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Tutorial Outline
Session 1:
1 Conceptual clustering with FCA (Francesco)
2 Extracting dependencies with FCA (Barış)
Session 2:
3 Acquiring complete knowledge about an application domain,enriching OWL ontologies (Barış)
4 Mining axioms from interpretations and knowledge graphs (Francesco)
5 Computing Stable Extensions of Argumentation Frameworks using FCA (Barış)
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Early Days of Formal Concept Analysis
Rudolf Wille: Restructuring Lattice Theory: An ApproachBased on Hierarchies of Concepts. Symposium on Or-dered Sets, 1981
“Lattice theory today reflects the general status of cur-rent mathematics: there is a rich production of theoreticalconcepts, results, and developments, many of which arereached by elaborate mental gymnastics; on the otherhand, the connections of the theory to its surroundingsare getting weaker and weaker, with the result that thetheory and even many of its parts becomemore isolated.Restructuring lattice theory is an attempt to reinvigorateconnections with our general culture by interpreting thetheory as concretely as possible, and in this way to pro-mote better communication between lattice theorists andpotential users of lattice theory.” Rudolf Wille (∗1937, † 2017)
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Early Days of Formal Concept Analysis
In 1983 Rudolf Wille established the research group onFCA. One of its first members was Bernhard Ganter.
They published the first and only textbook on FCA:
Bernhard Ganter, Rudolf Wille: Formal Concept Analysis -Mathematical Foundations. Springer, 1996 (in German)resp. 1999 (in English)
International community on FCA:
International Conference on Conceptual Structures(ICCS), since 1993
International Conference on Concept Lattices and theirApplications (CLA), since 2002
International Conference on Formal Concept Analysis(ICFCA), since 2004 Bernhard Ganter (∗1949)
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Representing Data in FCA
Definition. A formal context (G, M, I) consists of a set G of objects, a set M of attributes,and an incidence relation I ⊆ G×M where (g, m) ∈ I indicates that object g has attribute m.
Example. We consider the formal context KCities := (G, M, I)about cities and waterbodies.
It has become a tradition in FCA literature to representformal contexts as “cross tables.”
The rows show the objects in G, which are here five cities.
The columns show the attributes in M, which here indicatepresence of waterbodies.
A cross indicates a pair in the incidence relation I, e.g.,
(Dresden,River) ∈ I but (Rhodes,Lake) ̸∈ I.

KCities River Lake Sea
Dresden × · ·
Rhodes · · ×
Madrid · · ·
Lisbon × · ×
Kyiv × × ·
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The Commonality Operators of a Formal Context
Definition. Given a formal context (G, M, I), we define twomappings:
1 for each object subset A ⊆ G, let AI := {m | m ∈ M and (g, m) ∈ I for each g ∈ A},
2 for each attribute subset B ⊆ M, let BI := { g | g ∈ G and (g, m) ∈ I for each m ∈ B}.
Example. We reconsider KCities.In the cross table, {g}I is the row of g and {m}I is thecolumn of m, e.g., {Kyiv}I = {River,Lake}.
For sets with more than one object we intersect the rows:
{g1, . . . , gn}I = {g1}I ∩ · · · ∩ {gn}I. Likewise for attributesets. For instance, {Lisbon,Kyiv}I = {River}.
For empty sets we have ∅I = M resp. ∅I = G.

KCities River Lake Sea
Dresden × · ·
Rhodes · · ×
Madrid · · ·
Lisbon × · ×
Kyiv × × ·
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Formal Concepts
Definition. A formal concept is a pair (A, B) consisting of subsets A ⊆ G and B ⊆ M with
AI = B and BI = A, where A is the extent and B is the intent.
Example. We reconsider KCities.

({Dresden},{River}) is no formal concept,since {River}I = {Dresden,Lisbon,Kyiv} ≠ {Dresden}.
(Dresden,Lisbon,Kyiv},{River}) is a formal concept,since {Dresden,Lisbon,Kyiv}I = {River}and {River}I = {Dresden,Lisbon,Kyiv}.
Similarly, ({Madrid}, ∅) is no formal concept, but
({Dresden,Rhodes,Madrid,Lisbon,Kyiv}, ∅) is a concept.

