How KR benefits from Formal Concept Analysis

Session 1/2

Francesco Kriegel*, Barış Sertkaya (Frankfurt UAS)

*Funded by DFG in Project 430150274 (Repairing Description Logic Ontologies) and partially in Project 389792660 (TRR 248: Foundations of Perspicuous Software Systems).

20th International Conference on Principles of Knowledge Representation and Reasoning (KR 2023), 2–8 September 2023
Tutorial Outline

Session 1:
1. Conceptual clustering with FCA (Francesco)
2. Extracting dependencies with FCA (Barış)

Session 2:
3. Acquiring complete knowledge about an application domain, enriching OWL ontologies (Barış)
4. Mining axioms from interpretations and knowledge graphs (Francesco)
5. Computing Stable Extensions of Argumentation Frameworks using FCA (Barış)
Early Days of Formal Concept Analysis
Early Days of Formal Concept Analysis

“Lattice theory today reflects the general status of current mathematics: there is a rich production of theoretical concepts, results, and developments, many of which are reached by elaborate mental gymnastics; on the other hand, the connections of the theory to its surroundings are getting weaker and weaker, with the result that the theory and even many of its parts become more isolated. Restructuring lattice theory is an attempt to reinvigorate connections with our general culture by interpreting the theory as concretely as possible, and in this way to promote better communication between lattice theorists and potential users of lattice theory.”

Rudolf Wille (* 1937, † 2017)
Early Days of Formal Concept Analysis

In 1983 Rudolf Wille established the research group on FCA. One of its first members was Bernhard Ganter.

They published the first and only textbook on FCA:
Bernhard Ganter, Rudolf Wille: **Formal Concept Analysis - Mathematical Foundations.** Springer, 1996 (in German) resp. 1999 (in English)

International community on FCA:
- International Conference on Conceptual Structures (ICCS), since 1993
- International Conference on Concept Lattices and their Applications (CLA), since 2002
- International Conference on Formal Concept Analysis (ICFCA), since 2004

Bernhard Ganter (*1949)
Basics of Formal Concept Analysis
Representing Data in FCA

Definition. A formal context \((G, M, I)\) consists of a set \(G\) of objects, a set \(M\) of attributes, and an incidence relation \(I \subseteq G \times M\) where \((g, m) \in I\) indicates that object \(g\) has attribute \(m\).

Example. We consider the formal context \(\mathcal{K}_{\text{Cities}} := (G, M, I)\) about cities and waterbodies.

- It has become a tradition in FCA literature to represent formal contexts as “cross tables.”
- The rows show the objects in \(G\), which are here five cities.
- The columns show the attributes in \(M\), which here indicate presence of waterbodies.
- A cross indicates a pair in the incidence relation \(I\), e.g., \((\text{Dresden}, \text{River}) \in I\) but \((\text{Rhodes}, \text{Lake}) \notin I\).
The Commonality Operators of a Formal Context

Definition. Given a formal context \((G, M, I)\), we define two mappings:

1. For each object subset \(A \subseteq G\), let \(A^I := \{ m \mid m \in M \text{ and } (g,m) \in I \text{ for each } g \in A \}\),
2. For each attribute subset \(B \subseteq M\), let \(B^I := \{ g \mid g \in G \text{ and } (g,m) \in I \text{ for each } m \in B \}\).

Example. We reconsider \(K\text{Cities}\).

- In the cross table, \(\{g\}^I\) is the row of \(g\) and \(\{m\}^I\) is the column of \(m\), e.g., \(\{Kyiv\}^I = \{River, Lake\}\).
- For sets with more than one object we intersect the rows: \(\{g_1, \ldots, g_n\}^I = \{g_1\}^I \cap \cdots \cap \{g_n\}^I\). Likewise for attribute sets. For instance, \(\{Lisbon, Kyiv\}^I = \{River\}\).
- For empty sets we have \(\emptyset^I = M\) resp. \(\emptyset^I = G\).
Formal Concepts

Definition. A formal concept is a pair \((A, B)\) consisting of subsets \(A \subseteq G\) and \(B \subseteq M\) with \(A^I = B\) and \(B^I = A\), where \(A\) is the extent and \(B\) is the intent.

Example. We reconsider \(\mathbb{I}_\text{Cities}\).

- \((\{\text{Dresden}\}, \{\text{River}\})\) is no formal concept, since \(\{\text{River}\}^I = \{\text{Dresden}, \text{Lisbon}, \text{Kyiv}\} \neq \{\text{Dresden}\}\).

- \((\text{Dresden}, \text{Lisbon}, \text{Kyiv}, \{\text{River}\})\) is a formal concept, since \(\{\text{Dresden}, \text{Lisbon}, \text{Kyiv}\}^I = \{\text{River}\}\) and \(\{\text{River}\}^I = \{\text{Dresden}, \text{Lisbon}, \text{Kyiv}\}\).

