TECHNISCHE

UNIVERSITAT
DRESDEN

Faculty of Computer Science e Institute of Theoretical Computer Science

Efficient Axiomatization of OWL 2 EL Ontologies
from Data by means of Formal Concept Analysis

Description Logics and OWL Axiomatization
Description Logics (DLs) are formal languages used in knowledge- B Formal Concept Analysis (FCA) can compute a base of positive
based systems that reason and make inferences about complex do- propositional implications (p1 A -+ - A pw) — (G1 A -+ A gp).
mains, particularly where precision and explainability are essential. By m Conceptinclusions C L D and implications A p; — A g; are similar.
representing knowledge as ontologies built with DLs, these systems B By reduction to FCA, a base of concept inclusions is computed.
can perform automated reasoning to answer queries and thereby as- B The role inclusions can be described by finite automata, which are
sist in making decisions based on the encoded knowledge. DLs are fun- transformed into a base of role inclusions.
damental to the Semantic Web, a vision of the World Wide Web where B Range restrictions can be found by looking at all role successors.
information is represented in a machine-readable format. They pro- B The final base is the union of all three bases.
vide the logical underpinning for the Web Ontology Language (OWL), B All steps need at most exponential time.
which is widely used in the Semantic Web to enable better interoper-
ability across different applications, domains, and natural languages. Savi ng Computatlon Time
Applications: e-commerce, finance, healthcare, life sciences, etc. ® |nput data is reduced by grouping equi-similar objects.
Among the different DLs, the £L family stands out as a lightweight B Option to dispense with disjointness axioms.

option. £L is designed to strike a balance between expressivity and ® Bound the size of complex concepts in the concept inclusions.
computational complexity, making it an ideal choice for applications
where scalability and latency are crucial. It offers a more restricted set Implementation and Evaluation
of constructs compared to other DLs, but can thus handle large-scale , ,
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