KCities River Lake Sea
Dresden × · ·
Rhodes · · ×
Madrid · · ·
Lisbon × · ×
Kyiv × × ·
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The Concept Lattice
Definition. The concept lattice of (G, M, I) is the set of all formal concepts, ordered by
(A, B) ≤ (C, D) iff A ⊆ C (equivalently: iff D ⊆ B).
Example.

Madrid Sea
Rhodes

River
DresdenLake

Kyiv Lisbon

KCities River Lake Sea
Dresden × · ·
Rhodes · · ×
Madrid · · ·
Lisbon × · ×
Kyiv × × ·
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Concept Explorer FX
Source Code: https://github.com/francesco-kriegel/conexp-fx

Live Demo
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Technical Details
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The Concept Lattice is Complete
Theorem. For each formal context (G, M, I), its concept lattice is a complete lattice:
1 For all concepts (A1, B1), . . . , (An, Bn), the set

{ (C, D) | (A1, B1) ≤ (C, D), . . . , (An, Bn) ≤ (C, D) }
has a smallest element. It is called the supremum of these concepts, is denoted as
(A1, B1)∨ · · · ∨ (An, Bn), and satisfies the following equation:

(A1, B1)∨ · · · ∨ (An, Bn) = ((B1 ∩ · · · ∩Bn)I, B1 ∩ · · · ∩Bn).

2 For all concepts (A1, B1), . . . , (An, Bn), the set
{ (C, D) | (C, D) ≤ (A1, B1), . . . , (C, D) ≤ (An, Bn) }has a greatest element. It is called the infimum of these concepts, is denoted as

(A1, B1)∧ · · · ∧ (An, Bn), and satisfies the following equation:
(A1, B1)∧ · · · ∧ (An, Bn) = (A1 ∩ · · · ∩An, (A1 ∩ · · · ∩An)I).

How KR benefits from Formal Concept Analysis Francesco Kriegel (TU Dresden), Barış Sertkaya (Frankfurt UAS) KR 2023 Tutorial 13 /21



Early Days of Formal Concept Analysis Basics of Formal Concept Analysis Live Demo Technical Details Computing the Concept Lattice
The Galois Connection of a Formal Context
We often apply the commonality operators one after the other and simply write AII for (AI)I.
Lemma. The twomappings A 7→ AI and B 7→ BI form a Galois connection:
1 A ⊆ BI iff B ⊆ AI iff A×B ⊆ I
2 If A ⊆ C, then CI ⊆ AI

3 A ⊆ AII

4 AI = AIII

5 If B ⊆ D, then DI ⊆ BI

6 B ⊆ BII

7 BI = BIII

It follows that the mappings A 7→ AII and B 7→ BII are closure operators on G resp. M.
Definition. A closure operator on M is a mapping φ : M → M that is
1 extensive: B ⊆ Bφ

2 monotonic: B ⊆ D implies Bφ ⊆ Dφ

3 idempotent: Bφφ = Bφ.
Each subset of the form Bφ is called a closure of φ.
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Computing the Concept Lattice

How KR benefits from Formal Concept Analysis Francesco Kriegel (TU Dresden), Barış Sertkaya (Frankfurt UAS) KR 2023 Tutorial 15 /21



Early Days of Formal Concept Analysis Basics of Formal Concept Analysis Live Demo Technical Details Computing the Concept Lattice
Computing all Formal Concepts

Bernhard Ganter: Two Basic Algorithms in Concept Analysis. FB4-Preprint 831, Technische Hochschule Darmstadt, 1984.Sergei O. Kuznetsov: A fast algorithm for computing all intersections of objects from an arbitrary semilattice. 1993.Petr Krajča, Jan Outrata, Vilém Vychodil: Advances in Algorithms Based on CbO. CLA 2010.Simon Andrews: In-Close2, a High Performance Formal Concept Miner. ICCS 2011.Simon Andrews: A Partial-Closure Canonicity Test to Increase the Efficiency of CbO-Type Algorithms. ICCS 2014.Simon Andrews:Making Use of Empty Intersections to Improve the Performance of CbO-Type Algorithms. ICFCA 2017.Simon Andrews: A NewMethod for Inheriting Canonicity Test Failures in Close-by-One Type Algorithms. CLA 2018.Radek Janoštík, Jan Konečný, Petr Krajča: LCM from FCA point of view: A CbO-style algorithmwith speed-up features. Int. J. Approx. Reason. 142, 2022.
Sergei O. Kuznetsov, Sergei A. Obiedkov: Comparing performance of algorithms for generating concept lattices. J. Exp. Theor. Artif. Intell. 14.2-3, 2002.Jan Konečný, Petr Krajča: Systematic categorization and evaluation of CbO-based algorithms in FCA. Inf. Sci. 575, 2021.