- Similarly, \((\{\text{Madrid}\}, \emptyset)\) is no formal concept, but \((\{\text{Dresden}, \text{Rhodes}, \text{Madrid}, \text{Lisbon}, \text{Kyiv}\}, \emptyset)\) is a concept.
The Concept Lattice

Definition. The concept lattice of \((G, M, I)\) is the set of all formal concepts, ordered by \((A, B) \leq (C, D)\) iff \(A \subseteq C\) (equivalently: iff \(D \subseteq B\)).

Example.
Live Demo
Concept Explorer FX

Source Code: https://github.com/francesco-kriegel/conexp-fx

Live Demo
Technical Details
The Concept Lattice is Complete

Theorem. For each formal context \((G,M,I)\), its concept lattice is a complete lattice:

1. For all concepts \((A_1, B_1), \ldots, (A_n, B_n)\), the set
 \[
 \{ (C,D) \mid (A_1, B_1) \leq (C,D), \ldots, (A_n, B_n) \leq (C,D) \}
 \]
 has a smallest element. It is called the **supremum** of these concepts, is denoted as \((A_1, B_1) \lor \cdots \lor (A_n, B_n)\), and satisfies the following equation:
 \[
 (A_1, B_1) \lor \cdots \lor (A_n, B_n) = ((B_1 \cap \cdots \cap B_n)^I, B_1 \cap \cdots \cap B_n).
 \]

2. For all concepts \((A_1, B_1), \ldots, (A_n, B_n)\), the set
 \[
 \{ (C,D) \mid (C,D) \leq (A_1, B_1), \ldots, (C,D) \leq (A_n, B_n) \}
 \]
 has a greatest element. It is called the **infimum** of these concepts, is denoted as \((A_1, B_1) \land \cdots \land (A_n, B_n)\), and satisfies the following equation:
 \[
 (A_1, B_1) \land \cdots \land (A_n, B_n) = (A_1 \cap \cdots \cap A_n, (A_1 \cap \cdots \cap A_n)^I).
 \]
The Galois Connection of a Formal Context

We often apply the commonality operators one after the other and simply write A^{II} for $(A^I)^I$.

Lemma. The two mappings $A \mapsto A^I$ and $B \mapsto B^I$ form a Galois connection:

1. $A \subseteq B^I$ iff $B \subseteq A^I$ iff $A \times B \subseteq I$
2. If $A \subseteq C$, then $C^I \subseteq A^I$
3. $A \subseteq A^{II}$
4. $A^I = A^{III}$
5. If $B \subseteq D$, then $D^I \subseteq B^I$
6. $B \subseteq B^{II}$
7. $B^I = B^{III}$
The Galois Connection of a Formal Context

We often apply the commonality operators one after the other and simply write A^{II} for $(A^I)^I$.

Lemma. The two mappings $A \mapsto A^I$ and $B \mapsto B^I$ form a Galois connection:

1. $A \subseteq B^I$ iff $B \subseteq A^I$ iff $A \times B \subseteq I$
2. If $A \subseteq C$, then $C^I \subseteq A^I$
3. $A \subseteq A^{\text{II}}$
4. $A^I = A^{\text{III}}$
5. If $B \subseteq D$, then $D^I \subseteq B^I$
6. $B \subseteq B^{\text{II}}$
7. $B^I = B^{\text{III}}$

It follows that the mappings $A \mapsto A^{\text{II}}$ and $B \mapsto B^{\text{II}}$ are closure operators on G resp. M.

Definition. A closure operator on M is a mapping $\varphi : M \to M$ that is

1. extensive: $B \subseteq B^\varphi$
2. monotonic: $B \subseteq D$ implies $B^\varphi \subseteq D^\varphi$
3. idempotent: $B^{\varphi\varphi} = B^\varphi$.

Each subset of the form B^φ is called a closure of φ.
Computing the Concept Lattice
Computing all Formal Concepts

There are several algorithms for computing all formal concepts:

- **NextClosure**
- **Close-by-One (CbO)**
- **Fast Close-by-One (FCbO)**
- **In-Close2, In-Close3, In-Close4, In-Close5**
- **LCM**

At the core, all compute the concepts in a similar way — but they are optimized differently.

Computing all Formal Concepts

Proposition. Each concept of a context \((G, M, I)\) has the form \((B^I, B)\) for some closure \(B\) of the closure operator \(B \mapsto B^I\). Conversely, all such pairs are concepts.

In order to compute all concepts, it is thus sufficient to compute all closures of \(B \mapsto B^I\).

Computing all Formal Concepts

Proposition. Each concept of a context \((G,M,I)\) has the form \((B^I,B)\) for some closure \(B\) of the closure operator \(B \mapsto B^I\). Conversely, all such pairs are concepts.

In order to compute all concepts, it is thus sufficient to compute all closures of \(B \mapsto B^I\).

