

Faculty of Computer Science • Institute of Theoretical Computer Science • Chair of Automata Theory

Beyond Optimal: Interactive Identification of Better-than-optimal Repairs

Francesco Kriegel

Theoretical Computer Science, Technische Universität Dresden, Germany Center for Scalable Data Analytics and Artificial Intelligence (ScaDS.AI), Germany While producing this paper: Center for Perspicuous Computing (CPEC), Germany 40th ACM/SIGAPP Symposium On Applied Computing, 31 March – 4 April 2025

Knowledge-based Systems

Logics, Knowledge Bases, and Models

- In general, a logic with model-based semantics consists of
 - a set of all statements,
 - a set of all interpretations,
 - and a relation \models between them such that $\mathcal{I} \models \alpha$ indicates that the interpretation \mathcal{I} **satisfies** the statement α .
- A **knowledge base (KB)** \mathcal{K} is a finite set of statements.
- **\blacksquare** \mathcal{I} is a **model** of \mathcal{K} if \mathcal{I} satisfies every statement in \mathcal{K} .
- **\blacksquare** \mathcal{K} is **consistent** if it has a model.
- **•** \mathcal{K} entails another KB \mathcal{K}' if every model of \mathcal{K} is also one of \mathcal{K}' , written $\mathcal{K} \models \mathcal{K}'$.

Knowledge-based Systems ooo

ABoxes and Ontologies

- An application domain can be represented by a knowledge base.
- We further assume that the statements are subdivided into assertions and ontological statements.
- Each KB \mathcal{K} is thus a disjoint union of
 - an **assertion box (ABox)** A consisting of assertions
 - and an **ontology** *O* with ontological statements.

SAC 2025

Reasoning

Optimal Repairs

Repairs

- A **repair request** is an assertion set $\mathcal{P} \coloneqq \mathcal{P}_+ \uplus \mathcal{P}_-$ partitioned into
 - **an addition part** \mathcal{P}_+
 - and a **removal part** \mathcal{P}_{-} .
- Of a consistent KB $\mathcal{K} \coloneqq \mathcal{A} \uplus \mathcal{O}$, an **ABox repair** for \mathcal{P} is an ABox \mathcal{B} such that
 - $\mathcal{B} \cup \mathcal{O}$ is consistent,
 - **•** $\mathcal{B} \cup \mathcal{O} \models \alpha$ for each $\alpha \in \mathcal{P}_+$, and
 - $\blacksquare \ \mathcal{B} \cup \mathcal{O} \not\models \beta \text{ for each } \beta \in \mathcal{P}_{-}.$

Repairs

- A **repair request** is an assertion set $\mathcal{P} \coloneqq \mathcal{P}_+ \uplus \mathcal{P}_-$ partitioned into
 - **an addition part** \mathcal{P}_+
 - and a **removal part** \mathcal{P}_{-} .
- Of a consistent KB $\mathcal{K} \coloneqq \mathcal{A} \uplus \mathcal{O}$, an **ABox repair** for \mathcal{P} is an ABox \mathcal{B} such that
 - $\mathcal{B} \cup \mathcal{O}$ is consistent,
 - **•** $\mathcal{B} \cup \mathcal{O} \models \alpha$ for each $\alpha \in \mathcal{P}_+$, and
 - $\blacksquare \ \mathcal{B} \cup \mathcal{O} \not\models \beta \text{ for each } \beta \in \mathcal{P}_{-}.$
- We write $\mathcal{B} \ge \mathcal{C}$ and say that \mathcal{B} is **at least as good as** another repair \mathcal{C} if
 - $\blacksquare \mathcal{B} \cup \mathcal{O} \models \gamma \text{ for each } \gamma \in \mathcal{C} \text{ with } \mathcal{K} \models \gamma \text{ (i.e. } \mathcal{B} \text{ entails all retained knowledge in } \mathcal{C}\text{),}$
 - and $C \cup O \models \gamma$ for each $\gamma \in B$ with $\mathcal{K} \not\models \gamma$ (i.e. C entails all additional knowledge in B).
- Moreover, we write $\mathcal{B} > \mathcal{C}$ and say that \mathcal{B} is **better than** \mathcal{C} if $\mathcal{B} \ge \mathcal{C}$ but $\mathcal{C} \ge \mathcal{B}$, i.e. either less knowledge is added or less knowledge is removed.

Comparing Repairs

 $\mathsf{KB}\,\mathcal{A} \uplus \mathcal{O}$

Comparing Repairs

Optimality

- A repair \mathcal{B} optimal if there is no repair better than \mathcal{B} .
- *P* is **optimally coverable** w.r.t. *K* if every repair of *K* for *P* is at most as good as some optimal one.

Optimality

- A repair \mathcal{B} optimal if there is no repair better than \mathcal{B} .
- *P* is **optimally coverable** w.r.t. *K* if every repair of *K* for *P* is at most as good as some optimal one.

Optimality

- A repair \mathcal{B} optimal if there is no repair better than \mathcal{B} .
- *P* is **optimally coverable** w.r.t. *K* if every repair of *K* for *P* is at most as good as some optimal one.

Recap: Results on Computing Optimal Repairs

- Quantified ABoxes $\exists X. A$ consisting of assertions u : A and (u, v) : r.
- **E** \mathcal{EL} ontologies consisting of inclusions $C \sqsubseteq D$ where $C := \top |A| C \sqcap C | \exists r.C$
- Horn- \mathcal{ALCROI} ontologies consisting of inclusions $C \sqsubseteq D$ and $R_1 \circ \cdots \circ R_n \sqsubseteq S$ where $C := \bot | \top | \{a\} | A | C \sqcap C | \exists R.C | \exists \rho.C | C \sqcup C$ $D := \bot | \top | \{a\} | A | C \sqcap C | \exists R.C | \forall \rho.C | \neg C \sqcup D$ $R := r | r^ \rho := r | r^- | \rho \circ \rho | \rho + \rho | \rho^*$
- In these settings, every repair request \mathcal{P} consisting of concept assertions a: C and role assertions (a, b): r is optimally coverable, and there is a canonical form of these optimal repairs that can be computed in exponential time.

