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Efficient Axiomatization of OWL2EL Ontologies
from Data bymeans of Formal Concept Analysis
Description Logics and OWL
Description Logics (DLs) are formal languages used in knowledge-
based systems that reason and make inferences about complex do-
mains, particularly where precision and explainability are essential. By
representing knowledge as ontologies built with DLs, these systems
can perform automated reasoning to answer queries and thereby as-
sist inmaking decisions based on the encoded knowledge. DLs are fun-
damental to the Semantic Web, a vision of theWorld WideWeb where
information is represented in a machine-readable format. They pro-
vide the logical underpinning for the Web Ontology Language (OWL),
which is widely used in the Semantic Web to enable better interoper-
ability across different applications, domains, and natural languages.
Applications: e-commerce, finance, healthcare, life sciences, etc.
Among the different DLs, the EL family stands out as a lightweight

option. EL is designed to strike a balance between expressivity and
computational complexity, making it an ideal choice for applications
where scalability and latency are crucial. It offers a more restricted set
of constructs compared to other DLs, but can thus handle large-scale
ontologies efficiently. The Web Ontology Language includes it as the
profile OWL2EL.
Example: SNOMED CT contains the axiom
Common cold ⊑ Disease⊓ ∃causative agent.Virus

⊓ ∃finding site.Upper respiratory tract structure
⊓ ∃pathological process.Infectious process.

Input
■ Graph data with node and edge
labels, e.g. RDF triples

■ Node labels x : Awith concept A
■ Edge labels (x, y) : r with role r
■ Closure assumption needed, as
otherwise only tautologies can
be axiomatized.

Output
■ A base of axioms, which only contains axioms valid in the input
data and that is complete, i.e. it entails every valid axiom.

■ Axioms formulated in the EL family of description logics (OWL2EL)
■ Complex concepts can be built from the concepts A and roles r
in the input: C ::= ⊤ | ⊥ | A | C ⊓C | ∃r.C

■ Concept inclusions C ⊑ D
■ Range restrictions⊤⊑∀r.C
■ Role inclusions R ⊑ s where R ::= ϵ | r | R ◦ R
■ Syntactic sugar: disjointness axioms C1 ⊓ · · · ⊓Cn ⊑⊥, concept
equivalences C ≡ D, domain restrictions ∃r.⊤⊑ C, role equiv-
alences r ≡ s, transitivity axioms r ◦ r ⊑ r, reflexivity axioms ϵ ⊑ r

Axiomatization
■ Formal Concept Analysis (FCA) can compute a base of positive
propositional implications (p1 ∧ · · · ∧ pm)→ (q1 ∧ · · · ∧ qn).

■ Concept inclusions C ⊑ D and implications
∧

pi →
∧

qj are similar.
■ By reduction to FCA, a base of concept inclusions is computed.
■ The role inclusions can be described by finite automata, which are
transformed into a base of role inclusions.

■ Range restrictions can be found by looking at all role successors.
■ The final base is the union of all three bases.
■ All steps need at most exponential time.

Saving Computation Time
■ Input data is reduced by grouping equi-similar objects.
■ Option to dispense with disjointness axioms.
■ Bound the size of complex concepts in the concept inclusions.

Implementation and Evaluation
■ Prototype in Scala andwith Java’s
Fork/Join framework

■ Evaluated on 614 test datasets
from real-world domainswith up
to 747,998 objects

■ Computer server: 12 CPU cores
at 2.80 GHz and 96 GB main
memory (older than 10 years)

■ Runtime environment: Oracle
GraalVM EE 22.3 (Java 19)

■ Limits: 8 hours, 80 GB
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