A simple approach to computing all closures of a closure operator \(\varphi\) on \(M\) is as follows.

1. The smallest closure is \(\emptyset\).
2. When we have found a closure \(B\), then all next closures above must be of the form \((B \cup \{m\}) \varphi\) for some attribute \(m \in M \setminus B\).

If there is a closure \(D\) with \(B \cup \{m\} \subseteq D \subseteq (B \cup \{m\}) \varphi\), then \((B \cup \{m\}) \varphi \subseteq D \subseteq (B \cup \{m\}) \varphi\) since \(\varphi\) is monotonic and idempotent, i.e., \(D = (B \cup \{m\}) \varphi\). We thus do not miss closures in between.

\[
\begin{align*}
\mathcal{C} & := \emptyset \\
\text{Recurse}(\emptyset \varphi) \\
\text{def Recurse}(B) \\
\mathcal{C} & := \mathcal{C} \cup \{B\} \\
\text{foreach } m \in M \setminus B \\
& \qquad \text{Recurse}((B \cup \{m\}) \varphi) \\
\text{return } \mathcal{C}
\end{align*}
\]

Close-by-One (CbO)

Although it works, this simple approach should not be used in implementations since it computes a lot of duplicates.

Close-by-One (CbO) tries to avoid unnecessary recursive calls by means of a special ordering of the subsets of \(M \).

Definition. Let \(\leq \) be a linear order on \(M \). The lexicographic tree order \(\sqsubseteq \) on subsets of \(M \) is defined by \(B \sqsubseteq D \) if \(B \subseteq D \) and \(m \leq n \) for each \(m \in B \) and each \(n \in D \setminus B \).

A linear order \(\leq \) on \(M \) can be given by means of an enumeration \(M = \{m_1, \ldots, m_\ell\} \) with \(m_i \leq m_j \) if \(i \leq j \).

Close-by-One (CbO)

Although it works, this simple approach should not be used in implementations since it computes a lot of duplicates.

Close-by-One (CbO) tries to avoid unnecessary recursive calls by means of a special ordering of the subsets of M.

Definition. Let \leq be a linear order on M. The lexicographic tree order \sqsubseteq on subsets of M is defined by $B \sqsubseteq D$ if $B \subseteq D$ and $m \leq n$ for each $m \in B$ and each $n \in D \setminus B$.

A linear order \leq on M can be given by means of an enumeration $M = \{m_1, \ldots, m_\ell\}$ with $m_i \leq m_j$ if $i \leq j$.

1. The first if-condition ensures that $B \sqsubseteq B \cup \{n\}$.
2. The second if-condition is called canonicity test and ensures $B \sqsubseteq (B \cup \{n\})^\phi$.

Definition. Let \leq be a linear order on M. The lexicographic tree order \sqsubseteq on subsets of M is defined by $B \sqsubseteq D$ if $B \subseteq D$ and $m \leq n$ for each $m \in B$ and each $n \in D \setminus B$.

A linear order \leq on M can be given by means of an enumeration $M = \{m_1, \ldots, m_\ell\}$ with $m_i \leq m_j$ if $i \leq j$.

1. The first if-condition ensures that $B \sqsubseteq B \cup \{n\}$.
2. The second if-condition is called canonicity test and ensures $B \sqsubseteq (B \cup \{n\})^\phi$.

The Lexicographic Tree Order

\[
\emptyset \rightarrow \{1\} \rightarrow \{2\} \rightarrow \{3\} \\
\{2\} \rightarrow \{1, 2\} \rightarrow \{1, 2, 3\} \\
\{3\} \rightarrow \{1, 3\} \\
\{1\} \rightarrow \{1, 3\}
\]
The Canonicity Test

Admissible Jump
(Canoncity Test passes)

Dispensable Jump
(Canoncity Test fails)
Computing the Hierarchical Order

When we want to navigate through all formal concepts, we also need to compute the hierarchical order \leq on them. Recall that $(A, B) \leq (C, D)$ iff $A \subseteq C$ (equivalently: iff $D \subseteq B$).

The naïve, inefficient way is to consider all pairs of concepts, but this is infeasible for larger contexts.

Instead, we can efficiently compute the neighborhood relation \prec between concepts, where $(A, B) \prec (C, D)$ iff $(A, B) < (C, D)$ and there is no concept (E, F) with $(A, B) < (E, F) < (C, D)$. The hierarchical order \leq is then the reflexive, transitive closure of \prec.

- The line diagram can be easily drawn from \prec (but not from \leq).
- In applications where the concept lattice is not shown as a line diagram but can rather be browsed concept by concept, the immediate sub-concepts and super-concepts of the current concept can be read off from \prec.

How KR benefits from Formal Concept Analysis Francesco Kriegel (TU Dresden), Barış Sertkaya (Frankfurt UAS) KR 2023 Tutorial 21 / 21
Do you have questions or comments?