- SHIQ
General summary

Unification Theory

Description Logic

Automated reasoning
Term rewriting systems

Detect redundancies in ontologies

Logic

Detect redundancies in ontologies

Sub-Boolean DLs

Restricted cases

Same complexity

Modal Logic

Admissibility problem

Open problem for K - ALC

Undecidability
General summary

Automated reasoning
 Term rewriting systems
 ...

Unification Theory

Description Logic

Sub-Boolean DLs
 NP-c, ExpTime-c

Detect redundancies in ontologies
General summary

Unification Theory

Description Logic

Automated reasoning

Term rewriting systems

Sub-Boolean DLs

NP-c, ExpTime-c

arbitrary TBoxes

open problem

Detecting redundancies in ontologies

14/15
General summary

Unification Theory

Description Logic

- Automated reasoning
- Term rewriting systems

Sub-Boolean DLs
- NP-c, ExpTime-c
- arbitrary TBoxes
- open problem
- Restricted cases
- same complexity

Detecting redundancies in hierarchies
General summary

Unification Theory

Automated reasoning
Term rewriting systems
...

Description Logic
Sub-Boolean DLs
NP-c, ExpTime-c
arbitrary TBoxes
open problem
Restricted cases
same complexity

Modal Logic
Admissibility problem
Detect redundancies in rules
...
General summary

Unification Theory

Description Logic
- Sub-Boolean DLs
 - NP-c, ExpTime-c
- arbitrary TBoxes
- open problem
- Restricted cases
- same complexity

Modal Logic
- Open problem for K - ALC

Automated reasoning
- Term rewriting systems
 ...

Logic
- Detect redundancies in ontologies

Admissibility problem

U-modality

SHIQ
General summary

Unification Theory

Description Logic
Sub-Boolean DLs
NP-c, ExpTime-c
arbitrary TBoxes
open problem
Restricted cases
same complexity

Automated reasoning
Term rewriting systems
...

Modal Logic
Open problem for $K\text{-}\text{ALC}$
Undecidability
U-modality
$SHIQ$
References I

Emil Jerábek.
Blending margins: the modal logic K has nullary unification type.

Klaus Schild.
A correspondence theory for terminological logics: Preliminary report.

Johan Van Benthem.
Correspondence Theory, pages 167–247.

Frank Wolter and Michael Zakharyaschev.
Undecidability of the unification and admissibility problems for modal and description logics.