There are several algorithms for computing all formal concepts:
NextClosure
Close-by-One (CbO)
Fast Close-by-One (FCbO)
In-Close2, In-Close3, In-Close4, In-Close5
LCM

At the core, all compute the concepts in a similar way—but they are optimized differently.
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Computing all Formal Concepts

Bernhard Ganter, Rudolf Wille: Formal Concept Analysis - Mathematical Foundations. 1996 resp. 1999.

Proposition. Each concept of a context (G, M, I) has the form (BI, B) for some closure B ofthe closure operator B 7→ BII. Conversely, all such pairs are concepts.
In order to compute all concepts, it is thus sufficient to compute all closures of B 7→ BII.

A simple approach to computing all closures of a closure operator φ on M is as follows.
1 The smallest closure is ∅φ.
2 When we have found a closure B, then all next closuresabove must be of the form (B∪ {m})φ for some attribute

m ∈ M \B.
If there is a closure D with B∪ {m} ⊆ D ⊆ (B∪ {m})φ, then
(B∪ {m})φ ⊆ D ⊆ (B∪ {m})φ since φ is monotonic andidempotent, i.e., D = (B∪ {m})φ. We thus do not missclosures in between.

C := ∅
Recurse(∅φ)def Recurse(B)
C := C∪ {B}foreach m ∈ M \B
Recurse((B∪ {m})φ)return C
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Close-by-One (CbO)

Sergei O. Kuznetsov: A fast algorithm for computing all intersections of objects from an arbitrary semilattice. 1993.

Although it works, this simple approach should not be used in implementations since itcomputes a lot of duplicates.
Close-by-One (CbO) tries to avoid unnecessary recursive calls bymeans of a special ordering of the subsets of M.
Definition. Let≤ be a linear order on M. The lexicographictree order ⊑ on subsets of M is defined by B ⊑ D if B ⊆ Dand m ≤ n for each m ∈ B and each n ∈ D \B.
A linear order≤ onM canbe given bymeans of an enumeration
M = {m1, . . . , mℓ} with mi ≤ mj if i ≤ j.

1 The first if-condition ensures that B ⊑ B∪ {n}.
2 The second if-condition is called canonicity test and ensures

B ⊑ (B∪ {n})φ.

C := ∅
Recurse(∅φ, · )def Recurse(B, m)
C := C∪ {B}foreach n ∈ M \Bif m ≤ n

D := (B∪ {n})φ

if B ⊑ D
Recurse(D, n)return C
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The Lexicographic Tree Order
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The Canonicity Test
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Computing the Hierarchical Order

Petko Valtchev, Rokia Missaoui, Pierre Lebrun: A Fast Algorithm for Building the Hasse Diagram of a Galois Lattice. Colloque LaCIM 2000.Ben Martin, Peter Eklund: From Concepts to Concept Lattice: A Border Algorithm for Making Covers Explicit. ICFCA 2008.Jaume Baixeries, Laszlo Szathmary, Petko Valtchev, Robert Godin: Yet a Faster Algorithm for Building the Hasse Diagram of a Concept Lattice. ICFCA 2009.

When we want to navigate through all formal concepts, we also need to compute thehierarchical order≤ on them. Recall that (A, B) ≤ (C, D) iff A ⊆ C (equivalently: iff D ⊆ B).
The naïve, inefficient way is to consider all pairs of concepts, but this is infeasible for largercontexts.
Instead, we can efficiently compute the neighborhood relation≺ between concepts, where
(A, B) ≺ (C, D) iff (A, B) < (C, D) and there is no concept (E, F) with (A, B) < (E, F) < (C, D).The hierarchical order≤ is then the reflexive, transitive closure of≺.
The line diagram can be easily drawn from≺ (but not from≤).
In applications where the concept lattice is not shown as a line diagram but can rather bebrowsed concept by concept, the immediate sub-concepts and super-concepts of thecurrent concept can be read off from≺.
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