Beyond Optimal: Interactive Identification of Better-than-optimal Repairs

F. Baader, F. Kriegel, A. Nuradiansyah, R. Peñaloza: Computing Compliant Anonymisations of Quantified ABoxes w.r.t. EL Policies. ISWC 2020

F. Baader, P. Koopmann, F. Kriegel, A. Nuradiansyah: Computing Optimal Repairs of Quantified ABoxes w.r.t. Static *ε L* TBoxes. CADE 2021 F. Baader, F. Kriegel: Pushing Optimal ABox Repair from *εL* Towards More Expressive Horn-DLs. KR 2022

Recap: Results on Computing Optimal Repairs

What's more:

- To ensure that repairs in form of finite quantified ABoxes exist, an acyclicity/termination condition on the ontology must be imposed.
- We also investigated how finite representations of infinite quantified ABoxes as repairs can be computed when these conditions are not fulfilled.
- The ontology is considered as static, i.e. the errors are only in the ABox. If this is not the case, then also *EL* ontologies/TBoxes can be optimally repaired (with fixed premises).

F. Baader, P. Koopmann, F. Kriegel: **Optimal Repairs in the Description Logic** \mathcal{EL} **Revisited.** JELIA 2023 F. Kriegel: **Optimal Fixed-Premise Repairs of** \mathcal{EL} **TBoxes.** KI 2022

8/12

Disputable Consequences

Beyond Optimal

- Recall: optimal repairs preserve as much as possible knowledge entailed by the input KB.Prima facie, optimality seems to be desired.
- Toy example in the medical domain:
- ABox {bob:∃shows.SignOrSymptom1, bob:∃shows.SignOrSymptom2}
- **TBox** { \exists shows.SignOrSymptom1 $\sqcap \exists$ shows.SignOrSymptom2 $\sqsubseteq \exists$ has.DiseaseA}
- Repair request {bob: ∃shows.SignOrSymptom1}
- Optimal repair contains/entails bob : ∃has.DiseaseA

Another toy example:

- **Quantified ABox** $\exists \{x\}.\{(alice, x) : ride, x : MountainBike\}$
- **TBox** {MountainBike \sqsubseteq Bike}
- Repair request {alice: ∃rides.MountainBike}
- Optimal repair contains/entails alice : ∃rides.Bike

Disputable Consequences

Formally:

- Given a consistent KB K and a feasible repair request P, a **disputable consequence** is an assertion γ s.t.
- $\blacksquare \ \mathcal{K} \cup \mathcal{P}_+ \models \gamma,$
- there is a repair \mathcal{B} with $\mathcal{B} \cup \mathcal{O} \models \gamma$,
- there is a repair \mathcal{B} with $\mathcal{B} \cup \mathcal{O} \not\models \gamma$, and
- for each repair \mathcal{B} , the KB $\mathcal{B} \cup \mathcal{O}$ does not entail any substantiation^{*} of γ .
- *A **substantiation** of an assertion γ is an ABox \mathcal{J} s.t. $\mathcal{A} \cup \mathcal{P}_+ \models \mathcal{J}$ and $\mathcal{J} \cup \mathcal{O} \models \gamma$.

Interactive Repair Strategy

Deterministic Repair Requests

- If \mathcal{P} is optimally coverable w.r.t. \mathcal{K} and there is exactly one optimal repair of \mathcal{K} w.r.t. \mathcal{P} up to equivalence w.r.t. \mathcal{O} , then \mathcal{P} is **deterministic** w.r.t. \mathcal{K} .
- \mathcal{P}' is a **refinement** of \mathcal{P} if $\mathcal{P}_+ \subseteq \mathcal{P}'_+$ and $\mathcal{P}_- \subseteq \mathcal{P}'_-$ and at least one of these set inclusions is strict.
- When given a non-deterministic repair request \mathcal{P} , we could either compute an arbitrary optimal repair, or rather refine \mathcal{P} by user/expert interaction to a deterministic request and so identify a useful repair.

$$\mathcal{P} = \mathcal{P}_0 \xrightarrow{\text{refine}} \mathcal{P}_1 \xrightarrow{\text{refine}} \mathcal{P}_2 \xrightarrow{\text{refine}} \dots \xrightarrow{\text{refine}} \mathcal{P}_n \text{ deterministic}$$

How to efficiently find a deterministic refinement?

Interactive Repair Strategy

Results in the paper:

- Considered setting: KB \mathcal{K} consisting of a quantified ABox $\exists X.\mathcal{A}$ and an \mathcal{EL} ontology \mathcal{O} .
- The paper presents an interaction strategy with which a deterministic refinement can be identified in polynomially many steps (i.e. the number of questions that need to be answered by the users/experts is polynomial).
- Every (theoretically) optimal repair can be found with the strategy.
- Strategy runs in two phases:
 - 1 Phase 1 is devoted to identifying the causes of the initially reported errors in \mathcal{P} .
 - 2 Phase 2 first computed all disputable consequences, and then proceeds with these as Phase 1.
- Although deciding disputable consequences in this setting is co NP-complete, they can be computed rather efficiently in practise.

Do you have questions or comments?